Physics of Low-Dimensional Semiconductor Structures

Similar documents
Physics of Low-Dimensional Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

QUANTUM WELLS, WIRES AND DOTS

Basic Semiconductor Physics

Optical Characterization of Solids

Solid Surfaces, Interfaces and Thin Films

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Preface Introduction to the electron liquid

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

wave mechanics applied to semiconductor heterostructures

Physics of Semiconductors (Problems for report)

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Quantum Physics in the Nanoworld

Optical Properties of Solid from DFT

Impact of disorder and topology in two dimensional systems at low carrier densities

Quantum Transport and Dissipation

Quantum Theory of the Optical and Electronic Properties of Semiconductors Downloaded from

PHYSICS OF NANOSTRUCTURES

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

The Physics of Nanoelectronics

Semiconductor Physical Electronics

QUANTUM- CLASSICAL ANALOGIES

List of Comprehensive Exams Topics

Chapter 3 Properties of Nanostructures

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Correlated 2D Electron Aspects of the Quantum Hall Effect

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Summary lecture VI. with the reduced mass and the dielectric background constant

Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer

Concepts in Spin Electronics

Semiconductor Physical Electronics

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Quantum Phenomena & Nanotechnology (4B5)

Physics of Semiconductors

Electronic Properties of Materials An Introduction for Engineers

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

3.23 Electrical, Optical, and Magnetic Properties of Materials

CONTENTS. vii. CHAPTER 2 Operators 15

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

No reason one cannot have double-well structures: With MBE growth, can control well thicknesses and spacings at atomic scale.

NANO/MICROSCALE HEAT TRANSFER

Diode Lasers and Photonic Integrated Circuits

Magneto-Optical Properties of Quantum Nanostructures

Upper-barrier excitons: first magnetooptical study

ELECTRODYNAMICS OF CONTINUOUS MEDIA

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Graphene and Carbon Nanotubes

Vibrational Spectroscopy of Molecules on Surfaces

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Luminescence basics. Slide # 1

Electronic Processes on Semiconductor Surfaces during Chemisorption

Quantum Mechanics: Fundamentals

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Electrical Transport in Nanoscale Systems

Les états de bord d un. isolant de Hall atomique

Molecular Electronics

The Oxford Solid State Basics

Index. Index. More information. in this web service Cambridge University Press

Minimal Update of Solid State Physics

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Quantum Tunneling and

Lecture 20 - Semiconductor Structures

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Correlated 2D Electron Aspects of the Quantum Hall Effect

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

3-1-2 GaSb Quantum Cascade Laser

Quantum Confinement in Graphene

Electron Correlation

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

The Physics of Semiconductors

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Principles of Electron Tunneling Spectroscopy

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

THE ABSORPTION OF ELECTROMAGNETIC RADIATION IN A QUANTUM WIRE

Surfaces, Interfaces, and Layered Devices

Introduction to Semiconductor Integrated Optics

Terahertz Lasers Based on Intersubband Transitions

Tunnelling spectroscopy of low-dimensional states

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

Fundamentals and New Frontiers of Bose Einstein Condensation


Quantum Condensed Matter Physics Lecture 9

QUANTUM WELL OPTICAL SWITCHING DEVICES. DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ USA

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Coulomb Drag in Graphene

Transcription:

Physics of Low-Dimensional Semiconductor Structures Edited by Paul Butcher University of Warwick Coventry, England Norman H. March University of Oxford Oxford, England and Mario P. Tosi Scuola Normale Superiore Pisa, Italy Plenum Press New York and London

1. Electronic Properties in Semiconductor Heterostructures L. J. Sham 1.1. Introduction 1 1.2. Basic Electronic Properties in Quantum Wells 3 1.2.1. Typical Band Structure of Bulk Semiconductors 3 1.2.2. Electron Confinement 4 1.2.3. Hole Subbands 5 1.3. Interface Effects on Electrons 8 1.3.1. Effective Mass Theory for Heterostructures 9 1.3.2. Band Offsets 11 1.4. Types of Superlattices 14 1.4.1. Classification According to Band Edge Alignment 14 1.4.2. Two-Band Model 14 1.4.3. Metal-Insulator Transition in Type II GaSb/InAs 18 1.4.4. Type III HgTe/CdTe 19 1.5. Electrons in Short-Period Superlattices 19 1.5.1. The Kronig-Penney Model 20 1.5.2. Symmetry Properties of Superlattices 22 1.5.3. Computation Methods for Superlattice Electronic Structure... 25 1.5.4. Valley Mixing between Г and X 26 1.5.5. Valley Mixing between X x and X y 28 1.5.6. Fractional Layer Numbers 30 1.6. Effects of Magnetic Fields 30 1.6.1. Conduction Electron in a Magnetic Field Normal to the Interface 31 1.6.2. Valence Holes in a Magnetic Field Normal to the Interface... 33 1.6.3. Conduction Electron in a Magnetic Field Parallel to the Interface 34 1.7. Electron Self-Energy Effects in a Doped Quantum Well 36 1.7.1. The Interaction Hamiltonian 37 1.7.2. Screening 38 1.7.3. Electron and Hole Self-Energies 39 1.7.4. Comparison with Experiment 41 ix

