Supporting Information

Similar documents
behavior explored by in situ neutron powder diffraction during electrochemical oxygen

Supporting information

Supporting Information

ELECTRONIC SUPPLEMENTARY INFORMATION

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Supporting information. A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect?

Supporting Information

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C

Table S1. Structural parameters of shell-by-shell fitting of the EXAFS spectrum for reduced and oxidized samples at room temperature (RT)

Electronic Supplementary Information

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Supporting Information Fe-containing magnesium aluminate support for stability and carbon control during methane reforming

Hydrogen Titanium Oxide Hydrate: Excellent Performance. on Degradation of Methyl Blue in Aqueous Solutions

Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples.

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Body Centered Cubic Magnesium Niobium Hydride with Facile Room Temperature Absorption and Four Weight Percent Reversible Capacity

Supporting Information

ELECTRONIC SUPPORTING INFORMATION

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts

Superconducting Ti/TiN thin films for mm wave absorption

unique electronic structure for efficient hydrogen evolution

Supporting information

Supporting Information. Co-adsorption and Separation of CO 2 -CH 4 Mixtures in. the Highly Flexible MIL-53(Cr) MOF.

Electronic Supplementary Information for. Bio-inspired Noble Metal-Free Nanomaterials Approaching Platinum Performances for H 2 Evolution and Uptake

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Understanding the function of cetyltrimethyl ammonium bromide in Lithium/Sulfur Cells

One-Pot Synthesis of Core-Shell-like Pt 3 Co Nanoparticle Electrocatalyst with Pt-enriched Surface for Oxygen Reduction Reaction in Fuel Cells

Synthesis of two copper clusters and their catalysis towards the oxidation of benzene

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

H-bond Stabilized Quinone Electrode Material for Li-Organic Batteries: the Strength of Weak Bonds

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

All materials and reagents were obtained commercially and used without further

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Arsenic(V) incorporation in vivianite during microbial reduction of arsenic(v)-bearing biogenic Fe(III) (oxyhydr)oxides

Supporting Information: Structural investigation of Na 3 NpO 4 and Na 3 PuO 4 using X-ray diraction and

Electronic Supporting Information for:

Surface properties and chemical constitution as. crucial parameters for the sorption properties of. ionosilicas: the case of chromate adsorption

SUPPORTING INFORMATION

Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm

Electrochemical Water Splitting by Layered and 3D Cross-linked Manganese Oxides: Correlating Structural Motifs and Catalytic Activity

Improvement of gold-catalyzed oxidation of free carbohydrates to corresponding aldonates using microwaves

Characterization. of solid catalysts. 7. X-ray Absorption. XANES and EXAFS. Prof dr J W (Hans) Niemantsverdriet.

The active sites of supported silver particle catalysts in formaldehyde. oxidation

Plasma driven ammonia decomposition on Fe-catalyst: eliminating surface nitrogen poisoning

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Supplementary Information

Supporting Information

Supplementary Figure 1 SEM image for the bulk LCO.

Supporting Information. Structural Variation Determined by Length-matching Effects: Towards the Formation of Flexible Porous Molecular Crystal

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

SUPPORTING INFORMATION Flexibility and Disorder in Modified-Linker MIL-53 Materials

Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction

Surface Oxidation Mechanism of Ni(0) Particle Supported on Silica

ELECTRONIC SUPPLEMENTARY INFORMATION

X-ray absorption spectroscopy

Insights into Mg 2+ Intercalation in a Zero-Strain Material: Thiospinel Mg x Zr 2 S 4

Electronic Supplementary Information

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

Effect of the organic functionalization of flexible MOFs on the. adsorption of CO 2

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Manganese promotion in cobalt-based Fischer-Tropsch catalysis

An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology. Supporting information

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis

size (nm) Supplementary Figure 1. Hydrodynamic size distribution in a H 2O:MeOH 50% v/v

