Supporting information. Design, Synthesis, and Cancer Cell Growth Inhibitory Activity of Triphenylphosphonium Derivatives of the Triterpenoid Betulin

Similar documents
Supporting Information. for. Self-assembly of chiral fluorescent nanoparticles. based on water-soluble L-tryptophan derivatives of p-

S1 Supporting Information Contents Page

Asperolides A C, Tetranorlabdane Diterpenoids from the Marine

Supporting Information

Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium sp. SCSIO Ind16F01

Electronic Supplementary Information (ESI) for New Journal of Chemistry

Supporting Information. Nanoconjugates of a calixresorcinarene derivative with methoxy. poly(ethylene glycol) fragments for drug encapsulation

Supporting Information

Colorimetric and fluorescent probe for detection of nanomolar lysine in aqueous medium

Supplementary Information

Anti-Inflammatory Isoquinoline with Bis-seco-aporphine Skeleton from Dactylicapnos scandens

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

Phosphonium Salt & ZnX 2 -PPh 3 Integrated Hierarchical POPs: Tailorable Synthesis and Highly Efficient Cooperative Catalysis in CO 2 Utilization

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Supporting Information

WITHDRAWN: See: Molecules 2001, 6, molecules

Tetrahydroquinolines by multicomponent Povarov reaction in water: Calix[n]arene-catalysed and mechanistic insights

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

Supplementary Information for:

Supporting information

Supplementary Information

Rhodamine-based Chemosensor for Hg 2+ in Aqueous Solution with a Broad ph Range and Its Application in Live Cell Imaging

Aluminum Complexes with Bidentate Amido Ligands: Synthesis, Structure and Performance on Ligand-Initiated Ring-Opening Polymerization of rac-lactide

Ratiometric Detection of Intracellular Lysine and ph with One-Pot Synthesized Dual Emissive Carbon Dots

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

First synthesis of heterocyclic allenes benzazecine derivatives

Dual Catalyst System provides the Shortest Pathway for l-menthol Synthesis

ESI. Core-Shell Polymer Nanoparticles for Prevention of GSH Drug Detoxification and Cisplatin Delivery to Breast Cancer Cells

Supplemental materials

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

Mechanistic insight into inhibition of two-component system signaling

Corygaline A, Hexahydrobenzophenanthridine Alkaloid with. Unusual Carbon Skeleton from Corydalis bungeana Turcz.

Supplementary Material. Visible Light-Induced CO-Release Reactivity of a Series of Zn II -Flavonolate Complexes

Self-Assembly of Single Amino acid-pyrene Conjugates with Unique Structure-Morphology Relationship

Supplementary Material. A Novel Near-infrared Fluorescent Probe for Detecting. Intracellular Alkaline Phosphatase and Imaging of Living.

Supporting Information

Supporting Information

Reversible Addition-Fragmentation Chain Transfer Polymerization of 2-Chloro-1,3-Butadiene

Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals

Supporting Information. Cells. Mian Wang, Yanglei Yuan, Hongmei Wang* and Zhaohai Qin*

Dual role of Allylsamarium Bromide as Grignard Reagent and a. Single Electron Transfer Reagent in the One-Pot Synthesis of.

Supplementary Material

Polymer-Caged Nanobins for Synergistic Cisplatin-Doxorubicin Combination Chemotherapy

Certificate of Analysis

Facile Multistep Synthesis of Isotruxene and Isotruxenone

Highly Sensitive Fluorescence Molecular Switch for the Ratio Monitoring of Trace Change of Mitochondrial Membrane Potential

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Three-ring tautomerism of the 2 -isoxazoline - 2 -pyrazoline - 1,3,4-thiadiazine system

Supporting Information

Supporting Information

Rhodamine B pentyl ester and its methyl, ethyl, propyl, and butyl homologues

Certificate of Analysis

Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity. from the Edible Mushroom Pleurotus citrinopileatus

