Research Article Analysis of Lateral Distribution of Atmospheric Cherenkov Light at High Mountain Altitude Towards Event Reconstruction

Similar documents
Longitudinal profile of Nµ/Ne in extensive air showers: Implications for cosmic rays mass composition study

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

From the Knee to the toes: The challenge of cosmic-ray composition

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Mass Composition Study at the Pierre Auger Observatory

The influence of low energy hadron interaction models in CORSIKA code on atmospheric ionization due to heavy nuclei

Numerical study of the electron lateral distribution in atmospheric showers of high energy cosmic rays

DIFFERENT H.E. INTERACTION MODELS

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

The Cosmic Ray Mass Composition in the Energy Range ev measured with the Tunka Array: Results and Perspectives

Study of Performance Improvement for Air Shower Array with Surface Water Cherenkov Detectors

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Publications of Francesco Arneodo: journal articles

PoS(ICRC2015)1001. Gamma Hadron Separation using Pairwise Compactness Method with HAWC

The Fermi Gamma-ray Space Telescope

Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

arxiv: v1 [astro-ph.im] 7 Sep 2015

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO

Gamma/Proton separation study for the LHAASO-WCDA detector

Latest results and perspectives of the KASCADE-Grande EAS facility

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

arxiv: v1 [astro-ph.im] 14 Sep 2017

The Tunka-Rex Experiment for the Detection of the Air- Shower Radio Emission

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

arxiv: v1 [astro-ph.he] 8 Apr 2015

Constraints on the energy spectra of charged particles predicted in some model interactions of hadrons with help of the atmospheric muon flux

Air Shower Measurements from PeV to EeV

arxiv: v1 [astro-ph.he] 28 Jan 2013

The KASCADE-Grande Experiment

A CORSIKA study on the influence of muon detector thresholds on the separability of primary cosmic rays at highest energies

HiSCORE. M. Tluczykont for the HiSCORE Collaboration. Astroteilchenphysik in Deutschland Zeuthen, 09/2012. Sky above Tunka valley. HiSCORE.

HiSCORE. M. Tluczykont for the HiSCORE Collaboration

arxiv: v1 [astro-ph.im] 13 Sep 2017 Julian Sitarek University of Łódź, PL Lodz, Poland

Journal of Asian Scientific Research STEEPNESS OF THE LATERAL DISTRIBUTION FUNCTION OF SECONDARY HADRONS IN EXTENSIVE AIR SHOWERS. M.

arxiv: v1 [astro-ph.he] 31 Dec 2018

PoS(ICRC2015)424. YAC sensitivity for measuring the light-component spectrum of primary cosmic rays at the knee energies

The Physics of Ultrahigh Energy Cosmic Rays. Example Poster Presentation Physics 5110 Spring 2009 Reminder: Posters are due Wed April 29 in class.

Primary cosmic ray mass composition above 1 PeV as measured by the PRISMA-YBJ array

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Investigating post-lhc hadronic interaction models and their predictions of cosmic ray shower observables

Gamma-ray Astrophysics

Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array. by the Tunka-133 Collaboration

Neutrino Astronomy. Ph 135 Scott Wilbur

Study of high muon multiplicity cosmic-ray events with ALICE at the CERN Large Hadron Collider

Supernova Remnants and Cosmic. Rays

PoS(ICRC2015)432. Simulation Study On High Energy Electron and Gamma-ray Detection With the Newly Upgraded Tibet ASgamma Experiment

The HiSCORE Detector. HAP Topic 4 Workshop Jan th Rayk Nachtigall. Karlsruhe January 25th

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Investigation on mass composition of UHE cosmic rays using CRPropa 2.0

Recent Results from the KASCADE-Grande Data Analysis

Computation of ion production rate induced by cosmic rays during Bastille day ground level enhancement

EAS spectrum in thermal neutrons measured with PRISMA-32

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration

Ultra High Energy Cosmic Rays I

Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ

CORSIKA modification for electric field simulations on pions, kaons and muons

Cosmic Ray Astronomy. Qingling Ni

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Ultra- high energy cosmic rays

Hadronic Interaction Studies with ARGO-YBJ

COSMIC RAY COMPOSITION.