Supporting Information to

Supporting Information. Controlled-Synthesis of Copper Telluride Nanostructures for Long-cycling Anodes in Lithium Ion Batteries

A systematization through experimental and virtual compounds

Cages on a plane: a structural matrix for molecular 'sheets'

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2

Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO

Electronic Supporting Information

Supporting Information (SI) for

Solid State Spectroscopy Problem Set 7

Supporting Information

A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene

Supporting Information

Impeller-like dodecameric water clusters in metal organic nanotubes

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Structural stability of the ternary compound Ti 6 Si 2 B in the Ti-Si-B system

TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of

Supplementary Information. Hydrogen absorption in 1 nm Pd clusters confined in. MIL-101(Cr)

Supporting Information

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Structure, morphology and catalytic properties of pure and alloyed Au-ZnO. hierarchical nanostructures

Supplementary information. Catalytic consequences of Ga promotion on Cu for CO 2 hydrogenation to methanol

A Tunable Process: Catalytic Transformation of Renewable Furfural with. Aliphatic Alcohols in the Presence of Molecular Oxygen. Supporting Information

Spin crossover in polymeric and heterometallic Fe II species containing polytopic dipyridylamino-substituted-triazine ligands.

Structural and Catalytic Investigation of Active-Site Isolation in Pd-Ga Intermetallic Compounds

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

Supporting Information

Supplementary file XRD. Supplementary figure 1. XRD pattern of pristine Co 3 O 4 and higher dopant (Ag 0.5 Co 2.5 O 4 biphasic).

Impact of phosphorylation over the encapsulation of nucleosides analogues within porous iron(iii) Metal Organic Frameworks MIL-100(Fe) nanoparticles.

From Double-Shelled Grids to Supramolecular Frameworks

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of

Supplemental Information: Ion-Specific Adsorption and Electroosmosis in Charged Amorphous Porous Silica

Transcription:

Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ generated catalyst: Copper (II) oxide and Copper (I) supported on Ca 2 Fe 2 O 5 for CO oxidation Bartosz Penkala a,b, Suresh Gatla c, Daniel Aubert a, Monica Ceretti b, Caroline Tardivat a,, and Werner Paulus* b and Helena Kaper* a a Ceramic Synthesis and Functionalization Laboratory, UMR 3080, CNRS/Saint-Gobain CREE, 550, Ave Alphonse Jauffret, 84306 Cavaillon, France b. Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France c ESRF The European Synchrotron, 71, avenue des Martyrs, 38000 Grenoble, France *Correspondence: helena.kaper@saint-gobain.com and werner.paulus@univ-montp2.fr. Contents CO oxidation curves of reference samples...2 Stability test of impregnated and one pot sample...2 Surface properties derived from XPS...3 Lattice Parameter of one pot samples...3 XRD pattern of one pot samples as-synthesized and after reaction...4 X-Ray analysis of as-synthesized 40Cu-CFO_OP and after reaction, compared to reference compounds...7 Lattice Parameter of impregnated samples...7 Figure SI 5 XRD pattern of impregnated samples as-synthesized and after reaction...9 Fourier Transformation of the EXAFS signal of 30Cu-CFO_OP at the Cu edge...11 Fourier Transformation of the EXAFS signal of 30Cu-CFO_OP at the Fe-edge...12 Fourier Transformation of the EXAFS signal of 40Cu-CFO_OP at the Cu-edge...13 Fourier Transformation of the EXAFS signal of 40Cu-CFO_OP at the Fe-edge...13

