Lab 4 Numerical simulation of a crane

Similar documents
AP Physics Review FRQ 2015

Lab 10: Ballistic Pendulum

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya

HB Coupled Pendulums Lab Coupled Pendulums

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual)

ECE-320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations:

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Static Equilibrium, Gravitation, Periodic Motion

Nonlinear Oscillators: Free Response

Lab 6a: Pole Placement for the Inverted Pendulum

RECORD AND EVALUATE OSCILLATION OF TWO IDENTICAL COUPLED PENDULUMS. Record the oscillations when they are in phase and determine the period T +

Level 3 Physics, 2013

RECORD AND EVALUATE OSCILLATION OF TWO IDENTICAL COUPLED PENDULUMS.

12-Nov-17 PHYS Inelastic Collision. To study the laws of conservation of linear momentum and energy in a completely inelastic collision.

PHYS 2211L Final Examination Laboratory Simple Pendulum.

The Damped Pendulum. Physics 211 Lab 3 3/18/2016

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

The University of Hong Kong Department of Physics. Physics Laboratory PHYS3350 Classical Mechanics Experiment No The Physical Pendulum Name:

NE01 - Centripetal Force. Laboratory Manual Experiment NE01 - Centripetal Force Department of Physics The University of Hong Kong

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate)

Simple Harmonic Motion - MBL

Lab 6d: Self-Erecting Inverted Pendulum (SEIP)

18-Dec-12 PHYS Simple Pendulum. To investigate the fundamental physical properties of a simple pendulum.

W13D1-1 Reading Quiz and Concept Questions

SHM Simple Harmonic Motion revised May 23, 2017

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

PHYSICS 211 LAB #8: Periodic Motion

1. [30] Y&F a) Assuming a small angle displacement θ max < 0.1 rad, the period is very nearly

PHYSICS 1 Simple Harmonic Motion

Lab 10 - Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

PHYSICS 107 FINAL EXAMINATION

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given:

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Physics Mechanics. Lecture 32 Oscillations II

Representations of Motion in One Dimension: Speeding up and slowing down with constant acceleration

SIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION

Acceleration Due to Gravity

Brown University Physics 0030 Physics Department Lab 5

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

Inverted Pendulum System

Experiment A11 Chaotic Double Pendulum Procedure

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

Key Performance Task

Sample Final Exam 02 Physics 106 (Answers on last page)

Worksheet for Exploration 6.1: An Operational Definition of Work

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs

LAB 10: HARMONIC MOTION AND THE PENDULUM

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Experiment 03: Work and Energy

Lab 1: Dynamic Simulation Using Simulink and Matlab

Physics 1050 Experiment 6. Moment of Inertia

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Conservation of Energy

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

Double Inverted Pendulum (DBIP)

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Unit 7: Oscillations

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Constrained Rectilinear Motion Dynamics Laboratory, Spring 2008

Vector Addition INTRODUCTION THEORY

THE CONSERVATION OF ENERGY - PENDULUM -

Rotation review packet. Name:

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Fall 2009

2: SIMPLE HARMONIC MOTION

Exam 3 Practice Solutions

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

LAB 4: FORCE AND MOTION

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab 5a: Pole Placement for the Inverted Pendulum

Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation

Lab M4: The Torsional Pendulum and Moment of Inertia

Force and Motion. Thought Experiment

Rotational Kinetic Energy

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009


Homework #19 (due Friday 5/6)

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

Session 12 Lab Based Questions

Physical Pendulum. 1. Rotary Motion Sensor w/pulley 2. Thin Rod. 3. Brass Mass 4. Protractor/ Ruler

LAB #8: SIMPLE HARMONIC MOTION

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

AAPT UNITED STATES PHYSICS TEAM AIP 2015

State Feedback MAE 433 Spring 2012 Lab 7

AP Physics. Harmonic Motion. Multiple Choice. Test E

CHAPTER 12 OSCILLATORY MOTION

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

Physics 1050 Experiment 3. Force and Acceleration

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

Applications of Newton's Laws

AP Physics C: Work, Energy, and Power Practice

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Kinematics. Become comfortable with the data aquisition hardware and software used in the physics lab.

Date Course Name Instructor Name Student(s) Name. Atwood s Machine

PHYS XXXX-L. Title (of Lab) Name (your name) Date of the lab (date performed) Dr. Thomas Eaves

Lab 12: Periodic Motion

Problem Solving Session 11 Three Dimensional Rotation and Gyroscopes Solutions

Transcription:

Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5- minute warning before the end of the lab period to put all the chairs back where they belong and to pack up your laptops. Learning objectives: By the end of the lab period, students should be able to: Implement a simulation diagram in Simulink and create an accompanying MATLAB m- file that solve the nonlinear equation of motion for a crane apparatus for two different move strategies. Compare the residual oscillation of an overhead crane s payload for single and double move strategies. ES 204 Mechanical Systems Lab 4 Page 1 of 6

Background The purpose of this lab is to create a numerical simulation of an overhead crane moving a suspended payload that you ll use to explore the system s behavior for two different motions of the crane trolley. In Lab 5, you ll experimentally explore the same system by collecting response data from a physical crane apparatus, and in a future homework assignment, you ll derive the system s governing equation of motion using the analytical tools presented in class. If your numerical simulation is well built and the experiment is well done, then you should find that both methods yield similar results. Modeling the crane A schematic of the crane apparatus you ll be creating a numerical simulation for is illustrated in Figure 1. The system consists of four components: a cart (the trolley ) that is constrained to move horizontally with a prescribed acceleration a(t); a rod with mass m! and length L! (the suspending cable ) that is pivoted about a point near its top end and essentially acts like a pendulum; an attached circular weight of mass m! and diameter d! (the payload ) whose position along the rod is adjustable; and an attached sensor with diameter d! that is mounted to the cart. The pivot axis passes though the center of the sensor and moves with the cart, and the sensor s mass is negligible compared to the rod and weight. The mass center locations for the rod and circular weight relative to the pivot point are denoted by L!,!" and L!,!", respectively. g Figure 1. Schematic of a crane apparatus. ES 204 Mechanical Systems Lab 4 Page 2 of 6