A method of observing Cherenkov light at the Yakutsk EAS array

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

A. Lindner 1. University of Hamburg, II. Inst. für Exp. Physik, Luruper Chaussee 149, D Hamburg, Germany

LATTES Large Array Telescope to Tracking Energetic Sources

arxiv: v1 [astro-ph] 26 Apr 2007

The air-shower experiment KASCADE-Grande

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

IONIZATION EFFECTS IN THE MIDDLE STRATOSPHERE DUE TO COSMIC RAYS DURING STRONG GLE EVENTS

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

John Ellison University of California, Riverside. Quarknet 2008 at UCR

A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Understanding High Energy Neutrinos

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

EAS lateral distribution measured by analog readout and digital readout of ARGO-YBJ experiment

The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

Computation of ionization effect due to cosmic rays in polar middle atmosphere during GLE 70 on 13 December 2006

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

High Energy Particle Production by Space Plasmas

TeV energy physics at LHC and in cosmic rays

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

Ultra High Energy Cosmic Rays: Observations and Analysis

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere.

Diffusive shock acceleration with regular electric fields

Multi-TeV to PeV Gamma Ray Astronomy

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ

TEV GAMMA RAY ASTRONOMY WITH VERITAS

OVERVIEW OF THE RESULTS

32 nd International Cosmic Ray Conference, Beijing 2011

RECENT RESULTS FROM CANGAROO

ASTRONOMY AND ASTROPHYSICS - High Energy Astronomy From the Ground - Felix Aharonian HIGH ENERGY ASTRONOMY FROM THE GROUND

Transcription:

International Scholarly Research Network ISRN High Energy Physics Volume 2012, Article ID 906358, 12 pages doi:10.5402/2012/906358 Research Article Analysis of Lateral Distribution of Atmospheric Cherenkov Light at High Mountain Altitude Towards Event Reconstruction Alexander Mishev 1, 2 1 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria 2 Oulu Unit, Sodankyla Geophysical Observatory, University of Oulu, 90014 Oulu, Finland Correspondence should be addressed to Alexander Mishev, alex mishev@yahoo.com Received 12 November 2012; Accepted 3 December 2012 Academic Editors: S. Alexeyev, L. Marek-Crnjac, O. A. Sampayo, and A. S. Tonachini Copyright q 2012 Alexander Mishev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Air shower simulations with CORSIKA6.990 code using FLUKA 2011 and QGSJET II hadron generators are performed. The simulations are carried out at high mountain observation level, namely, Chacaltaya cosmic ray station. The lateral distribution of atmospheric Cherenkov light produced by various primary particles, namely, proton, helium, oxygen, and iron nuclei, is obtained over wide energy range, between 1 ev and 7 ev. The lateral distribution is obtained, integrating over time and angle Cherenkov photons till 800 m from the shower axis. The shapes of the obtained distributions are compared and parameterized. Three different approximations of lateral distribution of Cherenkov light are compared. On the basis of inverse problem solution an event analysis, towards mass composition and energy reconstruction of the primary particle, is carried out. The applications and scientific potential for HECRE experiment proposal are discussed. 1. Introduction Cosmic rays are high, ultra-high, and extremely high energy particles of extraterrestrial origin, which constantly impinge the Earth s atmosphere. The primary cosmic CR s rays extend over twelve decades of energy with the corresponding decline in the intensity. The flux goes down from m 2 s 1 at energies 10 9 ev to 10 2 km 2 yr 1 at energies 0 ev. The shape of the spectrum is featureless, with small deviation from the power law function across this large energy range. The observed change in the slope E 2.7 to E 3.0 around 1 3.5 ev is known as the knee of the spectrum. The major unsolved problems are related to origin and acceleration mechanisms of primary cosmic ray 1, 2. The study of primary cosmic ray mass composition in the energy range around the knee is of a crucial importance for