CO oxidation curves of reference samples Fig. SI1 shows the CO oxidation curves of pure CuO prepared the same manner as the supported CuO samples and CuO deposited on ɣ-al 2 O 3. For comparison, the best impregnated and one-pot catalysts are added (40Cu_CFO_OP_H 2 and 40Cu_CFO_IP). The graphs shows that the CuO supported on CFO converts CO at lower temperatures than unsupported CuO (SSA: 1m 2 /g) or ɣ-al 2 O 3 (156 m 2 /g) as support. Fig. SI 1: CO oxidation light-off curves of CuO supported on Al 2 O 3 and Ca 2 Fe 2 O 5. Stability test of impregnated and one pot sample Fig. SI 2 shows the CO conversion for 40Cu_CFO_IP and 40Cu_CFO_OP after hydrogen pretreatment and one light-off curve at 200 C for 24h. The test conditions were 20 mg of sample diluted in SiC,

Fig. SI 2: Stability test of 40CFO_0P and 40CFO_IP. Test conditions: 20 mg of sample diluted in 300 mg of SiC, pretreatment at 300 C for 2h under 40%H 2 /He, one light-off curve (2000ppm, 10000ppm 0 2 ) and isotherm at 200 C, 2000 ppm of CO and 10000 ppm of O 2. Surface properties derived from XPS Table SI 1 Catalyst Cu2p 3/2 surface composition (at% Cu) a I ss /I pp 40_CFO_IP 933.5 24 0.45 40_CFO_IP after CO ox 933.3 23 0.33 40_CFO_OP 933.3 19 0.33 40_CFO_OP_after CO ox 933.5 16 0.41 a The surface compositions of Cu was calculating omitting C and O contributions, as the surface is polluted with carbonates. These values have thus a mere comparative purpose and are not absolute values. Lattice Parameter of one pot samples Table SI 2 Refined parameters corresponding to the XRD data presented in Fig. 4 for xcu-cfo_op, (where 5<x<50) catalysts as synthetized and after CO oxidation. Phase Space Group a [ Å] b [ Å] c [ Å] vol [Å 3 ] CFO Phase afraction[%] Ca 2 Fe 2 O 5 P n m a 5.4330(5) 14.7800(20) 5.6049(5) 450.090(75) 100(0) 1.22 5 Cu-CFO_OP Ca 2 Fe 2 O 5 P n m a 5.4205(8) 14.7898(20) 5.5971(7) 448.714(107) 97.96(80) 1.34 CaCO 3 R -3 c 4.9816 (9) 4.9816 (9) 17.1023(41) 368.101(134) 2.04(31) 5 Cu-CFO_OP H2_CO χ 2

