Solid State Physics Byungwoo Park Department of Materials Science and Engineering Seoul National University

Similar documents
Semiconductor. Byungwoo Park. Department of Materials Science and Engineering Seoul National University.

Optical Properties of Solid from DFT

OPTICAL PROPERTIES of Nanomaterials

The Dielectric Function of a Metal ( Jellium )

Chapter 3 Properties of Nanostructures

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Review of Optical Properties of Materials

Chapter 1 Overview of Semiconductor Materials and Physics

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Local and regular plasma oscillations in bulk donor type semiconductors

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002

Plan of the lectures

Luminescence basics. Slide # 1

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

ES - Solid State

Minimal Update of Solid State Physics

Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6) Physics 460 F 2006 Lect 12 1

Electronic and Optoelectronic Properties of Semiconductor Structures

Basic Semiconductor Physics

ELEMENTARY BAND THEORY

Non-Continuum Energy Transfer: Phonons

Character of metallic systems. Advanced materials and technologies 2017

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

Superconductivity Induced Transparency

CHAPTER 9 FUNDAMENTAL OPTICAL PROPERTIES OF SOLIDS

Metals and Insulators

3. LATTICE VIBRATIONS. 3.1 Sound Waves

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours

FYS Vår 2017 (Kondenserte fasers fysikk)

Nonlinear Electrodynamics and Optics of Graphene

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Supporting Information

what happens if we make materials smaller?

Luminescence Process

2 Fundamentals of Flash Lamp Annealing of Shallow Boron-Doped Silicon

Semiconductor Physics and Devices Chapter 3.

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

LN 3 IDLE MIND SOLUTIONS

Special Properties of Au Nanoparticles

Quantum Condensed Matter Physics Lecture 5

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

Energy Spectroscopy. Ex.: Fe/MgO

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

Supplementary Information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

Review of Semiconductor Fundamentals

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Energy Spectroscopy. Excitation by means of a probe

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Plasmons, polarons, polaritons

Nanophysics: Main trends

Introduction to Engineering Materials ENGR2000. Dr.Coates

Chapter 2 Optical Transitions

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination

Optical Properties of Lattice Vibrations

Recap (so far) Low-Dimensional & Boundary Effects

Lecture 15: Optoelectronic devices: Introduction

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

3.23 Electrical, Optical, and Magnetic Properties of Materials

Black phosphorus: A new bandgap tuning knob

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Chapter 6 Free Electron Fermi Gas

Normal modes are eigenfunctions of T

Quantum Condensed Matter Physics Lecture 1

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Supporting Information. Structure and electronic properties of a continuous random network model of amorphous zeolitic imidazolate framework (a-zif)

Spectroscopy at nanometer scale

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

Properties of Individual Nanoparticles

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

The Electromagnetic Properties of Materials

QUANTUM WELLS, WIRES AND DOTS

Characterisation of vibrational modes of adsorbed species

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

5 Problems Chapter 5: Electrons Subject to a Periodic Potential Band Theory of Solids

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

* motif: a single or repeated design or color

Bulk Structures of Crystals

Long-Wavelength Optical Properties of a Plasmonic Crystal

EELS, Surface Plasmon and Adsorbate Vibrations

7. FREE ELECTRON THEORY.

Review of Semiconductor Physics

Supplementary Information

Chapter 12: Semiconductors

LEC E T C U T R U E R E 17 -Photodetectors

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Three Most Important Topics (MIT) Today

Spring 2009 EE 710: Nanoscience and Engineering

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Transcription:

Solid State Physics Byungwoo Park Department of Materials Science and Engineering Seoul National University http://bp.snu.ac.kr

Types of Crystal Binding Kittel, Solid State Physics (Chap. 3) Solid State Physics Jongmin http://bp.snu.ac.kr 2

Cohesive Energies of Elements Kittel, Solid State Physics (Chap. 3) Solid State Physics BP http://bp.snu.ac.kr 3

Bond Energies for Single Covalent Bonds Kittel, Solid State Physics (Chap. 3) Solid State Physics BP http://bp.snu.ac.kr 4

Bond Energy Lange s Handbook of Chemistry Solid State Physics BP http://bp.snu.ac.kr 5

Fractional Ionic Character of Bonds in Binary Crystals Kittel, Solid State Physics (Chap. 3) Solid State Physics BP http://bp.snu.ac.kr 6