Certificate of Analysis

In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes

Seung Jae Lee, ac Younggyu Kim, b Jongjin Jung, a Mi Ae Kim, a Namdoo Kim, b Sung Jin Lee, a Seong Keun Kim, b Yong-Rok Kim, c and Joung Kyu Park* a

Certificate of Analysis

Supporting Information for

Mokone Mmola, Marilize Le Roes-Hill, Kim Durrell, John J. Bolton, Nicole Sibuyi, Mervin E. Meyer, Denzil R. Beukes and Edith Antunes

Supporting Information

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]

Supporting Information for. Coumarin-derived Cu 2+ Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in living cells

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

DOI: /jcprm / : (391) ,

Certificate of Analysis

SUPPORTING INFORMATION

Supporting Information

Supporting Information

Supporting Information

Acid Base Properties of Bis(hydrazinocarbonylmethyl) Sulfoxide and Its Complex Formation with Copper(II) and Nickel(II)

SUPPLEMENTARY MATERIAL

A Highly Selective Fluorescent Probe for Fe 3+ in Living Cells: A Stress Induced Cell Based Model Study

Certificate of Analysis

Supporting Information

Supporting Information

Electronic Supplementary Information

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

CHM 292 Final Exam Answer Key

and phosphonyl-phosphinoyl analogues

Protonation of N 2 O and NO 2 in a solid phase

Supplementary Material. Table of Contents. Evaluation of the test compounds using Lipinski s rule 2

Synthesis of Dibenzoxanthene and Acridine Derivatives Catalyzed by 1,3-Disulfonic Acid Imidazolium Carboxylate Ionic Liquids

Supporting Information

Taxodikaloids A and B, Two Dimeric Abietane-Type Diterpenoids from Taxodium ascendens Possessing an Oxazoline Ring Linkage

SYNTHESIS AND ANTIBACTERIAL EVALUATION OF NOVEL 3,6- DISUBSTITUTED COUMARIN DERIVATIVES

Supplementary Material. Synthesis of novel C-2 substituted imidazoline derivatives having the norbornene/dibenzobarrelene skeletons

Supporting Information

Synthesis of Multi-responsive and Dynamic Chitosanbased. Molecules

Highly Efficient and Low Toxic Skin Penetrants Composed of Amino Acid Ionic Liquids

Electronic Supplementary Information

Certificate of Analysis

Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON

A NEW STILBENOID FROM ARUNDINA GRAMINIFOLIA

Assessment of toxicological properties and establishment of risk profiles - genotoxic properties of selected spice compounds

Supplementary Table 1. Small molecule screening data

Role of Surface Charge of Inhibitors on Amyloid Beta Fibrillation

Electronic Supplementary Information

Supporting Information (SI)

Professor Alexander Ivanovitch Konovalov

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Transcription:

Supporting information Design, Synthesis, and Cancer Cell Growth Inhibitory Activity of Triphenylphosphonium Derivatives of the Triterpenoid Betulin Olga V. Tsepaeva, Andrey V. Nemtarev, Timur I. Abdullin, Leysan R. Grigor eva, Elena V. Kuznetsova, Rezeda A. Akhmadishina, Liliya E. Ziganshina, Hanh H. Cong, and Vladimir F. Mironov A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov Street, 8, 420088, Kazan, Russian Federation Kazan (Volga Region) Federal University, Kremlevskaya Street, 18, 420008, Kazan, Tatarstan, Russian Federation *To whom correspondence should be addressed. Tel: +7 (843) 2727384. E-mail address: a.nemtarev@mail.ru S1