x 1.8. Photoluminescence in Undoped and Doped Quantum Wells 41 1.8.1. Selection Rules 42 1.8.2. Polarization Spectrum in the Backscatter Configuration 43 1.8.3. Luminescence Polarization in the Waveguide Configuration... 47 References 53 2. Phonons in Low-Dimensional Systems J. D. White and G. Faso/ 2.1. Introduction 57 2.2. Phonons in Bulk Semiconductors 60 2.2.1. Real and Reciprocal Space Unit Cells 60 2.2.2. Phonons in Crystals 61 2.2.3. Raman Scattering 64 2.3. Phonons in Layered Media 66 2.4. Raman Investigations of Superlattices 73 2.4.1. Phonon Dispersion in Superlattices 73 2.4.2. Acoustic Phonons 76 2.4.3. Confined Optical Phonons 81 2.4.4. Phonon Dispersion in Superlattices with Various Space Group Symmetries 83 2.4.5. Interface Phonons 85 2.5. Experimental Procedure 87 2.5.1. Introduction 87 2.5.2. Configuration of Raman Apparatus 88 2.6. Conclusions 90 References 91 3. Theory of Electron Transport in Low-Dimensional Semiconductor Structures P. N. Butcher 3.1. Introduction 95 3.2. The Energy Band Structure of 2D and ID Electron Gases 99 3.2.1. Two-Dimensional Electron Gas 99 3.2.2. One-Dimensional Electron Gas 102 3.3. Boltzmann Transport Theory 103 3.3.1. The Transport Coefficient 103 3.3.2. Boltzmann's Equation in the Quantum Limit 103 3.3.3. The Relaxation Time Ansatz in the Quantum Limit 104 3.3.4. Boltzmann Transport Theory for More Than One Subband... 106 3.4. Quantum Size Effects in the Transport Coefficients 107 3.4.1. The Boltzmann Transport Approximation to the Electrical Conductivity of a 2DEG 107

x ' 3.4.2. The Effect of Level Broadening on the Electrical Conductivity of a 2DEG 108 3.4.3. Quantum Size Effect in the Thermopower of a 2DEG 112 3.4.4. Quantum Size Effect in a 1DEG 115 3.4.5. Discussion 117 3.5. Phonon Drag Thermopower of a 2DEG 118 3.5.1. Introduction 118 3.5.2. An Elementary Treatment of Phonon Drag Thermopower... 118 3.5.3. Calculation of the Phonon Drag Thermopower from Coupled Electron and Phonon Boltzmann Equations 121 3.5.4. Recovering the Elementary Formula for Phonon Drag 125 3.5.5. Comparison of Theory and Experiment 126 3.6. Quantum Corrections to the Boltzmann Transport Formalism 132 3.6.1. Introduction 132 3.6.2. Kubo-Greenwood Formulas When В = 0 132 3.6.3. Kubo Formulas When В Ф 0 136 3.6.4. Onsager Symmetry 138 3.6.5. Weak Localization Corrections to the Conductivity 139 3.6.6. Universal Fluctuations 144 3.7. Thermal and Electrical Transport Formalism for Electronic Microstructures with Many Terminals 148 3.7.1. Introduction 148 3.7.2. The Electron States in the Terminals 150 3.7.3. The Scattering Matrix 151 3.7.4. General Terminal Transport Relations for Microstructures... 152 3.7.5. Simplification of the Terminal Transport Relations for a Microstructure 155 3.7.6. Onsager Symmetry and Reciprocity 156 3.7.7. Conclusion 158 3.8. The Aharonov-Bohm Effect, Quantum Point Contacts, and the Integer Quantum Hall Effect 158 3.8.1. Introduction 158 3.8.2. The Aharonov-Bohm Effect 159 3.8.3. Quantum Point Contacts 162 3.8.4. The Integer Quantum Hall Effect 165 3.9. Conclusion 170 References 172 4. Quantum Wires and Quantum Dots F. Stern 4.1. Dimensionality 177 4.2. Structures and Fabrication 178 4.3. Electronic States 180 4.4. Phonons 187