2 ISRN High Energy Physics understanding the origin of cosmic rays and their acceleration and propagation mechanism. As example, the change from light to heavier composition with increasing the energy of cosmic ray nuclei is related to energy limit of their acceleration in galactic sources. It is regarded that the bulk of cosmic rays originate from the galaxy. The part below the knee comes from galactic supernovas, particles accelerated by the shocks in the supernova remnants SNR. The explanation of the knee of the spectrum is based on the SNR diffuse shock acceleration mechanism limits 3, 4. In this model the galactic supernovas are the only galactic candidate with sufficient energy 5. The supernova diffuse shock acceleration mechanism can produce high energy particles up to some maximal energy, which is limited by the lifetime of the shock wave. Other possibility is when the particles are so energetic and they can no be confined in the acceleration region 6. The measurements of the individual cosmic ray spectrum and the precise estimation of mass composition are very important in order to obtain detailed information about the sources of primary cosmic ray and build an adequate model of cosmic ray origin and acceleration mechanisms 7. While the low-energy CR particles are just absorbed in the atmosphere, those with energies greater then 1 GeV/nucleon generate new particles through interactions with atomic nuclei in air-an atmospheric cascade. An extensive air shower EAS usually consists of billions of secondary particles mostly electrons and muons that arrive at ground level over large areas. The predominant interactions are electromagnetic; the cross-section for the production of hadron and muon pairs are several orders of magnitude smaller than that for electron-pair production. In the electromagnetic shower, protons produce electron-positron pairs, and electrons and positrons produce photons via Bremsstrahlung. The relativistic charged particles in the shower generate Cherenkov light. Above 4 ev the only possibility for cosmic ray detection and measurement is ground based, that is, the detection of one or several of the components of secondary cosmic ray. One of the most convenient techniques is the atmospheric Cherenkov technique, that is, the detection of the Cherenkov light in extensive air showers. The atmospheric Cherenkov technique is based on registration of the very brief flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a very high-energy CR particle impinge the atmosphere. The Cherenkov light generated in EAS was observed by Galbraith and Jelley in 1953 8. The Whipple telescope detected Crab Nebula 9, 10 on the basis of imaging the air shower. Using measurements with atmospheric Cherenkov telescopes the mass composition of primary CR could be estimated 11, 12. The detection of the air Cherenkov light at ground level by an array of telescopes or photomultipliers is convenient tool for all particle energy spectrum 13 measurement, as was recently reported 14, 15. Such types of telescopes are based on time and angle integration of Cherenkov light flux at given observation level. Recently a new calibration experiment for a primary CR mass composition estimation in the knee region was proposed 16, 17. The HECRE 18 experiment proposal, situated at high mountain altitude of 516 g cm 2 observation level is with general aim mass composition and energy spectrum studies of primary CR around the knee region. A significant part of this experiment is the Cherenkov array. Moreover, the existing air shower array at Chacaltaya was recently completed with Cherenkov detectors 19. The detailed simulation of Cherenkov array of HECRE experiment is the principal aim of this study in attempt to study the experiment capability for event reconstruction.