Ca 2 Fe 2 O 5 P n m a 5.4231(15) 14.7830(30) 5.5972(14) 448.758(198) 97.19 (90) 1.21 CaCO 3 R -3 c 4.9897(9) 4.9897(9) 17.0947(35) 368.583(117) 2.81 (39) 10 Cu-CFO_OP Ca 2 Fe 2 O 5 P n m a 5.4167(8) 14.7955(23) 5.5921(9) 448.166(119) 98.21(89) 1.46 CaCO 3 R -3 c 4.9854(7) 4.9854(7) 17.0894(32 368.431(134) 1.79(85) 10 Cu-CFO_OP H2_CO Ca 2 Fe 2 O 5 P n m a 5.42634(4) 14.8002(15) 5.6018(9) 449.893(61) 96.98(80) 1.19 CaCO 3 R -3 c 4.9889(5) 4.9889(5) 17.0960(21 368.431(134) 3.02(19) 20 Cu-CFO_OP Ca 2 Fe 2 O 5 P n m a 5.4154(3) 14.8248(8) 5.5938(3) 449.085(41) 82.46(68) CaCO 3 R -3 c 4.9809(9) 4.9809(9) 17.1352(35) 368.165(117) 10.54(39) 1.16 CuO C 2/c 4.6912(14) 3.4248(8) 5.1367(16) 81.397(41) 6.99(25) 20 Cu-CFO_OP H2_CO Ca 2 Fe 2 O 5 P n m a 5.4135(2) 14.7939(53) 5.5912(20) 447.786(280) 73.80(1.23) CaCO 3 R -3 c 4.9795 (10) 4.9795(10) 17.0791(38) 366.753(133) 17.57(65) 1.16 CuO C 2/c 4.6867(74) 3.4285(45) 5.1285(83) 81.269(211) 3.95(25) 30 Cu-CFO_OP Ca 2 Fe 2 O 5 P n m a 5.4141 (5) 14.8022(14) 5.5900(5) 447.986(75) 52.02(9) CaCO 3 R -3 c 4.9862(5) 4.9862(5) 17.1147(21) 368.514(71) 35.54(48) 2.70 CuO C 2/c 4.6932 (15) 3.4277(8) 5.1225(13) 81.200(37) 12.44(22) 30 Cu-CFO_OP H2_CO Ca 2 Fe 2 O 5 P n m a 5.4344(19) 14.82448(535) 5.6091(20) 451.884(280) 63.24(1.23) CaCO 3 R -3 c 4.9833(10) 4.9833(10) 17.1079(38) 367.645(133) 30.44(65) 1.36 CuO C 2/c 4.6913(74) 3.4290(46) 5.1310 (83) 81.817(211) 6.32(25) 40 Cu-CFO_OP Ca 2 Fe 2 O 5 P n m a 5.4143(8) 14.8247(22) 5.5922(8) 448.865(114) 50.95(32) CaCO 3 R -3 c 4.9872(6) 4.9872(6) 17.1230 (22) 368.830(78) 31.90(32) 1.92 CuO C 2/c 4.68828 (101) 3.42443(73) 5.14093(104) 81.412(30) 17.15(19) 40 Cu-CFO_OP H2_CO Ca 2 Fe 2 O 5 P n m a 5.4251(4) 14.8102(11) 5.6035(4) 450.113(60) 46.64(90) CaCO 3 R -3 c 4.9887(3) 4.9887(3) 17.1107(15) 368.536(50) 40.12( 90) 1.72 CuO C 2/c 4.6839(72) 3.4237(39) 5.1405(82) 81.501(158) 13.2490) 50 Cu-CFO_OP Ca 2 Fe 2 O 5 P n m a 5.4165(3) 14.8386(10) 5.5927(4) 449.506(52) 48.54(42) CaCO 3 R -3 c 4.9877(4) 4.9877(3) 17.1182(15) 368.797(49) 30.13(31) 1.92 CuO C 2/c 4.6901(7) 3.4221(5) 5.1345(7) 81.281(20) 21.33(27) XRD pattern of one pot samples as-synthesized and after reaction

Figure SI 3 Observed, calculated and difference XRD patterns of: A. 1Cu-CFO_OP; B. 1Cu-CFO_OP after H 2 treatment and CO oxidation; C. 5Cu-CFO_OP; D. 5Cu-CFO_OP after H 2 treatment and CO oxidation; E. 10Cu-CFO_OP; F. 10Cu-CFO_OP after H 2 treatment and CO oxidation; G. 20Cu- CFO_OP; H. 20Cu-CFO_OP after H 2 treatment and CO oxidation, I. 30Cu-CFO_OP; J. 30Cu-CFO_OP after H 2 treatment and CO oxidation; K. 40Cu-CFO_OP; L. 40Cu-CFO_OP after H 2 treatment and CO oxidation; M. 50Cu-CFO_OP; results were refined in the Pnma space group in profile matching mode

