Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati

Similar documents
Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Module 5. Lecture 3: Channel routing methods

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS

9. Flood Routing. chapter Two

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Numerical Hydraulics

Probability Distribution

Hydraulics for Urban Storm Drainage

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Abstract. 1. Introduction

39.1 Gradually Varied Unsteady Flow

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

Analysis of dynamic wave model for flood routing in natural rivers

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS

Q = α n AR2/3 h S1/2 0. bd 2d + b d if b d. 0 = ft1/3 /s

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria,

Transactions on Ecology and the Environment vol 8, 1994 WIT Press, ISSN

Abstract. 1 Introduction

Block 3 Open channel flow

On variational data assimilation for 1D and 2D fluvial hydraulics

Application of Mathematical Modeling to Study Flood Wave Behavior in Natural Rivers as Function of Hydraulic and Hydrological Parameters of the Basin

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation

CIE4491 Lecture. Hydraulic design

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

Ppt Stg Qcfs sq mi

LECTURE NOTES - III. Prof. Dr. Atıl BULU

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY

An overview of the Hydraulics of Water Distribution Networks

WATER MANAGEMENT REPORT FOR PAGE ESTATES

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Chapter 4 DYNAMICS OF FLUID FLOW

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t)

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Basic Hydraulics. Rabi H. Mohtar ABE 325

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time).

Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t;

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

INTRODUCTION TO HEC-HMS

Continuing Education Course #101 Drainage Design with WinTR-55

QUESTIONS FOR THE TESTS-ECI 146

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

DIFFERENTIAL QUADRATURE METHOD FOR NUMERICAL SOLUTION OF THE DIFFUSION WAVE MODEL

HEC-RAS v5.0: 2-D applications

******************* Project Description ******************* File Name... NAAF Stormwater Improvement Project 11_21_2014.SPF

AP Mechanics Summer Assignment

Reverse stream flow routing by using Muskingum models

Volume Conservation Controversy of the Variable Parameter Muskingum Cunge Method

INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS

Optimal Flood Control of Nysa Kłodzka Reservoir System

FINAL STREAM. Prepared For: Discharge. Draft Stream. Level Hay Street, Subiaco WA Indiana Street. Golden, CO USA

Numerical methods for the Navier- Stokes equations

Infinite-dimensional nonlinear predictive controller design for open-channel hydraulic systems

Numerical modeling of sediment flushing from Lewis and Clark Lake

Comparison of MOC and Lax FDE for simulating transients in Pipe Flows

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow.

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure

Chapter 1. Functions and Graphs. 1.5 More on Slope

Lecture Note for Open Channel Hydraulics

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Section 4: Model Development and Application

STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1. DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT

Chapter 7. Work and Kinetic Energy

Numerical Hydraulics

Numerical Modeling in Open Channel Hydraulics

WATER DISTRIBUTION NETWORKS

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Modeling with First-Order Equations

PHYSICS 1 Simple Harmonic Motion

Numerical investigations of hillslopes with variably saturated subsurface and overland flows

Robust boundary control of systems of conservation laws: theoretical study with numerical and experimental validations

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Bushkill Creek 3 rd Street Dam Removal Analysis

Motion Along a Straight Line

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details

Leaving Cert Applied Maths: Some Notes

MATH 150/GRACEY EXAM 2 PRACTICE/CHAPTER 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

H4: Steady Flow through a Channel Network

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Transactions on Engineering Sciences vol 18, 1998 WIT Press, ISSN

Analysis of Flow Resistance for Different Bed Materials with Varying Discharge Experimentally in Open Channels

Strategies of Studying Physics

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023

New Website: M P E il Add. Mr. Peterson s Address:

City of Columbia BMP Manual. Detailed Unified Sizing Criteria Example Wet Pond Design

Transcription:

Flood routing Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya

Q (m 3 /sec) Q (m 3 /sec) Type equation here.? T (hr) T (hr)

Flood routing ds dt = I t Q(t) S = f I, di dt, d I dq dt,, Q, dt, d Q dt, Level pool routing S j+1 ds = S j j+1 Δt jδt I t dt j+1 Δt jδt Q t dt S j+1 S j = I j + I j+1 Δt Q j + Q j+1 Δt S j+1 Δt + Q j+1 = I j + I j+1 + S j Δt Q j