Optical Phonon vs. Acoustical Phonon parabolic Kittel, Solid State Physics (Chap. 4) Solid State Physics BP http://bp.snu.ac.kr 7

Phonon: Density of State Density of State for Phonon: - The vibrations of the lattice (heat) - Given frequency (energy), possible phonon mode - Heat capacity D(w): density of state <n> : Plank distribution C v = (δu/δt) v Debye Frequency / Debye Temperature Kittel, Solid State Physics (Chap. 5) Solid State Physics Yejun http://bp.snu.ac.kr 8

Heat Capacity Debye Approximation Heat Capacity Kittel, Solid State Physics (Chap. 5) Solid State Physics Jongmin http://bp.snu.ac.kr 9

Density of Occupied State for Electrons E = (ħk) 2 /2m k = (3π 2 n/v) 1/3 D(E) = dn/de = V/2π 2 (2m/ħ) 3/2 E 1/2 Density of occupied state = D(E)f(E) = 1/[exp{(E-E F )/kt}+1] V/2π 2 (2m/ħ) 3/2 E 1/2 DOS(E) = D(E) ~ E 1/2 3-dimension D(E) 1-dimension E Kittel, Solid State Physics (Chap. 6) Solid State Physics Yejun http://bp.snu.ac.kr 10

Electrical Conductivity K(t)-k(0) = -eet/ħ ; B = 0 Electrical conductivity: σ = ne 2 τ/m τ: collision time = neμ At 300 K, lattice phonon At 4 K, imperfection Phonon e Trap Impurity or Vacancy e Blocking Au 4.55 (ohm cm) -1 Pt 0.96 (ohm cm) -1 Ru 1.35 (ohm cm) -1 Al 3.65 (ohm cm) -1 Kittel, Solid State Physics (Chap. 6) Solid State Physics Yejun http://bp.snu.ac.kr 11

Electron-Electron Collision: Negligible Conduction electrons, although crowded together by only 2 Å, travel long distances between collisions. why? Conservation of energy + Conservation of momentum ~k B T/ε F The mean free path for electron-electron collisions is much longer than the mean free path for electron-phonon collisions at ~300 K. Kittel, Solid State Physics (Chap. 14) Solid State Physics Jongmin http://bp.snu.ac.kr 12

Electronic Structure of AlPO 4 : Band Structure Fermi level Bandgap: 5.71 ev Bandgap: 6.32 ev Bandgap: 4.01 ev - Structural transformation under pressure W. Y. Ching and Paul Rulis, University of Missouri-Kansas City Physical Review B (2008) Solid State Physics Yejun http://bp.snu.ac.kr 13

Electronic Structure of AlPO 4 : Absorption Indirect Real dielectric function Imaginary dielectric function Absorption W. Y. Ching and Paul Rulis, University of Missouri-Kansas City Physical Review B (2008) Solid State Physics Yejun http://bp.snu.ac.kr 14

Transparent Conducting Oxide (TCO) Conduction band In 0.96 Sn 0.04 O 1.5+δ Semiconducting Behavior Fermi level ~3.6 ev Metal-Like Behavior In 0.96 Sn 0.04 O 1.5-δ Valence band Reduction process (7% H 2 / 93% N 2 ): Removal of excess oxygen - 2010-09-13 Solid State Physics Yejun K. R. Poeppelmeier s Group, Northwestern University Chem. Mater. (2002) http://bp.snu.ac.kr 15

Energy Levels of Free Electron in a 1-D Box Kittel, Solid State Physics (Chap. 6) Solid State Physics Jongmin http://bp.snu.ac.kr 16

Excitons in Nanoscale Systems Si CdS 14.7 mev 29.0 mev Exciton Binding Energy G. D. Scholes, Toronto University Nat. Mater. (2006) Solid State Physics Jongmin http://bp.snu.ac.kr 17

Quantum Confinement W. E. Buhro, University of Washington Nat. Mater. (2003) Solid State Physics Jongmin http://bp.snu.ac.kr 18

Frequency Dependence of Polarizability Kittel, Solid State Physics (Chap. 16) Solid State Physics Jongmin http://bp.snu.ac.kr 19