together with appropriate space group describing secondary phase. Vertical bars are related to the calculated Bragg reflection position. Refined parameters are given in the Table S1. X-Ray analysis of as-synthesized 40Cu-CFO_OP and after reaction, compared to reference compounds Figure SI 4A. X-Ray diffraction data in the 2θ region between 32 o and 40 o for as synthetized 40Cu- CFO_OP (blue line) and 40Cu-CFO_OP after H 2 treatment at 300 o C followed by catalytic test at 400 o C (black line). Grey boxes highlight the most intensive reflections belonging to the CuO phase (002) and (111)/(200) together with (111) reflection belonging to the Cu 2 O phase; B. Observed XRD patterns for as synthetized 40Cu-CFO_OP (light grey) and 40Cu-CFO_OP after H 2 treatment at 300 o C followed by catalytic test at 400 o C (dark grey), stacked together with simulated XRD profile for Cu (green line), Cu 2 O (blue line) and CuO (red line) phases. Simulations were performed in the Full Prof Package using profile broadening function determined for CuO phase in as-synthetized sample; Lattice Parameter of impregnated samples Table SI 3. Refined parameters corresponding to the XRD data presented in Fig. 2 for xcu-cfo_ip (where 10<x<40), catalysts as synthetized and after CO oxidation. 10 Cu-CFO_IP Phase Space Group a [ Å] b [ Å] c [ Å] vol [Å3] Phase afraction[%] Ca 2 Fe 2 O 5 P n m a 5.42695(8) 14.7714(20) 5.6016(7) 449.037(107) 86.43(3.41) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.998(134) 9.41(66) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 4.17(39)

10 Cu-CFO_IP _CO Ca 2 Fe 2 O 5 P n m a 5.4261(15) 14.7723(30) 5.6017 (14) 448.758(198) 86.24 (3.90) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.998(134) 9.63(66) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 4.13(39) 10 Cu-CFO_IP_H2_CO Ca 2 Fe 2 O 5 P n m a 5.4281 (8) 14.7722(23) 5.6021(9) 449.202(119) 87.65( 3.71) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 9.77( 0.72) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 2.58( 0.39) 30 Cu-CF_IP Ca 2 Fe 2 O 5 P n m a 5.4260 (5) 14.7704(8) 5.5954(3) 448.436( 0.080) 85.16( 3.53) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 3.03( 0.55) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 11.81( 0.60)) 30 Cu-CFO_IP_CO Ca 2 Fe 2 O 5 P n m a 5.4250(2) 14.7726(53) 5.5958(20) 447.786(280) 86.49( 3.69) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 1.46( 0.54) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 12.05(25) 30 Cu-CFO_IP_H2_CO Ca 2 Fe 2 O 5 P n m a 5.4278 (5) 14.7704(14) 5.6017(5) 449.095(75) 86.49( 3.74) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 10.79( 0.78) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 2.72( 0.40) 40 Cu-CFO_IP Ca 2 Fe 2 O 5 P n m a 5.4242 (19) 14.7755(19) 5.5957(20) 448.470( 0.095) 78.83( 1.29) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 4.51( 0.05) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 16.66( 0.17) 40 Cu-CFO_IP_CO Ca 2 Fe 2 O 5 P n m a 5.4276 (8) 14.7746(22) 5.5992(8) 449.009114) 76.20( 2.01) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 5.61( 0.72) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 18.19( 1.24) 40 Cu-CFO_IP_H2_CO Ca 2 Fe 2 O 5 P n m a 5.4285(4) 14.7711(11) 5.6005(4) 449.078( 0.111) 78.71( 1.56) CaCO 3 R -3 c 4.9978 (9) 4.9978 (9) 17.0583(41) 368.431(134) 5.33( 0.60) CuO C 2/c 4.6853(14) 3.4219(8) 5.1122(16) 81.307(41) 15.96( 0.82) CuO CuO C 2/c 4.69151(31) 3.43179(26) 5.13881(32) 81.609(10) 100(0) 6.04 CFO Ca 2 Fe 2 O 5 P n m a 5.43302(52) 14.78038(144) 5.60496(54) 450.090(75) 100(0) 1.22

Figure SI 5 XRD pattern of impregnated samples as-synthesized and after reaction A. 10Cu_CFO_IP Intensity/a.u. Intensity/a.u. B. 10Cu_CFO_IP H2 CO 10 20 30 40 50 60 70 80 10 20 30 40 2 / 50 60 70 80 50 2 / 60 70 80 60 70 80 2 / C. 30Cu_CFO_IP Intensity/a.u. Intensity/a.u. D. 30Cu_CFO_IP H2 CO 10 20 30 40 50 60 70 80 10 20 30 40 2 / F. 40Cu_CFO_IP H2 CO 10 Intensity/a.u. Intensity/a.u. E. 40Cu_CFO_IP 20 30 40 50 2 / 60 70 80 10 20 30 40 50 2 /

