Organocatalysis Enabled by N-Heterocyclic Carbenes

Similar documents
Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015

Organocatalysis with N-Heterocyclic Carbenes

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Enantioselective Benzoin Reactions

Update to 2013 Bode Research Group Topic: N-Heterocyclic carbene catalysis

Selected topics in metal- free catalysis: Carbenes (and Lewis Base) Catalysis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

Chiral Brønsted Acid Catalysis

Electrophilic Carbenes

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Nucleophilic Catalysis

N-Mesityl Substituted Chiral Triazolium Salts: Opening a New World of N-Heterocyclic Carbene Catalysis

N-Mesityl Substituted Chiral Triazolium Salts: Opening a New World of N-Heterocyclic Carbene Catalysis

Development and Advancement of the Stetter Reaction. Christopher D. Hupp Michigan State University December 8, 2004

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chapter 5 Three and Four-Membered Ring Systems

Additions to Metal-Alkene and -Alkyne Complexes

PART I: CARBENES and NITRENES

Highlights of Schmidt Reaction in the Last Ten Years

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

Abstracts. p35. Keywords: intramolecular aldol enamine catalysis enolendo enolexo transannular

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Advanced Organic Chemistry

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

ORGANOCATALYSIS BY NUCLEOPHILIC HETEROCYCLIC CARBENES. Reported by: Dale Pahls March 16, 2010

Enantioselective Protonations

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Reactivity Umpolung-1 Ready

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

NHCs. N-Heterocyclic Carbenes: Versatile Organocatalysts and Reagents. N-Heterocyclic Carbenes: Versatile Organocatalysts and Reagents

Roxanne Atienza Short Literature Presentation January 24, 2011

Conjugate (1,4-) addition

Chem 345 Reaction List: Chem 343 Reactions: Page 1 (You do not need to know the mechanism for the reactions in the boxes).

Homogeneous Catalysis - B. List

Total synthesis of Spongistatin

"-Amino Acids: Function and Synthesis

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Pericyclic Reactions 6 Lectures Year 3 Handout 2 Michaelmas 2017

Organocopper Reagents

Answers To Chapter 7 Problems.

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Rhodium Catalyzed Alkyl C-H Insertion Reactions

II: Nomenclature. III: Charcteristics R SH. R S R' sulfide R SOH R S OH HO S O S OH. soft base easily oxidized. thiol. sulfenic acid.

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Zr-Catalyzed Carbometallation

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Organic Electron Donors

Strained Molecules in Organic Synthesis

VI. Metal alkyls from oxidative addition / insertion

Denmark s Base Catalyzed Aldol/Allylation

Carbonyl Ylide Cycloadditions

ISOCHRYSOHERMIDIN. MeO 2 C. MeO. MeO. MeO 2 C OH. Me 1

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

The Wanzlick Equilibrium In 1960, Wanzlick proposed there is a monomer-dimer equilibrium to form tetraaminoethylenes (ACIE ):

Denmark Group Meeting. & Electrophilic rearrangement of amides

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Dienes & Polyenes: An overview and two key reactions (Ch )

Suggested solutions for Chapter 30

Chapter 6 Cycloadditions and Rearrangements 1. Diels-Alder Reactions 2. [2 + 2] Cycloadditions 3. 1,3-Dipolar Additions 4. Cheletropic Reactions 5.

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives

Brønsted Acids in Asymmetric Catalysis

Recent Advances in the Chemistry of Alleneamides. Denmark Group Meeting Nate Duncan-Gould

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Total Synthesis of Oxazolomycin A

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

{ReBr(CO) 3 (THF)} 2 (2.5 mol%) 4-Å molecular sieves toluene, 115 o C, 24 h

Short Literature Presentation 10/4/2010 Erika A. Crane

Recent Advancements In The [2+2+2] Cycloaddition. Brandon Dutcher January 17, 2007 Michigan State University

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Three Type Of Carbene Complexes

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Chiral Bronsted Acids as Catalysts