ISRN High Energy Physics 3 2. Lateral Distribution of Atmospheric Cherenkov Light In this study the evolution of atmospheric cascade, respectively, the lateral distribution of atmospheric Cherenkov light, is carried out with the CORSIKA 6.990 code 20 with corresponding hadron interaction models FLUKA 2011 21 and Quark Gluon String with JETs QGSJET II 22. COsmic Ray SImulations for KASKADE CORSIKA code is the most widely used atmospheric cascade simulation tool. The code simulates the interactions and decays of various nuclei, hadrons, muons, electrons, and photons in the atmosphere. The particles are tracked through the atmosphere until they undergo reactions with an air nucleus or in the case of unstable secondary particles, they decay. The result of the simulations is detailed information about the type, energy, momenta, location, and arrival time of the produced secondary particles at given selected altitude a.s.l. The primary particles that can be considered are protons, light, middle and heavy nuclei up to Iron. The observation level was assumed to 516 g cm 2, which corresponds to Chacaltaya CR station. The US standard atmosphere was assumed during the simulations. This observation level is near to shower maximum, especially for the hadronic cascades with energies around the knee. As a result the fluctuations of shower development are not as important compared with lower observation levels. This permits to obtain flatter distributions of the different shower components, namely, atmospheric Cherenkov light flux during the simulations. The simulated particles are primary proton, iron, helium, and oxygen nuclei. One large detector 800 800 m was considered during the simulations, in attempt to collect the quasi-totality of Cherenkov photons in the shower. As a result a significant reduce of the statistical fluctuations is achieved. As a results the obtained lateral distribution of Cherenkov light flux densities in EAS is with less uncertainties, comparing to previous works 23, 24, where a grid of detectors was used. Figures 1 and 2 present the Cherenkov light in EAS produced by primary protons over the energy ranges 1 3 ev and 3 7 ev. The obtained lateral distributions of atmospheric Cherenkov light due to various cosmic ray nuclei below and in the region of the knee are presented in Figures 3 and 4. The lateral distributions of Cherenkov light flux densities in EAS initiated by primary nuclei, namely, helium and oxygen, are between the generated by proton and iron nuclei. An analysis of fluctuations of Cherenkov light flux as a function of the bin size is carried out. In a low energy range till 5.2 ev the statistical fluctuations are strongly dependent of the bin size, which is considered for analysis. In this energy range it is necessary to increase the obtained statistical fluctuations in the case of small detectors, for example, photomultipliers with Winston cones. In this study this is related only for primary proton nuclei. In a high-energy range above 3 ev the fluctuations due to the longitudinal development of the shower dominate. Therefore the fluctuations above this energy are not related to the bin size. 3. Parameterization of the Lateral Distribution and Event Reconstruction The obtained lateral distributions are approximated with various parameterizations 25 27. Generally the reconstruction methods are based on a given assumption and parameterization of lateral distribution of Cherenkov light in EAS. In this connection the convenient parameterization is crucial for the event analysis and reconstruction of primary particle

4 ISRN High Energy Physics Proton primary nuclei 10 0 10 1 1 00 1000 3 ev 5 2 ev 2 ev 5 1 ev 1 ev Figure 1: Lateral distribution of Cherenkov light flux in EAS produced by primary proton showers in the energy range 1011 1013 ev at Chacaltaya observation level. 0 Proton primary nuclei 10 9 10 8 10 7 1 00 1000 7 ev 5 6 ev 6 ev 5 5 ev 5 ev 5 4 ev 4 ev 5 3 ev 3 ev Figure 2: Lateral distribution of Cherenkov light flux in EAS produced by primary proton showers in the energy range 1013 1017 ev at Chacaltaya observation level.

ISRN High Energy Physics 5 Nuclei primaries below the knee 5 ev 4 ev 3 ev 1 00 Iron Oxygen Helium Proton Figure 3: Lateral distribution of Cherenkov light flux in EAS produced by various nuclei below the knee at Chacaltaya observation level. characteristics 16, 17, 28, 29. The results for various primary protons approximations are plotted in Figure 5. The proposed parameterization for HECRE experiment, Q R σea e R/γ R r 0 /γ R/γ 2 R r 0 /γ 2 (R/γ ) 2 ( γ[ R r0 /γ ) ], 2 3.1 Rσ2 /γ is also applied for approximation of lateral distribution of atmospheric Cherenkov light produced by proton, helium, oxygen and iron nuclei. In 3.1 where R is the distance from the shower axis, and σ, γ, a, andr 0, are model parameters. The results are presented in Figures 6, 7, 8, and9. The approximation 3.1 was successfully applied for various problems, namely, gamma hadron separation at lower observation depths 30, 31, fast Monte Carlo simulation of the detector response of wave front sampling and angle integration Cherenkov arrays 32, mass composition and cosmic ray energy spectrum estimation for Tunka array 33, 34. The obtained lateral distributions, with corresponding parameterizations, are used for study of the event analysis capability of HECRE experiment proposal. A large amount of simulated events with CORSIKA code was used. In general the method for event reconstruction is based on inverse problem solution 35 assuming given parameterization and subsequent integration of the reconstructed lateral distribution. The solution of the inverse problem is carried out with afxy-code 36, 37 using Levenberg-Marquardt numerical algorithm 38, 39. InFigure 10 is presented the obtained accuracy for energy estimation as a function of the distance from the center of detector array using various approximations. The parameterizations 26, 27 demonstrate similar results at distance till 150 m from center of the detector array. The primary particle energy is reconstructed with 10 15% accuracy. The