Table of Contents 1) Figure S1. Representative concentration-cell viability curves for cancer cell lines and human skin fibroblasts treated with the compound 9 (MTT assay). Page S5 2) Figure S2. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 2 Page S6 3) Figure S3. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 3 Page S7 4) Figure S4. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 4 Page S8 5) Figure S5. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 5 Page S9 6) Figure S6. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 6 Page S10 7) Figure S7. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 7 Page S11 8) Figure S8. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 8 Page S12 9) Figure S9. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 9 Page S13 10) Figure S10. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 10 Page S14 11) Figure S11. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 11 Page S15 12) Figure S12. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 12 Page S16 13) Figure S13. 1 H NMR (CDCl 3, 400 MHz) spectrum of compound 13 Page S17 14) Figure S14. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 3 Page S18 15) Figure S15. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 3 Page S19 16) Figure S16. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 4 Page S20 17) Figure S17. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 4 Page S21 S2

18) Figure S18. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 8 Page S22 19) Figure S19. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 8 Page S23 20) Figure S20. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 9 Page S24 21) Figure S21. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 9 Page S25 22) Figure S22. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 10 Page S26 23) Figure S23. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 10 Page S27 24) Figure S24. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 11 Page S28 25) Figure S25. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 11 Page S29 26) Figure S26. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 12 Page S30 27) Figure S27. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 12 Page S31 28) Figure S28. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of compound 13 Page S32 29) Figure S29. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of compound 13 Page S33 30) Figure S30. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of compound 8 Page S34 31) Figure S31. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of compound 9 Page S35 32) Figure S32. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of compound 10 Page S36 33) Figure S33. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of compound 11 Page S37 S3

34) Figure S34. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of compound 12 Page S38 35) Figure S35. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of compound 13 Page S39 36) Figure S36. IR (KBr) spectrum of compound 2 Page S40 37) Figure S37. IR (KBr) spectrum of compound 3 Page S41 38) Figure S38. IR (KBr) spectrum of compound 4 Page S42 39) Figure S39. IR (KBr) spectrum of compound 5 Page S43 40) Figure S40. IR (KBr) spectrum of compound 6 Page S44 41) Figure S41. IR (KBr) spectrum of compound 7 Page S45 42) Figure S42. IR (KBr) spectrum of compound 8 Page S46 43) Figure S43. IR (KBr) spectrum of compound 9 Page S47 44) Figure S44. IR (KBr) spectrum of compound 10 Page S48 45) Figure S45. IR (KBr) spectrum of compound 11 Page S49 46) Figure S46. IR (KBr) spectrum of compound 12 Page S50 47) Figure S47. IR (KBr) spectrum of compound 13 Page S51 48) Table S48. Inhibitory Concentrations (IC 50, µм) of compounds 2-7 for Different Human Cells in vitro (MTT Assay) Page S52 S4

Cell viability (%) 100 80 60 40 20 PC-3 Cell viability (%) 140 120 100 80 60 40 20 MCF-7 0 1E-4 1E-3 0.01 0.1 Concentration (µm) 0 1E-4 1E-3 0.01 0.1 Concentration (µm) Cell viability (%) 140 120 100 80 60 40 20 0 MCF-7/Vinb 1E-6 1E-5 1E-4 1E-3 0.01 Concentration (µm) Cell viability (%) 100 80 60 40 20 0 HSF 1E-4 1E-3 0.01 0.1 Concentration (µm) Figure S1. Representative concentration-cell viability curves for cancer cell lines and human skin fibroblasts treated with the compound 9 (MTT assay). S5