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

CEM 852 Final Exam. May 6, 2010

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

Chem 634. Pericyclic Reactions. Reading: CS-B Chapter 6 Grossman Chapter 4

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

Memory of Chirality: A Strategy for Asymmetric Synthesis

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

The Development of Novel N-Heterocyclic Carbenes and Tools for Assessing Structural Variation Effects Upon Catalyst Reactivity

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Enolates: Z(O,R) (O,R)- and E(O,R) (O,R)-enolates

Transcription:

rganocatalysis Enabled by -eterocyclic Carbenes Acyl Anions X Y omoenolates Acylazolium Azolium enolate Base Catalysis Jiaming Li 2018/04/27

tability of -heterocyclic Carbenes 2p x,y,z p π 2p x,y,z p π σ C C σ b 2 2s b 2 a 1.. π-electron donation 2s b 2 a 1 b 2.... σ-electron withdrawal a 1 a 1 σ-electron-withdrawing substitutents σ-electron-donating substitutents σ-electron withdrawing substitutents favor the singlet state over the triplet state σ-electron withdrawing substitutents inductively stablize the σ non-bonding orbital by increasing its s character and leaving the p π orbital unchanged σ-electron donating substitutents induce a smaller σ-p π gap, favoring a triplet state Bertrand, Chem. ev. 2000, 100, 39

tability of -heterocyclic Carbenes p π p π C σ σ.... π-electron donation a 2 2 p z.. σ-electron withdrawal b 1 π-electron donation The energy of p π orbital is increased by the interaction with the symmetric combination of the substitutent lone pairs. Combined effect is to increase the σ p π gap and stablize the singlet-state carbene over the more reactive triplet-state carbene. Bertrand, Chem. ev. 2000, 100, 39

verview Acyl Anions Benzoin condensation tetter reaction ydroacylation omoenolates Annulation Cyclopentene synthesis X Y 2 1 Acylazolium Azolium enolate Claisen rearrangement Cycloaddition Base Catalysis Transesterification Michael addition

Benzoin condensation First reported benzoin condensation (Wohler, Liebig, 1832) ac C C 2

Benzoin condensation Ugai discovered thiazolium salts could catalyze benzoin condensation (1943) Cl 2 a, Co-enzyme thiamine diphosphate is responsible for the generation of acyl anion P P Pyruvate decarboxylase Pyruvate oxidase Pyruvate dehydrogenase Transketolase 2 thiamine diphosphate (TDP) + C 2 Ugai, T.; Tanaka,.; Dokawa, T. J. arm. oc. Jpn. 1943, 63, 296.

Proposed chanism by Breslow 2 1 2 + 1 2 1 3 3 3 3 2 1 3 2 1 3 2 1 3 2 1 Breslow intermediate Breslow,. J. Am. Chem. oc.. 1958, 80, 3719

Enantioselective Benzoin Condensation First asymmetric benzoin condensation catalyzed by chiral thiazolium salts (heehan, 1966) Br * (10 mol%) Et 3 (10 mol%) 9% yield, 22% ee heehan, J. C.; unneman, D.. J. Am. Chem. oc. 1966, 88, 3666

Enantioselective Benzoin Condensation Improvement in the enantioselectivity of benzoin condensation cat. C Br Cl 4 6% yield, 52% ee heehan, 1974 66% yield, 75% ee Enders, 1996 Tf 50% yield, 21% ee Leeper, 1997 TB Cl 45% yield, 80% ee Leeper, 1998

Enantioselective Benzoin Condensation Improvement in the enantioselectivity of benzoin condensation cat. C Br 6% yield, 52% ee heehan, 1974 Cl 4 66% yield, 75% ee Enders, 1996 -aryl-bicyclic triazolium structure Tunable electronics X n 2 1 Tf TB Cl Tunable sterics 50% yield, 21% ee Leeper, 1997 45% yield, 80% ee Leeper, 1998 BF 4 83% yield, 90% ee Enders, 2002