6 ISRN High Energy Physics 10 9 Nuclei primaries above the knee 10 8 10 7 7 ev 6 ev 5 ev 1 00 1000 Iron Oxygen Helium Proton Figure 4: Lateral distribution of Cherenkov light flux in EAS produced by various nuclei around the knee at Chacaltaya observation level. Table 1: Reconstruction efficiency for various primary particles for various distance from detector array. 50 m 100 m 150 m >150 m All particles 0.812 0.774 0.73 0.7 Protons 0.81 0.773 0.72 0.69 He, O and Fe 0.83 0.85 0.81 0.73 Rejection 0.95 0.94 0.91 0.89 application of parameterization 25 leads to primary particle energy reconstruction accuracy of 20% for distance of 50 m from detector array center and 50% for distance of 100 m. At greater distance the parameterization 25 is not applicable, since the inverse problem is not solved. The parameterizations 25, 26 demonstrate greater accuracy within detector array. In addition they could be applied also for peripheric event reconstruction. At greater distance, outside of the detector array, the parameterization 26 leads to better accuracy in energy reconstruction. An additional analysis for mass composition reconstruction is carried out. On the basis of a realistic cosmic ray spectrum 1 simulated with CORSIKA code and inverse problem solution, the atomic number mass of the reconstructed events is estimated. This analysis is possible only with parameterization 26. Different model parameters corresponding to different primaries. The result of this analysis is shown in Figure 11. Increasing the energy of the primary particle the accuracy for mass reconstruction also increases lower model parameter uncertainty. The reconstruction efficiency as a function of the distance from detector array is summarized in Table 1. The events within detector array are reconstructed with efficiency of about 80%, with greater probability for middle and heavy nuclei because the flatter distributions. The rejection between different particles is nearly 100% for reconstructed events. Only events with large

ISRN High Energy Physics 7 10 0 10 1 3 ev 2 ev 1 ev 1 00 1000 Simulated data Mavrodiev et al., approximation, Nucl. Instr. Meth. A 530 (2004) p.359 Budnev et al., approximation, Proc. of 29th ICRC, Pune, India v6 p. 257 Anokhina et al., approximation, Astroph. and Space Science 209 (1993) p. 19 Figure 5: Various parameterization of atmospheric Cherenkov light in EAS. 0 10 9 10 8 10 7 10 0 10 1 10 2 Proton primary nuclei 1 00 1000 7 ev/nucleon 6 ev/nucleon 5 ev/nucleon 4 ev/nucleon 3 ev/nucleon 2 ev/nucleon 1 ev/nucleon Approximation Figure 6: The approximation of obtained lateral distribution of atmospheric Cherenkov light in EAS produced by primary protons scatter simulated data, line parameterization 26.

8 ISRN High Energy Physics 0 Alpha primaries 10 9 10 8 10 7 10 0 1 00 1000 3 ev/nucleon 3 ev/nucleon 3 ev/nucleon 3 ev/nucleon 3 ev/nucleon Approximation Figure 7: The approximation of obtained lateral distribution of atmospheric Cherenkov light in EAS produced by primary alpha particles scatter simulated data, line parameterization 26. 10 9 Oxygen nuclei 10 8 10 7 1 00 1000 3 ev/nucleon 4 ev/nucleon 5 ev/nucleon 6 ev/nucleon 7 ev/nucleon Approximation Figure 8: The approximation of obtained lateral distribution of atmospheric Cherenkov light in EAS produced by primary Oxygen nuclei scatter simulated data, line parameterization 26. intrinsic fluctuations are not reconstructed, as well as very inclined events or some events outside of the detector array. As was expected the reconstruction efficiency for peripheric or events, which are outside of the detector array diminish.