Dielectric Function of Free-Electron Gas (Plasmon) - Plasma: a medium with equal concentration of positive and negative charge, of which at least one charge type is mobile. Motion of a free electron in an electric field (assumption: long wavelength dielectric response, ) ( ) ħω p = 16 ev for Au Kittel, Solid State Physics (Chap. 14) Solid State Physics Jongmin http://bp.snu.ac.kr 20

Dispersion Relation for Transverse Electromagnetic Wave Kittel, Solid State Physics (Chap. 14) Solid State Physics BP http://bp.snu.ac.kr 21

Surface Plasmon of Nanoparticles Luis M. Liz-Marzan, UniVersidade de Vigo, Langmuir (2006) Solid State Physics Jongmin http://bp.snu.ac.kr 22

Surface Plasmon of Nanoparticles - Alloying - The electric field of the incoming radiation induces the formation of a dipole in the nanoparticle, and there is a restoring force that tries to compensate it. - Unique resonance frequency matches this electron oscillation within the nanoparticle. - Tuning the surface-plasmon energy by alloying. Luis M. Liz-Marzan UniVersidade de Vigo, Langmuir (2006) Solid State Physics Jongmin http://bp.snu.ac.kr 23

Surface-Plasmon Enhanced Photoluminescence Prof. Harry Atwater, Caltech Nano Lett. (2005) Solid State Physics BP http://bp.snu.ac.kr 24

Color of Metal Metal 의 color 에영향을주는요인 1. Free electron (bulk plasmon): Metal 의 free electron oscillation 에의해 bulk plasmon 에너지보다작은에너지를가지는빛은 reflect 됨. 대부분의 metal 이가시광에너지보다큰 bulk plasmon 에너지를가지고있기때문에 reflect 된가시광으로인해기본적으로금속광택을띠게됨. 2. Interband absorption: Metal 이빛과 interaction 을하려면같은밴드내에서는 momentum conservation 을만족시키지못하기때문에, 다른 band 로의 electron transition 이일어나야함. 이때일어날수있는 transition 은두가지 case 가있음 : (1) Fermi level 근처의 conduction electron 이더높은위치에있는에너지밴드로이동 (2) 아래쪽레벨에있는밴드에차있는 electron 이 conduction band 쪽으로이동 Ashcroft, Solid State Physics Solid State Physics Jongmin http://bp.snu.ac.kr 25

Color of Metal Cu Band Structure Real band structure Fermi level 약간아래쪽에존재하는 Cu metal 의 d band 로인해아래쪽그림에없던밴드들이형성된것을확인할수있음. Absorption 이일어날수있는경우 : (1) 4 ev d band (2) 2 ev (2) 2 ev (1) 의경우 Fermi level 근처의 conduction electron 이더높은위치에있는에너지밴드로이동하는것. Free electron model (2) 의경우아래쪽레벨에있는밴드에차있는 electron 이 conduction band 쪽으로옮겨오는것. (2) 의경우가에너지가더작으므로 2 ev 정도부터흡수가일어나게됨. Ashcroft, Solid State Physics Solid State Physics Jongmin http://bp.snu.ac.kr 26

Color of Metal Imaginary Dielectric Constant 아래그림은 Cu 와 Ag 의 imaginary dielectric constant - Cu 경우윗장의밴드구조에의해 2 ev 부터흡수가일어나기때문에낮은쪽에너지의색인붉은빛을띠게됨. - Ag 경우이러한흡수가 4 ev 에서일어나기때문에 visible 영역에영향을주지않아투명한광택색으로보이게됨. Ashcroft, Solid State Physics Solid State Physics Jongmin http://bp.snu.ac.kr 27

Work Function Kittel, Solid State Physics (Chap. 17) Solid State Physics BP http://bp.snu.ac.kr 28

Work Function (not real) Ashcroft, Solid State Physics Solid State Physics BP http://bp.snu.ac.kr 29

Double Layer Work Function Ashcroft, Solid State Physics Solid State Physics BP http://bp.snu.ac.kr 30

Potential Profile Across the Double Layer Bard, Electrochemical Methods Solid State Physics BP http://bp.snu.ac.kr 31

Helmholtz Layer and Diffuse Layer Bard, Electrochemical Methods Solid State Physics BP http://bp.snu.ac.kr 32

Standard Electrode Potentials - 2010-09-15 Solid State Physics BP Bard, Electrochemical Methods (Appendix) http://bp.snu.ac.kr 33