Model Enders, Chem. ev. 2007, 107, 5606-5655

Enantioselective Benzoin Condensation ighly efficient system for the enantioselective benzoin reaction (Connon, 2009) Ar 4-8 mol% C 4-8 mol% b 2 C 3 TF, 20 h 17-100% Ar Ar BF 4 C 6 F 5 90% yield, >99% ee Cl 91% yield, 92% ee Cl 26% yield, 97% ee Cl Cl 92% yield, 90% ee 17% yield, 43% ee Connon,. J. J. rg. Chem. 2009, 74, 9214

Aldehyde-Ketone Cross-Benzoin eaction ynthesis of Bicyclic Tertiary Alcohols 30 mol% cat. 4-8 mol% Cs 2 C 3 C 2 Cl 2, 40 ºC, 24 h 25-90% Cl s 67% yield, >99% ee 37% yield, 94% ee 47% yield, 86% ee 43% yield, 95% ee 50% yield, 78% ee 32% yield, 26% ee akai, rg. Lett. 2009, 11, 4866-4869

Aldehyde-Imine Cross-Benzoin eaction Cross Aza-Benzoin eaction with -Boc Imines + Ar Boc 20 mol% cat. CsAc (1 equiv) C 2 Cl 2, 4 Å M, -20 ºC 33-93% Ar Boc BF 4 Cl Cl Et Boc Et Boc Et Boc Cl 83% yield, 96% ee 89% yield, 96% ee 84% yield, 96% ee Boc Boc Boc 86% yield, 84% ee 71% yield, 92% ee 33% yield, 98% ee ovis, Angew. Chem., Int. Ed. 2012, 51, 5904-5906

Acyl Anion Equivalent 3 2 benzoin condensation 1 Breslow intermediate

Acyl Anion Equivalent 3 2 benzoin condensation 1 Breslow intermediate EWG EWG tetter reaction EWG = C, C 2, C 2, P() 2

eminal Works of tetter eaction First general intramolecular tetter reaction catalyzed by C (Ciganek, 1995) C 2 20 mol% cat. Et 3 (1 equiv) DMF, rt 88% C 2 Cl Bn First asymmetric intramolecular tetter reaction (Enders, 1995) C 2 20 mol% cat. K 2 C 3 (1 equiv) TF, rt 73%, 60% ee C 2 Cl 4 Bn Ciganek, ynthesis 1995, 1311-1314 Enders, Angew. Chem., Int. Ed. 1995, 34, 1021-1023

Improved Asymmetric Intramolecular tetter eaction ighly enantioselective tetter reaction (ovis, 2002) C 2 Et 20 mol% cat. KMD (20 mol%) xylene 94%, 94% ee C 2 Et BF 4 C 2 Et 20 mol% cat. KMD (20 mol%) xylene 81%, 95% ee C 2 Et Bn BF 4 ovis, J. Am. Chem. oc. 2002, 124, 10298

Asymmetric Intermolecular tetter eaction Intermolecular tetter reaction with Chalcones (Enders, 2008) Ar 1 10 mol% cat. Cs 2 C 3 (10 mol%) TF + Ar 3 49-98%, 58-78% ee Ar 1 Ar 2 Ar 2 Ar 3 BF 4 Bn TBDP Intermolecular tetter reaction with highly activated alkylidene dicarbonyls (ovis, 2008) Et C 2 t-bu Et 20 mol% cat. ipr 2 Et (1 equiv) Mg 4 CCl 4 C 2 t-bu C 2 t-bu C 2 t-bu 84%, 90% ee Et BF 4 Et 2 2 90%, 92% ee, 5:1 dr Bn C6 F 5 ovis, T. J. Am. Chem. oc. 2008, 130, 14066