Discharge (Q) Storage (S) Discharge (Q) S H(m)Q m 3 /s S m 3 Δt + Q 0.00 0.00 0.00 0.00 0.15 0.08 616.74.14 0.30 0.3 133.48 4.34 0.46 0.48 1850. 6.65 0.61 0.85 466.96 9.07 0.76 1. 3083.70 11.50 0.91 1.70 3700.45 14.03 1.07.1 4317.19 16.60 1..75 4933.93 19.19 1.37 3.31 5550.67 1.8 1.5 3.88 6167.41 4.44 1.68 4.4 6784.15 7.03 1.83 4.90 7400.89 9.57 1.98 5.38 8017.63 3.11.13 5.80 8634.37 34.59.9 6.17 951.11 37.01.44 6.54 9867.85 39.43.59 6.85 10484.60 41.80.74 7.16 11101.34 44.17.90 7.48 11718.08 46.54 3.05 7.79 1334.8 48.90 Elevation (H) Elevation (H) Storage-Outflow function

EXAMPLE index (min) Q m 3 /s 1 0 0.00 10 1.70 3 0 3.40 4 30 5.10 5 40 6.80 6 50 8.50 7 60 10.19 8 70 9.06 9 80 7.93 10 90 6.80 11 100 5.66 1 110 4.53 13 10 3.40 14 130.7 15 140 1.13 16 150 0.00 H(m)Q m 3 /s S m 3 0.00 0.00 0.00 0.15 0.08 616.74 0.30 0.3 133.48 0.46 0.48 1850. 0.61 0.85 466.96 0.76 1. 3083.70 0.91 1.70 3700.45 1.07.1 4317.19 1..75 4933.93 1.37 3.31 5550.67 1.5 3.88 6167.41 1.68 4.4 6784.15 1.83 4.90 7400.89 1.98 5.38 8017.63.13 5.80 8634.37.9 6.17 951.11.44 6.54 9867.85.59 6.85 10484.60.74 7.16 11101.34.90 7.48 11718.08 3.05 7.79 1334.8

Discharge (Q) Discharge (Q) S H(m)Q m 3 /s S m 3 Δt + Q 0.00 0.00 0.00 0.00 0.15 0.08 616.74.14 0.30 0.3 133.48 4.34 0.46 0.48 1850. 6.65 0.61 0.85 466.96 9.07 0.76 1. 3083.70 11.50 0.91 1.70 3700.45 14.03 1.07.1 4317.19 16.60 1..75 4933.93 19.19 1.37 3.31 5550.67 1.8 1.5 3.88 6167.41 4.44 1.68 4.4 6784.15 7.03 1.83 4.90 7400.89 9.57 1.98 5.38 8017.63 3.11.13 5.80 8634.37 34.59.9 6.17 951.11 37.01.44 6.54 9867.85 39.43.59 6.85 10484.60 41.80.74 7.16 11101.34 44.17.90 7.48 11718.08 46.54 3.05 7.79 1334.8 48.90 10.00 8.00 6.00 4.00.00 0.00 0.00 0.00 40.00 60.00 Storage-Outflow S function Δt + Q m3 /sec 10.00 8.00 y = 3E-08x 5-1E-06x 4-0.0001x 3 + 0.0094x + 0.0171x - 0.0003 6.00 4.00.00 0.00 0.00 0.00 40.00 60.00 Storage-Outflow S function Δt + Q m3 /sec

Outflow (Q) Discharge (Q) Inflow S j index (min) m 3 /s I j + I j+1 Δt Q S j+1 Outflow j + Q Δt j+1 m 3 /s 1 0 0.00 0 0 10 1.70 1.70 1.594 1.70 0.053 3 0 3.40 5.10 5.689 6.69 0.501 4 30 5.10 8.50 10.540 14.18 1.8 5 40 6.80 11.89 14.634.43 3.899 6 50 8.50 15.9 17.596 9.93 6.165 7 60 10.19 18.69 19.546 36.8 8.370 8 70 9.06 19.6 0.116 38.80 9.343 9 80 7.93 16.99 19.747 37.11 8.680 10 90 6.80 14.7 19.055 34.47 7.708 11 100 5.66 1.46 18.139 31.51 6.688 1 110 4.53 10.19 17.00 8.33 5.656 13 10 3.40 7.93 15.700 4.95 4.64 14 130.7 5.66 14.158 1.36 3.603 15 140 1.13 3.40 1.339 17.56.608 16 150 0.00 1.13 10.134 13.47 1.669 17 160 0.00 0.00 8.085 10.13 1.04 18 170 0.00 0.00 6.698 8.09 0.694 19 180 0.00 0.00 5.695 6.70 0.50 0 190 0.00 0.00 4.935 5.69 0.380 1 00 0.00 0.00 4.339 4.93 0.98 10 0.00 0.00 3.860 4.34 0.40 S j+1 Δt + Q j+1 = I j + I j+1 + S j Δt Q j 10.00 1 10 8.00 6.00 4.00.00 8 6 4 0 y = 3E-08x 5-1E-06x 4-0.0001x 3 + 0.0094x + 0.0171x - 0.0003 0.00 0.00 0.00 40.00 60.00 Storage-Outflow function 0 50 100 150 00 (Min)