G. Ca 2 Fe 2 O 5 H. 100%CuO Intensity /a.u. Intensity /a.u. 20 30 40 50 60 70 80 2 20 30 40 50 60 70 80 2 Figure SI 5 Observed, calculated and difference XRD patterns of: A. 10Cu-CFO_IP; B. 10Cu-CFO_IP after H 2 treatment and CO oxidation; C. 30Cu-CFO_IP; D. 30Cu-CFO_IP after H 2 treatment and CO oxidation; E. 40Cu-CFO_IP; F. 40Cu-CFO_IP after H 2 treatment and CO oxidation; treatment and CO oxidation; G. as-synthesized pure Ca 2 Fe 2 O 5 H. pure CuO. Results were refined in the Pnma space group in profile matching mode together with appropriate space group describing secondary phase. Vertical bars are related to the calculated Bragg reflection position. Refined parameters are given in the Table SI 3. EXAFS fit parameters Table SI 4 EXAFS fit parameters with S 02 -passive electron reduction factor, ΔE 0 -energy shift, R-internuclear distance, σ 2 -mean squared displacement. T ( o C) 30Cu-CFO_OP Bond Site S 0 2 ΔE 0 (ev) R (Å) σ 2 (Å 2 ) R Factor RT/Air CuO Cu-O (1) 1.24±0.13-0.10±1.96 Ca 2 Fe 2 O 5 300 o C/H 2 Ca 2 Fe 2 O 5 200 o C/ CO/O 2 Ca 2 Fe 2 O 5 1.977± 0.002 0.011± 0.002 0.010 Fe-O 1 O h1 0.45±0.11-4.25± 3.96 1.968±0.017 0.004±0.002 0.010 Fe-O 2 O h2 0.45±0.11-4.25±3.96 2.115±0.017 0.005±0.002 0.010 Fe-O 2 T d1 0.45±0.11-4.25±3.96 1.863±0.013 0.004±0.002 0.010 Fe-O 3 T d2 0.45±0.11-4.25±3.96 1.904±0.013 0.004±0.002 0.010 Cu Cu-Cu (1) 0.83±0.09 3.63±0.73 2.534±0.003 0.015±0.001 0.011 Fe-O 1 O h1 0.47±0.14-5.01±4.44 1.968±0.017 0.006±0.003 0.014 Fe-O 2 O h2 0.47±0.14-5.01±4.44 2.115±0.017 0.008±0.007 0.014 Fe-O 2 T d1 0.47±0.14-5.01±4.44 1.863±0.024 0.006±0.003 0.014 Fe-O 3 T d2 0.47±0.14-5.01±4.44 1.904±0.024 0.006±0.003 0.014 Cu 2 O Cu-O (1) 0.27±0.05-0.63±2.01 1.864±0.013 0.001±0.002 0.008 Fe-O 1 O h1 0.45±0.13-3.09±4.31 1.968±0.021 0.005±0.003 0.002 Fe-O 2 O h2 0.45±0.13-3.09±4.31 2.115±0.021 0.004±0.005 0.002 Fe-O 2 T d1 0.45±0.13-3.09±4.31 1.863±0.013 0.018±0.003 0.002 Fe-O 3 T d2 0.45±0.13-3.09±4.31 1.904±0.013 0.018±0.003 0.002 T ( o C) 40Cu-CFO_OP Bond Site S 0 2 ΔE 0 (ev) R (Å) σ 2 (Å 2 ) R Factor CuO Cu-O (1) 1.27±0.11-1.12±0.57 1.961±0.009 0.010±0.002 0.007 Fe-O 1 O h1 0.45±0.12-1.98±4.68 1.968±0.018 0.005±0.002 0.002 RT/Air Ca 2 Fe 2 O 5 Fe-O 2 O h2 0.45±0.12-1.98±4.68 2.115±0.018 0.005±0.008 0.002 Fe-O 2 T d1 0.45±0.12-1.98±4.68 1.863±0.017 0.005±0.002 0.002 Fe-O 3 T d2 0.45±0.12-1.98±4.68 1.904±0.017 0.005±0.002 0.002