Asymmetric Intermolecular tetter eaction Intermolecular tetter reaction with nitroalkenes BF 4 C6 F 5 + Cy 2 10 mol% cat. ipr 2 Et (1 equiv) CCl 4, -10 ºC, 12 h Cy 2 90% yield, 88% ee F BF 4 tetter reaction of thyl 2-Acetamidoacrylate C6 F 5 95% yield, 95% ee + elected Examples: Br Ac Ac C 2 C 2 20 mol% cat. 16 mol% K-tBu, rt, 24 h 38-98% 93-99% ee Fe Ac 98%, 96% ee 56%, 99% ee C 2 Ac 8 C 2 Ac 52%, 97% ee C 2 Bn Cl s ovis, J. Am. Chem. oc. 2011, 133, 10402-10405. Glorius, Angew. Chem., Int. Ed. 2011, 50, 1410-1414

ne-pot ynthesis of Pyrrols and Furans 2 Br + Muller et al. 1. Pd(P 3 ) 2 Cl 2, CuI, Et 3 2. 1 C, 20 mol% 1 1 i 3 + 2 20 mol% 2 DBU, ipr cheidt et al. 1 Ac 1 2 2 3 2 Ts I 1 2 Et Br 1 3 2 Müller, T. J. J. rg. Lett. 2001, 3, 3297 cheidt, K. A. rg. Lett. 2004, 6, 2465

Acyl Anion Equivalent 3 2 benzoin condensation 1 Breslow intermediate EWG EWG tetter reaction EWG = C, C 2, C 2, P() 2

ydroacylation 3 2 benzoin condensation 1 Breslow intermediate unactivated alkenes EWG EWG EWG = C, C 2, C 2, P() 2 tetter reaction ydroacylation

ydroacylation First hydroacylation precedent (he, 2008) Ts 25 mol% cat. 70 mol% DBU xylene, 4 h = 72% = 82% I

ydroacylation First hydroacylation precedent (he, 2008) Ts 25 mol% cat. 70 mol% DBU xylene, 4 h = 72% = 82% I hydroacylation

ydroacylation First hydroacylation precedent (he, 2008) Ts 25 mol% cat. 70 mol% DBU xylene, 4 h = 72% = 82% I Asymmetric intramolecular hydroacylation (Glorius, 2011) 10 mol% cat. 10 mol% DBU dioxane, 80 ºC Ar Cl Ar 28-99%, 96-99% ee Bn s Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983 he, X. Tetrahedron 2008, 64, 8797

ydroacylation chanism Concerted but highly asynchronous transition state (Glorius, Grimme) s δ + δ or δ + 2 s s s Conia-ene concerted mechanisms s vs. everse-cope elimination 2 nd 1 st concerted but asynchronous mechanism (Computation) Glorius, F. J. Am. Chem. oc. 2009, 131, 14190. Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983

Intermolecular ydroacylation Intermolecular hydroacylation of cyclopropenes Cl Ar 1 + 5 mol% cat. K 2 C 3 (1 equiv) TF, 40 ºC, 24 h Ar 2 44-97% Ar2 1.6:1 to 20:1 dr Asymmetric intramolecular hydroacylation Ar 1 20 mol% cat. K 3 P 4 (1.5 equiv) TF, 40 ºC, 24 h + 91%, 92% ee Cl (,) Intermolecular hydroacylation of styrenes Ar Ar + 5 mol% cat. K 2 C 3 (1.5 equiv) DM, 40 ºC, 16 h 16-78% Ar Linear tbu + Ar Branched Bn Cl s BF 4 Increased reactivity with Cl 49% yield L:B = > 20:1 C F 3 C 39% yield L:B = < 1:20 Glorius, Angew. Chem., Int. Ed. 2010, 49, 9761-9764. Glorius, Angew. Chem., Int. Ed. 2011, 50, 12626-12630. Glorius, Angew. Chem., Int. Ed. 2013, 52, 2585-2589.

Umpolung of Michael Acceptor eck-type cyclization (Fu, 2006): EWG n Br 10 mol% cat. K 3 P 4 (2.5 equiv) glyme, 80 ºC 48-94% EWG n Cl 4 EWG = C 2 Et, C 2 allyl, C 2 (), C n = 1,2 C 2 Et Et Br Et Et Br Et Br tautomerization Fu, J. Am. Chem. oc., 2006, 128,1472 1473

verview Acyl Anions Benzoin condensation tetter reaction ydroacylation omoenolates Annulation Cyclopentene synthesis X Y 2 1 Acylazolium Azolium enolate Claisen rearrangement Cycloaddition Base Catalysis Transesterification Michael addition