ISRN High Energy Physics 9 10 9 Iron nuclei 10 8 10 7 1 00 1000 3 ev/nucleon 3 ev/nucleon 3 ev/nucleon 3 ev/nucleon 3 ev/nucleon Approximation Figure 9: The approximation of obtained lateral distribution of atmospheric Cherenkov light in EAS produced by primary Iron nuclei scatter simulated data, line parameterization 26. 1 Energy estimation accuracy 0.8 0.6 E/E 0.4 0.2 0 0.2 0.4 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 Mavrodiev et al. Budnev et al. Anokhina et al. Figure 10: Accuracy for primary particle energy reconstruction using various parameterizations. 4. Summary and Discussion Monte Carlo simulations have become an essential tool for the design and optimization of new or in development atmospheric Cherenkov telescopes. In this connection air shower simulations using CORSIKA6.990 code with FLUKA 2011 and QGSJETII hadron generators are performed. The lateral distribution of atmospheric Cherenkov light is obtained in a wide energy range for various primary particles, namely, proton, helium, oxygen, and iron

10 ISRN High Energy Physics 60 50 Atomic mass 40 30 20 10 0 3 4 5 6 7 Proton Alpha Energy (ev/nucleon) Oxygen Iron Figure 11: Primary mass reconstruction as a function of the energy of the primary particle. nuclei. Three different parameterizations of atmospheric Cherenkov light lateral distribution at Chacaltaya observation level are compared. Their application for event reconstruction for HECRE experiment proposal is studied. It is demonstrated that parameterizations 26, 27 are both applicable for event analysis, namely, estimation of primary particle spectrum, since the previously proposed parameterization 25 could be used with several limitations. It is demonstrated that the initial goals of HECRE experiment proposal can be achieved with available methodology and technology. In addition the parameterization 26 gives the possibility for mass composition estimation of primary CR in the region of the knee. The proposed method and parameterization could be applied for different observation levels for wave front sampling Cherenkov arrays 40 42 as well as for multicomponent analysis 43 of EAS. In addition the obtained lateral distributions demonstrate the capability of recently proposed method for mass composition estimation of primary cosmic ray based on inverse problem solution, which is in the frame of a new calibration experiment at high mountain observation level. Acknowledgments The author warmly acknowledges V. Guenchev, S. Piperov, E. Puncheva, and P. Konstantinov from High-energy Division of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, for giving computational time and technical assistance during the computations. References 1 K. Nakamura and Particle Data Group, Review of particle physics, Physics G, vol. 37, Article ID 075021, 2010. 2 T. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, 1990.