Elevation Elevation Elevation RUNGA-KUTTA METHOD ds = I t Q(H) dt ds = A H dh dh dt = I t Q(H) A(H) H 1 = I t j Q(H j ) A(H j ) H j 1 t j Slope = H 1 t j+1 H 1 H j + H 1 3 t j Slope = H t j + 3 t j+1 H H = I t j + 3 Q H j + H 1 3 A H j + H 1 3 H 3 = I t j + 3 Q H j + H 3 A H j + H 3 H j + H 3 Slope = H 3 H 3 H j+1 = H j + H Where H = H 1 + 3 H 3 4 4 t j t j + 3 t j+1

MUSKINGUM METHOD S = KQ + KX I Q S = K XI 1 X Q The value of storage at time j and time j + 1 S j = K XI j 1 X Q j S j+1 = K XI j+1 1 X Q j+1 Combining S j+1 S j = K XI j+1 1 X Q j+1 XI j 1 X Q j Change in storage can also be written as S j+1 S j = I j + I j+1 Δt Q j + Q j+1 Δt

MUSKINGUM METHOD Q j+1 = C 1 I j+1 + C I j + C 3 Q j Where C 1 = C = C 3 = KX K 1 X + + KX K 1 X + K 1 X K 1 X + C 1 + C + C 3 = 1

Saint-Venant equations Continuity equations x + A t = q Conservation form V y x + y V x + y t = 0 Non conservation form Momentum equations 1 A t + 1 A x Q A + g y x g S 0 S f = 0 Local acceleration Convective acceleration Pressure force Gravity force Friction force V t + V V x + g y x g S 0 S f = 0 Kinematic wave Diffusion wave Dynamic wave

Kinematic Wave model Continuity equations x + A t = q Momentum equations S 0 = S f The momentum equation can also be written as A = αq β Manning s equation with S 0 = S f and R = A/P is Q = S 1/ o np /3 A5/3 A = np/3 S o 1/ 3/5 Q 3/5 α = np/3 S o 1/ 3/5 β = 0.6

t Kinematic Wave model A t = αβqβ 1 t j + 1 Linear Model Q i j+1 x j+1 Q Continuity equation x + A t = q Q t x + αβqβ 1 t = q j Q i j j Q x = Q j+1 j+1 Q i x x t = Q j+1 j Q Q = Q i j+1 + Q j i x Distance x i + 1 x

Linear Model x + αβqβ 1 t = q x = Q j+1 j+1 Q i x t = Q j+1 j Q Q j+1 j+1 Q i x + αβ Q j+1 j i Q β 1 j+1 j Q Q = q j+1 j + q Q = Q j+1 j i + Q j+1 Solving for Q q = q j+1 j + q Q j+1 = x Q j+1 i + αβ Q j+1 j i Q β 1 x + αβ Q j+1 j i Q + q j+1 j + q β 1

Nonlinear Model x + A t = q Q j+1 j+1 Q i x + A j+1 j A = q j+1 j + q A = αq β A j+1 j+1 = α Q β j A j = α Q β x = Q j+1 j+1 Q i x A t = A j+1 j A q = q j+1 j + q x Q j+1 j+1 + α Q β = x Q j+1 j β q j+1 j i + α Q + + q x Q j+1 j+1 + α Q β = C Residual error First Derivative f Q j+1 = x Q j+1 j+1 + α Q β C f Q j+1 = x + αβ Q j+1 β 1

Nonlinear Model The objective is to find Q j+1 for f Q j+1 = 0 This can be solved using Newton s method j+1 Q = Q j+1 k+1 f Q j+1 k f j+1 Q k k Convergence criteria for the iterative processes j+1 f Q k+1 ε

t Muskingum Cunge Method Q j+1 = C 1 I j+1 + C I j + C 3 Q j j + 1 Q i j+1 x j+1 Q Q j+1 j = C 1 Q + C Q j j i + C 3 Q Q t K = x c k j Q i j x j Q X = 1 1 Q BC k S o x i x i + 1 x Distance x