Generation of omoenolate 1 s s 1 s s 1 s s 1 homoenolate s s

Annulation eactions Ar 2 1 1 1 Ar 2 3 1 s s 2 2 2 3 2 Ar 1 2 Ar 1 2 1 2 Ar 2 3 2 2 Ar 2 3 1 2

Cyclopentene ynthesis 1,3,4-trisubstituted Cyclopropene ynthesis by C (air, 2006) 1 + 6 mol% cat. 12 mol% DBU TF, T, 8 h 3 Cl 1 2 s s 2 3 Cl Cl Cl 88% yield > 20:1 dr 73% yield > 20:1 dr 55% yield > 20:1 dr air, J. Am. Chem. oc. 2006, 128, 8736-8737.

chanism 1 s s 2 1 s 3 s 3 - C 2 3 s 1 s 1 2 1 2 s s s s 1 2 3 s s 1 1 3 3 2 2

Cyclopentene ynthesis Enantioselective ynthesis Cyclopropene by C (Bode, 2007) 1 + 6 mol% cat. 12 mol% DBU TF, T, 8 h 2 BF 4 s 2 C 2 1 C 2 Br C 2 C 2 C 2 n Pr C 2 78% yield 11:1 dr 99% ee 93% yield >20:1 dr 98% ee 50% yield 11:1 dr 99% ee 25% yield 14:1 dr 96% ee Bode, J. Am. Chem. oc. 2007, 129, 3520-3521

chanism s 1 s 2 1 s 2 C 1 2 2 -C 2 2 2 C s 1 C 2 1 2 2 C s 1 C 2 1 1 s 2 C 2

chanism rigin of cis/trans stereoselectivity s-cis Cat. C 2 Boat oxy-cope T s-trans Cat. Chair oxy-cope T C 2 s-cis + 10 mol% cat. 15 mol% DBU ClC 2 C 2 Cl 0-23 ºC, 40 h 45% yield > 20:1 dr (72% ee)

β-lactam Formation cope of β-lactam formation 2Ar + Ar 1 Ar 2 10 mol% cat. 15 mol% DBU EtAc, 23 ºC, 1 h 45-94% 2 Ar Ar 2 Cl s Ar 1 2 Ar 2 Ar 2 Ar 2 Ar F 3 C 94% yield >20:1 dr 99% ee 45% yield >20:1 dr 98% ee 76% yield 5:1 dr 99% ee 72% yield >20:1 dr 88% ee Bode, J. Am. Chem. oc. 2008, 130, 418-419

Aza-Benzoin-xy-Cope earrangement chanism 2 Ar s ent-1 s s 2 Ar tautomerization/ Mannich s 2 Ar s 2 Ar 1 s Ar 2

verview Acyl Anions Benzoin condensation tetter reaction ydroacylation omoenolates Annulation Cyclopentene synthesis X Y 2 1 Acylazolium Azolium enolate Claisen rearrangement Cycloaddition Base Catalysis Transesterification Michael addition

Biomimetic rigin of Acylazolium eactivity Clavulanic acid biosynthesis through acylazolium intermediate 2 P 3 PP- TDP G3P 2 P 2 3 1 1 P 3 2 1 acylazolium L-Arg 2 1 C 2 C Clavulanic acid Townsend, J. Am. Chem. oc. 1999, 121, 9223-9224

Generation of Acylazolium Genertion of acylazolium intermediate by Mn 2 oxidation (cheidt, 2007) C cat., DBU Mn 2, cheidt, rg. Lett., 2007, 9, 371-374

Generation of Acylazolium Genertion of acylazolium intermediate by Mn 2 oxidation (cheidt, 2007) C cat., DBU Mn 2, Mn 2 1 s s 1 s s Mn 2 fast 1 s s acylazolium slow 1 s s 1 homoenolate s s cheidt, rg. Lett., 2007, 9, 371-374

Generation of Acylazolium Ar 1 [] Ar 2 Ar 1 Ar 1 or Ar 1 acylazolium Ar 1 = F, Br comparison of homoenolate/acylazolium reactivity electron donor Ar Ar 1 Y Y =, 1 Y Michael Acceptor Ar Ar 1 1