Figure S2. 1 H NMR (CDCl 3, 400 MHz) spectrum of bromide 2. S6

Figure S3. 1 H NMR (CDCl 3, 400 MHz) spectrum of bromide 3. S7

Figure S4. 1 H NMR (CDCl 3, 400 MHz) spectrum of bromide 4. S8

Figure S5. 1 H NMR (CDCl 3, 400 MHz) spectrum of bromide 5. S9

Figure S6. 1 H NMR (CDCl 3, 400 MHz) spectrum of bromide 6. S10

Figure S7. 1 H NMR (CDCl 3, 400 MHz) spectrum of bromide 7. S11

Figure S8. 1 H NMR (CDCl 3, 400 MHz) spectrum of phosphonium salt 8. S12

Figure S9. 1 H NMR (CDCl 3, 400 MHz) spectrum of phosphonium salt 9. S13

Figure S10. 1 H NMR (CDCl 3, 400 MHz) spectrum of phosphonium salt 10. S14

Figure S11. 1 H NMR (CDCl 3, 400 MHz) spectrum of phosphonium salt 11. S15

Figure S12. 1 H NMR (CDCl 3, 400 MHz) spectrum of phosphonium salt 12. S16

Figure S13. 1 H NMR (CDCl 3, 400 MHz) spectrum of phosphonium salt 13. S17

Figure S14. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of bromide 3. S18

Figure S15. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of bromide 3. S19

Figure S16. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of bromide 4. S20

Figure S17. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of bromide 4. S21

Figure S18. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of phosphonium salt 8. S22

Figure S19. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of phosphonium salt 8. S23

Figure S20. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of phosphonium salt 9. S24

Figure S21. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of phosphonium salt 9. S25

Figure S22. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of phosphonium salt 10. S26

Figure S23. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of phosphonium salt 10. S27

Figure S24. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of phosphonium salt 11. S28

Figure S25. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of phosphonium salt 11. S29

Figure S26. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of phosphonium salt 12. S30

Figure S27. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of phosphonium salt 12. S31

Figure S28. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum of phosphonium salt 13. S32

Figure S29. 13 C-{ 1 H} NMR (CDCl 3, 100.6 MHz) spectrum fragment of phosphonium salt 13. S33

Figure S30. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of phosphonium salt 8. S34

Figure S31. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of phosphonium salt 9. S35

Figure S32. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of phosphonium salt 10. S36

Figure S33. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of phosphonium salt 11. S37

Figure S34. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of phosphonium salt 12. S38

Figure S35. 31 P-{ 1 H} NMR (CDCl 3, 162 MHz) spectrum of phosphonium salt 13. S39

Figure S36. IR (KBr) spectrum of bromide 2. S40

Figure S37. IR (KBr) spectrum of bromide 3. S41

Figure S38. IR (KBr) spectrum of bromide 4. S42

Figure S39. IR (KBr) spectrum of bromide 5. S43

Figure S40. IR (KBr) spectrum of bromide 6. S44

Figure S41. IR (KBr) spectrum of bromide 7. S45

Figure S42. IR (KBr) spectrum of phosphonium salt 8. S46

Figure S43. IR (KBr) spectrum of phosphonium salt 9. S47

Figure S44. IR (KBr) spectrum of phosphonium salt 10. S48

Figure S45. IR (KBr) spectrum of phosphonium salt 11. S49

Figure S46. IR (KBr) spectrum of phosphonium salt 12. S50

Figure S47. IR (KBr) spectrum of phosphonium salt 13. S51

IC 50, µм compound PC-3 MCF-7 МСF-7/Vinb HSF 2 22.34 ± 2.92 22.3 ± 2.0 20.24 ± 2.0 9.67 ± 0.98 3 53.31 ± 5.65 33.37 ± 3.27 44.89 ± 6.83 51.48 ± 2.97 4 22.86 ± 6.38 23.27 ± 2.73 52.86 ± 9.36 > 100 5 64.2 ± 2.4 82.57 ± 10.63 11.88 ± 4.0 11.09 ± 1.46 6 71.68 ± 8.66 105.36 ± 15.38 115.0 ± 0.66 191.35 ± 16.84 7 21.82 ± 1.89 92.72 ± 8.22 137.07 ± 27.32 29.93 ± 8.26 betuline 148.65 ± 13.09 227.04 ± 19.42 233.42 ± 13.29 164.4 ± 12.26 Table S48. Inhibitory Concentrations (IC 50, µм) of compounds 2-7 for Different Human Cells in vitro (MTT Assay) S52