Q = S 1/ o A5/3 np/3 Q = αa m α = S 1/ o np/3 and m = 5/3 = αma m 1 A = αm Am A A = m Q A A = mv A A = mv = c k

Example problem K =.3 h X = 0.15 = 1 h Q o = 3.1 m 3 /s C 1 = 0.0631 C = 0.344 C 3 = 0.597 Routing period (hr.) Inflow m 3 /s 1 3.10 4.78 3 6.84 4 9.13 5 1.75 6 16.10 7 18.8 8 19.8 9 0.16 10 19.15 11 18.81 1 16. 13 13.88 14 11.06 15 10.8 16 7. 17 5.64 18 4.35 19 3.13 0.89

Discharge (Q) Routing period (hr.) Inflow m 3 /s C 1 I j+1 C I j C 3 Q j Outflow m 3 /s 1 3.10 3.1 4.78 0.30 1.07 1.90 3.7 3 6.84 0.43 1.64 1.94 4.01 4 9.13 0.58.35.38 5.31 5 1.75 0.80 3.14 3.15 7.10 6 16.10 1.0 4.39 4.1 9.61 7 18.8 1.19 5.54 5.69 1.4 8 19.8 1.5 6.48 7.36 15.09 9 0.16 1.7 6.8 8.95 17.04 10 19.15 1.1 6.94 10.10 18.5 11 18.81 1.19 6.59 10.8 18.60 1 16. 1.0 6.48 11.0 18.5 13 13.88 0.88 5.58 10.98 17.44 14 11.06 0.70 4.78 10.33 15.81 15 10.8 0.65 3.81 9.37 13.8 16 7. 0.46 3.54 8.19 1.19 17 5.64 0.36.49 7. 10.07 18 4.35 0.7 1.94 5.97 8.18 19 3.13 0.0 1.50 4.85 6.54 0.89 0.18 1.08 3.88 5.14 5.00 0.00 15.00 10.00 5.00 0.00 Inflow Outflow 0 5 10 15 0 5 in hr.

α = β = 0.6 Q j+1 = Example problem Width = 60.96 m Length = 5000 m Slope = 1% n = 0.035 np/3 S o 1/ 0.6 = x = 1000 m = 3 min = 180 s Initial discharge 56.63 m 3 /s 0.035 60.96 /3 0.01 1/ x Q j+1 i + αβ Q j+1 j i Q 0.6 β 1 x + αβ Q j+1 j i Q =.75714 + q j+1 j + q β 1 index (mm) Inflow m 3 /s 1 0 56.63 3 56.63 3 6 56.63 4 9 56.63 5 1 56.63 6 15 63.71 7 18 70.79 8 1 77.87 9 4 84.95 10 7 9.03 11 30 99.11 1 33 106.19 13 36 113.7 14 39 10.35 15 4 17.43 16 45 134.51 17 48 141.58 18 51 148.66 19 54 155.74 0 57 16.8 1 60 169.90 63 16.8 3 66 155.74 index (mm) Inflow m 3 /s 4 69 148.66 5 7 141.58 6 75 134.51 7 78 17.43 8 81 10.35 9 84 113.7 30 87 106.19 31 90 99.11 3 93 9.03 33 96 84.95 34 99 77.87 35 10 70.79 36 105 63.71 37 108 56.63 38 111 56.63 39 114 56.63 40 117 56.63 41 10 56.63 4 13 56.63 43 16 56.63 44 19 56.63 45 13 56.63 46 135 56.63 index (mm) Inflow m 3 /s 47 138 56.63 48 141 56.63 49 144 56.63 50 147 56.63 51 150 56.63