Dihydropyranone ynthesis Through Acylazolium Intramolecular earrangement 2 1 10 mol% cat. 20 mol% K t Bu toluene, Δ, 16 h 2 1 3 4 s Cl s 4 3 Intermolecular eaction 1 2 TM + F 20 mol% cat. 40 mol% K t Bu toluene, Δ, 16 h 1 Ar 2 DIPP Cl DIPP Ar Lupton, J. Am. Chem. oc. 2009, 131, 14176-14177

chanism 2 2 1 3 4 acylation 1 4 3 2 addition 1 4 3 2 1 2 4 3 + 1 4 proton transfer 3 Conjugate addition

Enantioselective Coates-Claisen earrangement Catalytic, Enantioselective Couplings with Kojic Acids (Bode, 2010) 1 + 2 1. 10 mol% cat., 40 ºC 2., 23 ºC 78-98% 92-99% ee 2 C 1 2 Cl s 2 C 80% yield 97% ee TB 2 C 95% yield 95% ee TB 2 C Cl TB 87% yield 99% ee 2 C 2 C TB 2 C TB 90% yield 99% ee 98% yield 97% ee 78% yield 99% ee Bode, J. Am. Chem. oc. 2010, 132, 8810-8812

2 C 1 2 2 1 2 s 1 s Claisen earrangement chanism s s 1 1,2-addition 1 s 1 protonation s 1 Breslow intermediate 2 2

chanistic Dichotomy Ar + s 1 Y 2 Y =, path B path A 1 2 Y [3,3] Ar Coates-Claisen s 1 Y 2 Ar s choenebeck, Bode (loose ion pair) Mayr, tuder (contact ion pair) Mayr, Angew. Chem., Int. Ed. 2012, 51, 5234-5238 choenebeck, Chem. ci. 2012, 3, 2346-2350.

Enantioselective etero-diels-alder eaction 1 2 Ar + 2 10 mol% cat. DIPEA (1 equiv) /TF 10:1 52-90% 2 Ar BF 4 s 1 2 2 Ar 2 Ar 2 Ar 2 Ar Et 90% yield 99% ee Et 71% yield 99% ee n-pr Et 58% yield 99% ee n-pr 71% yield 99% ee Bode, J. Am. Chem. oc. 2006, 128, 8418-8420

Enantioselective etero-diels-alder eaction Transition tate of Azadiene Diels-Alder eaction: 2 Ar Et s Et Ar 2 s 2 Ar Et s C 2 Et s C 2 Et 2 Ar s proton transfer C 2 Et azolium enolate

Ketene Cycloaddition Ar 1 + Ar 2 Boc 10 mol% cat. 10 mol% Cs 2 C 3 TF Ar 1 Boc Ar 2 53-98% yield 91-99% ee 2.5-99:1 dr Boc Ar 1 Ar 2 TB Ar 1 Ar 1 Boc Ar 2 Ar 1 azolium enolate Ar 2 Boc Ye,.; rg. Lett. 2008, 10, 277.

Ketene Cycloaddition TB Ar [2+2] 1 Ar Ar C 2 Et C 2 Et Ar 1 Ar s Ar azolium enolate Cl [3+2] Ts Ar Ts Cl K Et C 75% yield, 90% ee Bz [4+2] Bz Ar Bz 1. K 2 C 3, /acetone Et 2. mi 2, F- 80% yield, 99% ee Ye,. ynlett 2013, 1614

verview Acyl Anions Benzoin condensation tetter reaction ydroacylation omoenolates Annulation Cyclopentene synthesis X Y 2 1 Acylazolium Azolium enolate Claisen rearrangement Cycloaddition Base Catalysis Transesterification Michael addition

Transesterification + 3 5 mol% cat. TF, 23 ºC + 2 1 2 1 3 = s or Cy Bn 95% yield 2 96% yield Bn = Et, 85% yield i-pr, 72% yield t-bu, < 1% yield 99% yield 1 2 1 3 + 2 1 1 2 3 1 2 3 favored disfavored olan, rg. Lett. 2002, 4, 3583-3586 edrick, rg. Lett. 2002, 4, 3587-3590