Cu Cu-Cu (1) 0.83±0.09 3.63±0.73 2.534±0.002 0.014±0.001 0.011 Fe-O 1 O h1 0.47±0.17-4.29±5.27 1.968±0.021 0.006±0.003 0.001 300 o C/H 2 Fe-O 2 O h2 0.47±0.17-4.29±5.27 2.115±0.021 0.010±0.009 0.001 Ca 2 Fe 2 O 5 Fe-O 2 T d1 0.47±0.17-4.29±5.27 1.863±0.026 0.006±0.003 0.001 Fe-O 3 T d2 0.47±0.17-4.29±5.27 1.904±0.026 0.006±0.003 0.001 Cu 2 O Cu-O (1) 0.27±0.05-0.02±1.81 1.851±0.004 0.001±0.002 0.068 Fe-O 1 O h1 0.46±0.13-3.80±4.23 1.968±0.015 0.004±0.002 0.001 200 o C/ Fe-O 2 O h2 0.46±0.13-3.80±4.23 2.115±0.015 0.004±0.005 0.001 CO/O 2 Ca 2 Fe 2 O 5 Fe-O 2 T d1 0.46±0.13-3.80±4.23 1.863±0.021 0.004±0.002 0.001 Fe-O 3 T d2 0.46±0.13-3.80±4.23 1.904±0.021 0.004±0.002 0.001 Fourier Transformation of the EXAFS signal of 30Cu-CFO_OP at the Cu edge Figure SI 6 Experimental k 3 -weighted FT of the ξ(k) function together with the best fit for 30Cu- CFO_OP measured at the Cu K-edge under A. Air at RT, B. H 2 at 300 o C, C. He at RT and D. CO/O 2 at 200 o C.

Fourier Transformation of the EXAFS signal of 30Cu-CFO_OP at the Fe-edge Figure SI 7 Experimental k 3 -weighted FT of the ξ(k) function together with the best fit for 30Cu- CFO_OP measured at the Fe K-edge under A. Air at RT, B. H 2 at 300 o C, C. He at RT and D. CO/O 2 at 200 o C.

Fourier Transformation of the EXAFS signal of 40Cu-CFO_OP at the Cu-edge Figure SI 8 Experimental k 3 -weighted FT of the ξ(k) function together with the best fit for 40Cu- CFO_OP measured at the Cu K-edge under A. Air at RT, B. H 2 at 300 o C, C. He at RT and D. CO/O 2 at 200 o C. Fourier Transformation of the EXAFS signal of 40Cu-CFO_OP at the Fe-edge

Figure SI 9 Experimental k 3 -weighted FT of the ξ(k) function together with the best fit for 40Cu- CFO_OP measured at the Fe K-edge under A. Air at RT, B. H 2 at 300 o C, C. He at RT and D. CO/O 2 at 200 o C.

Figure SI 10 Experimental k 3 -weighted FT of the ξ(k) function together with the best fit for 40Cu-CFO_OP measured in the Fe K-edge under: A. Air at RT; B. H 2 at 300 o C; C. He at RT; D. CO/O 2 at 200 o C.

Figure SI 11 Experimental k 3 -weighted FT of the ξ(k) function together with the best fit for 12Cu-CFO_OP measured in the Fe K-edge under: A. Air at RT; B. H 2 at 300 o C; C. He at RT; D. CO/O 2 at 200 o C.