index (min) Distance along channel (m) 0 1000 000 3000 4000 5000 1 0 56.63 56.63 56.63 56.63 56.63 56.63 3 56.63 56.63 56.63 56.63 56.63 56.63 3 6 56.63 56.63 56.63 56.63 56.63 56.63 4 9 56.63 56.63 56.63 56.63 56.63 56.63 5 1 56.63 56.63 56.63 56.63 56.63 56.63 6 15 63.71 59.18 57.54 56.95 56.75 56.67 7 18 70.79 63.43 59.66 57.9 57.16 56.85 8 1 77.87 68.83 63.01 59.75 58.08 57.9 9 4 84.95 74.99 67.46 6.56 59.69 58.14 10 7 9.03 81.63 7.83 66.36 6.11 59.57 11 30 99.11 88.58 78.9 71.09 65.4 61.69 1 33 106.19 95.70 85.53 76.63 69.6 64.60 13 36 113.7 10.93 9.51 8.84 74.66 68.35 14 39 10.35 110.0 99.74 89.57 80.45 7.93 15 4 17.43 117.50 107.11 96.68 86.87 78.30 16 45 134.51 14.81 114.57 104.06 93.79 84.38 17 48 141.58 13.10 1.06 111.60 101.08 91.06 18 51 148.66 139.39 19.57 119.4 108.65 98. 19 54 155.74 146.67 137.07 16.93 116.38 105.73 0 57 16.8 153.94 144.55 134.63 14.1 113.51 1 60 169.90 161.19 15.0 14.3 13.09 11.44 63 16.8 161.93 156.49 148.64 139.38 19.1 3 66 155.74 159.13 157.68 15.70 145.9 136.5 index (min) Distance along channel (m) 0 1000 000 3000 4000 5000 4 69 148.66 154.43 156. 154.8 149.31 14.0 5 7 141.58 148.71 15.85 153.64 151.5 146.1 6 75 134.51 14.44 148. 151.1 151.3 148.40 7 78 17.43 135.89 14.78 147.46 149.55 148.91 8 81 10.35 19.19 136.84 14.77 146.54 147.86 9 84 113.7 1.41 130.60 137.45 14.53 145.49 30 87 106.19 115.60 14.19 131.70 137.79 14.09 31 90 99.11 108.77 117.68 15.70 13.54 137.91 3 93 9.03 101.95 111.14 119.53 16.95 133.15 33 96 84.95 95.14 104.58 113.8 11.14 17.98 34 99 77.87 88.35 98.03 106.99 115.0 1.54 35 10 70.79 81.59 91.51 100.70 109.19 116.91 36 105 63.71 74.86 85.0 94.43 103.16 111.18 37 108 56.63 68.16 78.59 88.0 97.13 105.41 38 111 56.63 63.98 73.11 8.37 91.8 99.68 39 114 56.63 61.34 68.77 77.0 85.78 94.1 40 117 56.63 59.66 65.44 7.79 80.78 88.86 41 10 56.63 58.58 6.96 69.15 76.36 84.00 4 13 56.63 57.89 61.14 66.1 7.56 79.61 43 16 56.63 57.45 59.8 63.89 69.35 75.7 44 19 56.63 57.16 58.87 6.08 66.68 7.33 45 13 56.63 56.97 58.19 60.68 64.49 69.4 46 135 56.63 56.85 57.7 59.6 6.73 66.96

Discharge (cubic meter per sec) index (min) Distance along channel (m) 0 1000 000 3000 4000 5000 47 138 56.63 56.78 57.38 58.8 61.3 64.90 48 141 56.63 56.73 57.15 58.3 60.1 63.0 49 144 56.63 56.69 56.99 57.79 59.35 61.81 50 147 56.63 56.67 56.88 57.47 58.68 60.69 51 150 56.63 56.66 56.80 57.3 58.16 59.78 180.00 160.00 140.00 10.00 100.00 80.00 60.00 40.00 0.00 0.00 0 0 40 60 80 100 10 140 160 in hr. 0 1000 000 3000 4000 5000

Discharge in cfs Example: Apply the Muskingum-Cunge method to route the following inflow hydrograph. The peak flow is 680 cfs. The area of cross section of the river the peak flow is 95 sq. ft. and the width is 0 ft. The channel has a bottom slope of 0.0001 and the reach length is 5 mi. Take = 1 h. Sol. x = 5 mi=13000 ft. V = Q p A = 680 95 800 = 7.16 ft/sec 700 600 c k = mv = 5 500 7.16 = 11.93 ft/sec 3 400 X = 1 1 Q BC k S o x = 0.39 300 00 K = x 100 = 11064.5 s = 3.070hr c k C 1 = C = C 3 = KX K 1 X + = 0.61 + KX K 1 X + = 0.91 Inflow Outflow K 1 X K 1 X + = 0.5 0 50 100 150 in hr I Q 1 100 100 4 300 36 680 573 48 500 66 60 400 373 7 310 359 84 30 35 96 180 197 108 100 1 10 50 58

Example: By the Muskingum-Cunge method, route the following hydrograph. The peak flow rate is 0 m 3 /sec. The area of cross section of the river the peak flow is 183 m. and the width is 35 m. The channel has a bottom slope of 0.001 and the reach length is 6 km.take = 1 h. (hr) I (m3/s) 0 15 1 7 75 3 160 4 0 5 00 6 160 7 88 8 50 9 5 10 1