Kinetic esolution of econdary Alcohols uzuki (2004): 1 2 + Ac 3 3 mol% cat. 3 mol% KtBu TF, 23 ºC 3 Ac + 1 2 4-52% yield 9-58% ee 1 2 36-85% yield 1-23% ee Maruoka (2005): 1 2 + 3 3 =, 1-naphthyl 3 mol% cat. 3 mol% KtBu TF, 23 ºC 3 C 2 + 1 2 27-39% yield 84-96% ee 1 2 36-85% yield 1-23% ee 3 =, 1-naphthyl C 2 C 2 C 2 32% yield 96% ee s = 80 29% yield 94% ee s = 47 27% yield 84% ee s = 16 uzuki, Chem. Commun. 2004, 2770-2771 Maruoka, rg. Lett. 2005, 7, 1347-1349

Asymmetric Conjugate Addition of 1,3-Dicarbonyls C as non-covalent chiral templates (uang, 2014) 20 mol% cat. 16 mol% LMD + 20 mol% FIP 2 2 4Å M, MTBE - 40 ºC, 48 h 92% yield, 99% ee BF 4 s negative non-linear effects: s 2 s 2 uang, at. Commun. 2014, 5, 3437

verview Acyl Anions Benzoin condensation tetter reaction ydroacylation omoenolates Annulation Cyclopentene synthesis X Y 2 1 Acylazolium Azolium enolate Claisen rearrangement Cycloaddition Base Catalysis Transesterification Michael addition

Application in Total ynthesis ynthesis of (+)-sappanone B reaction type: CF 3 Cl CF 3 C 7.5 mol% cat. Et 3 toluene, 23 ºC, 12 h 92%, 99% ee X X (X = ) (+)-sappanone B (X = ) uzuki, rg. Lett. 2007, 9, 2713-2716

Application in Total ynthesis F ynthesis of atorvastatin (Lipitor) reaction type: C + 1:1 E/Z 20 mol% cat. Et 3, 70 ºC 80% F Br Et F C Ca 2+ atorvastatin (Lipitor) 2 1. 2 tbu 2. Cl,, then a 3. Ca(Ac) 2 Paal-Knorr eaction oth, Tetrahedron Lett. 1992, 33, 2283-2284

Application in Total ynthesis ynthesis of maremycin B reaction type: BF 4 s + 5 mol% cat. DBU, TF, 23 ºC 76%, 5:1 dr C 78% ee 99% ee after 1 recrystalization 5 steps maremycin B cheidt, Angew. Chem. Int. Ed. 2012, 51, 4963-4967

Application in Total ynthesis ynthesis of ( )-7-deoxyloganin reaction type: C 2 C 2 C 2 20 mol% cat. TF, -78ºC-23 ºC 63%, 3.4:1 dr, 97% ee 4 steps ( )-7-deoxyloganin Candish, Lupton, rg. Lett. 2010, 12, 4836-4839.

Application in Total ynthesis ynthesis of (+)-Dactylolide reaction type: TBDP C TB tbu I (30 mol%) tbu TBDP C TB 11 steps tbu tbu DBU, DMAP, 4Å M C 2 Cl 2, 25 ºC, 20 h 65% 4 steps (+)-dactylolide ong, Angew. Chem. Int. Ed. 2012, 51, 5735-5738.

eviews 1. -eterocyclic Carbenes as rganocatalysts olan, Angew. Chem. Int. Ed. 2007, 46, 2988 3000 2. rganocatalysis by -eterocyclic Carbenes Enders, Chem. ev. 2007, 107, 5606-5655 3. A Continuum of Progress: Applications of -etereocyclic Carbene Catalysis in Total ynthesis heidt, Angew. Chem. Int. Ed. 2012, 51, 11686 11698 4. rganocatalytic eactions Enabled by eterocyclic Carbenes ovis, Chem. ev. 2015, 115, 9307 9387