ISRN High Energy Physics 11 3 G. Krymsky, A regular mechanism for the acceleration of charged particles on the front of a shock wave, Doklady Akademii Nauk USSR, vol. 234, pp. 1306 1308, 1977. 4 R. Blandford and J. Ostriker, Particle acceleration by astrophysical shocks, Astrophysical Journal, vol. 221, pp. L29 L32, 1978. 5 R. Schlickeiser, Cosmic-ray transport and acceleration, Astrophysical Journal, vol. 90, no. 2, pp. 929 936, 1994. 6 V. S. Ptuskin and V. N. Zirakashvili, Limits on diffusive shock acceleration in supernova remnants in the presence of cosmic-ray streaming instability and wave dissipation, Astronomy and Astrophysics, vol. 403, no. 1, pp. 1 10, 2003. 7 V. Berezinsky, Transition from galactic to extragalactic cosmic rays, in Proceedings of the 30th International Cosmic Ray Conference, vol. 6, pp. 21 33, Merida, Mexico, 2009. 8 W. Galbraith and J. V. Jelley, Light pulses from the night sky associated with cosmic rays, Nature, vol. 171, no. 4347, pp. 349 350, 1953. 9 G. Vacanti, M. F. Cawley, E. Colombo et al., Gamma-ray observations of the Crab Nebula at TeV energies, Astrophysical Journal Letters, vol. 377, no. 2, pp. 467 479, 1991. 10 T. Weekes, Very high energy gamma-ray astronomy, Physics Reports, vol. 160, no. 1-2, pp. 1 121, 1988. 11 J. Cortina, F. Arqueros, and E. Lorenz, Methods for determining the primary energy of cosmic-ray showers, Physics G, vol. 23, no. 11, pp. 1733 1749, 1997. 12 A. V. Plyasheshnikov, A. K. Konopelko, F. A. Aharonian, M. Hemberger, W. Hofmann, and H. J. Völk, Study of mass composition and energy spectrum of primary cosmic radiation by the imaging atmospheric Cherenkov technique, Physics G, vol. 24, no. 3, pp. 653 672, 1998. 13 A. Lindner, A new method to reconstruct the energy and determine the composition of cosmic rays from the measurement of Cherenkov light and particle densities in extensive air showers, Astroparticle Physics, vol. 8, no. 4, pp. 235 252, 1998. 14 B. K. Lubsandorzhiev, TUNKA-EAS Cherenkov experiment in the Tunka Valley, Nuclear Instruments and Methods in Physics Research A, vol. 595, no. 1, pp. 73 76, 2008. 15 V. V. Prosin, N. M. Budnev, O. A. Chvalaiev et al., The cosmic ray mass composition in the energy range 5 8 ev measured with the tunka array: results and perspectives, Nuclear Physics B, vol. 190, no. C, pp. 247 252, 2009. 16 J. Procureur and J. N. Stamenov, Primary mass composition investigations at energies 10 7 GeV and selection of EAS at mountain altitudes, Nuclear Physics B, vol. 39, no. 1, pp. 242 250, 1995. 17 J. Procureur and J. N. Stamenov, Proposal for a new calibration experiment at Chacaltaya for a primary mass estimation in the knee region, Nuclear Physics B, vol. 52, no. 3, pp. 285 287, 1997. 18 O. Saavedra and L. Jones, Chacaltaya: towards a solution of the knee...? Il Nuovo Cimento C, vol. 24, pp. 497 506, 2001. 19 Y. Tsunesada, F. Kakimoto, H. Matsumoto et al., A Cherenkov light detection at Mount Chacaltayato study nuclear composition of cosmic rays, in Proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 2009. 20 D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: a Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe Report FZKA 6019, 1998. 21 G. Battistoni, S. Muraro, P. R. Sala et al., The FLUKA code: description and benchmarking, in Proceedings of the Hadronic Shower Simulation Workshop, M. Albrow and R. Raja, Eds., vol. 896 of AIP Conference Proceeding, pp. 31 49, September 2007. 22 S. Ostapchenko, QGSJET-II: towards reliable description of very high energy hadronic interactions, Nuclear Physics B, vol. 151, no. 1, pp. 143 146, 2006. 23 F. Arqueros, A. Karle, E. Lorenz, S. Martinez, R. Plaga, and M. Rozanska, Separation of gamma and hadron initiated air showers with energies between 20 and 500 TeV, Astroparticle Physics, vol. 4, no. 4, pp. 309 332, 1996. 24 C. E. Portocarrero and F. Arqueros, On the Cherenkov light produced at several observatory altitudes by extensive air showers in the energy range 0.01 10 TeV, Physics G, vol. 24, no. 1, pp. 235 253, 1998. 25 A. M. Anokhina, V. I. Galkin, K. V. Mandritskaya, and T. M. Roganova, Air shower Cerenkov radiation as an instrument for very high energy γ-astronomy I, Astrophysics and Space Science, vol. 209, no. 1, pp. 19 38, 1993. 26 S. C. Mavrodiev, A. L. Mishev, and J. N. Stamenov, A method for energy estimation and mass composition determination of primary cosmic rays at the Chacaltaya observation level based on