Applying first principles, the equation of motion describing the pendulum s angular displacement θ measured counterclockwise from the downward position is Jθ + k sin θ = Ca t cos θ, (1) where the constants J, k, and C are given by, respectively, J = m!!l! 12 + m!!l!,!" + 1 2 m! d! 2!! + m! L!,!", (2) k = g m! L!,!" + m! L!,!", (3) C = m! L!,!" + m! L!,!". (4) The distance to the rod s mass center from the pivot point is calculated as L!,!" = L! d! 2. (5) Values for the various system parameters are provided in Table 1. Note that because the placement of the circular weight along the rod can be adjusted, a numerical simulation of (1) will yield different results for different values of L!,!". Table 1. Parameter values for the crane apparatus. Parameter m! m! L! d! d! Value with units 68.5 g 88 g 43.2 cm 5 cm 2.5 cm ES 204 Mechanical Systems Lab 4 Page 3 of 6

Strategies for moving the trolley Precise payload positioning by an overhead crane (especially when performed by an operator using only visual feedback to position the payload) is difficult because the payload can exhibit a pendulum- like swinging motion. In this lab, you ll see that there are strategies for moving the payload that reduce the swinging motion that occurs after the crane has stopped moving. Our basis for comparison is the maximum angular velocity the rod (i.e., the pendulum) experiences during its residual swing after the trolley has come to a stop. The simplest approach to moving the crane to its destination is to move it in a single motion. For this lab, a single move strategy for the crane is executed by accelerating the trolley according to a t = 7194 e! (e! 1) (1 + e! )! cm/s!, (6) where the exponent x is given by x = 43.5668 t + 9.38. (7) An alternative approach is to move the trolley in a sequence of two moves. This double move strategy is a well known strategy for moving an overhead crane so that the payload arrives at the desired position with very little residual oscillation. For this lab, the corresponding trolley acceleration is a t = 3597 e! (e! 1) (1 + e! )! + 3597 e! (e! 1) (1 + e! )! cm/s!, (8) where x is the same as in (7) and the exponent y is given by y = 43.5668 t + 31.1633. (9) For both move strategies, the trolley essentially comes to a stop after about 1 s. ES 204 Mechanical Systems Lab 4 Page 4 of 6

Lab activity Create a simulation diagram in Simulink and an accompanying MATLAB m- file that solve the equation of motion (1) for both move strategies: Have your numerical simulation return the pendulum s angular velocity θ over time t when subjected to the cart acceleration a(t), starting at rest and initially in the downward position: θ 0 = 0 and θ 0 = 0. Be sure to run your simulation for longer than 1 s. A simulation time of 3 s should work. After about 1 s into the simulation, the trolley essentially comes to a stop, but the pendulum continues to swing. For both move strategies, use your simulation to explore how the maximum angular velocity of the pendulum during this residual swing varies when you place the circular weight at the locations listed in Table W1 in the Lab 4 worksheet. Record your simulation results in the appropriate sections of Table W1. One way to find the maximum angular velocity is to plot the pendulum s angular velocity over time and then use the data cursor in the figure window to read off the angular velocity at a peak after about 1 s. For the double move strategy only, expand the data set in Table W1 using trial and error to determine the circular weight s position, L!"#, to within 0.1 cm that minimizes the pendulum s maximum angular velocity during its residual swing. Use the blank space in Table W1 to record the position locations that you tried and the corresponding simulation results. Highlight or circle the row in Table W1 that corresponds to the position that minimizes the residual swing maximum angular velocity. For the single move strategy, create a plot in MATLAB that shows how the maximum angular velocity of the pendulum s residual swing varies with the circular weight s location in centimeters along the rod (that is, you should have the angular velocity on the vertical axis and weight location in centimeters on the horizontal axis). Make a similar plot for the double move strategy. Be sure to use all of the results you collected. Use markers and don t connect them with a line. Also, be sure to label your axes and include units. Include your initials and the date in the title of each figure, and remove the gray border around the figures. Your plots of how the pendulum s maximum angular velocity during its residual swing changes with the placement of the circular weight along the rod for the single and double move strategies should look similar to the plots shown in Figure 2. ES 204 Mechanical Systems Lab 4 Page 5 of 6

1.4 Single move 0.16 Double move 1.2 0.14 Residual swing maximum angular velocity (rad/s) 1 0.8 0.6 0.4 0.2 Residual swing maximum angular velocity (rad/s) 0.12 0.1 0.08 0.06 0.04 0.02 0 0 5 10 15 20 25 30 35 40 Moveable weight offset (cm) 0 0 5 10 15 20 25 30 35 40 Moveable weight offset (cm) Figure 2. Simulation results for the pendulum s maximum angular velocity during its residual swing with the circular weight placed at several locations along the rod for single and double move strategies. Deliverables: You will turn in the following items along with Lab 5 on Friday of Week 10: 1. A completed Lab 4 worksheet with numerical simulation results (Table W1). 2. A printout of your Simulink model used for simulation. 3. A printout of your MATLAB m- file used to run your simulation. ES 204 Mechanical Systems Lab 4 Page 6 of 6