12 ISRN High Energy Physics the atmospheric Cherenkov light technique, Nuclear Instruments and Methods in Physics Research A, vol. 530, no. 3, pp. 359 366, 2004. 27 N. Budnev, D. Chernov, O. Gress et al., Cosmic ray energy spectrum and mass composition from 5 to 7 ev by data of the tunka EAS cherenkov array, in Proceedings of the 29th International Cosmic Ray Conference, vol. 6, pp. 257 260, Pune, India, 2005. 28 D. Himmelblau, Applied Nonlinear Programming, Mcgraw-Hill, 1972. 29 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd edition, 2007. 30 A. Mishev, S. Mavrodiev, and J. Stamenov, Primary cosmic ray studies based on atmospheric cherenkov light technique at high-mountain altitude, in Frontiers in Cosmic Ray Research, pp. 25 82, Nova Science, 2007. 31 A. Mishev, S. Mavrodiev, and J. Stamenov, Gamma rays studies based on atmospheric Cherenkov technique at high mountain altitude, International Modern Physics A, vol. 20, no. 29, pp. 7016 7019, 2005. 32 A. Mishev and J. Stamenov, Cherenkov telescope for ground based gamma astronomy kartalska field project proposal, American Institute of Physics, vol. 899, p. 548, 2007. 33 A. A. Al-Rubaiee, O. A. Gress, K. S. Lokhtin, Y. V. Parfenov, and S. I. Sinegovskii, Modeling and parameterization of the spatial distribution of Čerenkov light from extensive air showers, Russian Physics Journal, vol. 48, no. 10, pp. 1004 1011, 2005. 34 A. A. Al-Rubaiee and S. I. Sinegorskii, Determination of the type and energy of a cosmic ray particle based on the spatial distribution function of Čeerenkov light from extensive air showers, Russian Physics Journal, vol. 49, no. 6, pp. 673 675, 2006. 35 L. Alexandrov, S. C. Mavrodiev, A. Mishev, and J. Stamenov, Estimation of the primary cosmic radiation characteristics, in Proceedings of the 27th International Cosmic Ray Conference, pp. 257 261, Hamburg, Germany, August 2001. 36 L. Aleksandrov, Regularized Newton-Kantorovič computing processes, Computational Mathematics and Mathematical Physics, vol. 11, pp. 36 43, 1971. 37 L. Alexandrov and A. Mishev, Application of afxy-code for parameterization of ionization yield function Y in the atmospherefor primary cosmic ray protons, http://arxiv.org/abs/0712.3174. 38 K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol. 2, pp. 164 168, 1944. 39 D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, the Society For Industrial and Applied Mathematics, vol. 11, pp. 431 441, 1963. 40 B. A. Antokhonov, D. Besson, S. F. Beregnev et al., A new 1 km 2 EAS Cherenkov array in the Tunka Valley, Nuclear Instruments and Methods in Physics Research A, vol. 639, no. 1, pp. 42 45, 2011. 41 A. A. Ivanov, S. P. Knurenko, Z. E. Petrov, M. I. Pravdin, and I. Y. Sleptsov, Enhancement of the Yakutsk array by atmospheric Cherenkov telescopes to study cosmic rays above 5 ev, Astrophysics and Space Sciences Transactions, vol. 6, no. 1, pp. 53 57, 2010. 42 M. Tluczykont, D. Hampf, D. Horns et al., The ground-based large-area wide-angle gamma-ray and cosmic-ray experiment HiSCORE, Adavances in Space Research, vol. 48, pp. 1935 1941, 2011. 43 S. P. Swordy and D. B. Kieda, Elemental composition of cosmic rays near the knee by multiparameter measurements of air showers, Astroparticle Physics, vol. 13, no. 2-3, pp. 137 150, 2000.

The Scientific World Journal Gravity Photonics Advances in Condensed Matter Physics Soft Matter Aerodynamics Fluids International Optics Submit your manuscripts at International Statistical Mechanics Thermodynamics Computational Methods in Physics Solid State Physics Physics Research International Advances in High Energy Physics Astrophysics Biophysics Atomic and Molecular Physics Advances in Astronomy International Superconductivity