xii 4.5. Charges in Quantum Wires and Quantum Dots 188 4.6. Dielectric Response, Screening, and Plasmons 191 4.7. Transport Properties 192 4.8. Bound States 194 4.9. Optical Properties 194 4.10. Magnetic Field Effects 195 4.11. Prospects for Device Applications 197 References 198 5. Quantum Interference in Disordered Electron Systems G. Bergmann 5.1. The Echo of the Scattered Conduction Electron 205 5.2. Time-of-Flight Experiment by a Magnetic Field 207 5.3. Spin-Orbit Coupling 209 5.4. Magnetic Scattering in Kondo Systems 212 5.4.1. Kondo Maximum 213 5.4.2. Low-Temperature Behavior of the Magnetic Scattering Rate.. 214 5.4.3. Quenching of Interacting Moments Far Below the Kondo Temperature 214 5.5. Electrons Confined in Tunneling Junctions 216 5.6. The Range of the Dynamical Coulomb Interaction 222 References 225 6. Theory of the Quantum Hall Effect N. d'ambrumenil 6.1. Introduction 227 6.2. The Quantum Hall Effect 228 6.2.1. The Measurement 228 6.2.2. Interpretation of the Measurement 229 6.2.3. Laughlin's Gedanken Experiment 230 6.2.4. Aspects of a Microscopic Theory of the Quantum Hall Effect.. 231 6.2.5. Edge States 237 6.3. The Fractional Quantum Hall Effect 239 6.3.1. Interpretation of the Measurement: Many-Body Gap and Fractional Charge 240 6.3.2. Zeros and Flux Quanta 241 6.3.3. Laughlin's Wave Function 243 6.3.4. Haldane's Argument 245 6.3.5. Other Filling Fractions: The Hierarchy 247 6.3.6. Microscopic Trial Wave Functions for the Hierarchy 249 6.3.7. Spin Polarization 250

xiii 6.3.8. Higher Landau Levels 250 6.3.9. Ring Exchange 252 6.3.10. Summary 252 Appendix: (More or Less) Standard Results 253 6.А.1. Hamiltonian and Energy Spectrum 253 6.A.2. Gauge Choice 255 6.A.3. Conserved Momenta, Magnetic Translations, and Rotations... 256 6.A.4. The Single-Particle Green's Function 259 6.A.5. Exactness of Laughlin's Wave Function 261 6.A.6. The Hierarchy 262 References 264 7. Tunneling in Semiconductor Resonant Structures G. Garcia-Calderön 7.1. Introduction 267 7.2. Concept of Tunneling 268 7.3. Brief History of Tunneling 269 7.4. Resonant Structures 274 7.5. Physics of Resonant Tunneling 282 7.5.1. Resonant States 284 7.5.2. Coherent Tunneling Current 289 7.5.3. Inelastic Effects 291 7.6. Conclusion 294 References 294 8. Keldysh Formalism and the Landauer Approach S. Datta 8.1. Introduction 299 8.2. A Few Concepts 305 8.3. Equilibrium Solution 309 8.4. Transport Equation 311 8.5. Terminal Current 314 8.6. Linear Response 316 8.7. Reciprocity 317 8.8. Heat Exchange 319 8.9. Concluding Remarks 320 Appendix: Mathematical Details 321 References 329

xiv 9. Magneto-Optical Properties of Semiconductor Heterostructures J. С. Maan 9.1. Introduction 333 9.2. Energy Levels of Heterostructures in a Magnetic Field and a Confining Potential 334 9.2.1. Perpendicular Field 334 9.2.2. Tilted Field 335 9.2.3. Parallel Field 337 9.2.4. Superlattices in a Parallel Field 339 9.3. Selection Rules and Transition Matrix Elements 340 9.4. Cyclotron Resonance 344 9.4.1. Parabolic Bands 344 9.4.2. Nonparabolicity 345 9.4.3. Tilted Field Intraband Experiments 348 9.5. Interband Transitions 350 9.5.1. Simple Bands 350 9.5.2. Excitons in a Magnetic Field 351 9.5.3. Valence Band Structure 355 9.5.4. Doped Samples 358 9.6. Applications of Magneto-Optics 363 9.6.1. High-Excitation Luminescence in Quantum Wells 363 9.6.2. Spin Relaxation in Quantum Wells 366 9.7. Summary 370 References 371 10. Electrons in Superlattices G. H. Döhler 10.1. Introduction 375 10.2. Electronic Band Structure of Superlattices 375 10.2.1. Compositional Superlattices 377 10.2.2. Doping Superlattices {n-i-p-i Structures) 379 10.3. Dynamics of Electrons in Superlattices 383 10.3.1. Bloch Oscillations and the Wannier-Stark Ladder 383 10.3.2. Transitions on the Wannier-Stark Ladder and Transport Properties 386 10.3.3. Intersubband Transitions 389 10.4. Interband Transitions in Superlattices 390 10.4.1. Dipole Matrix Elements in Type-I and Type-II Compositional and n-i-p-i Doping Superlattices 390 10.4.2. The Internal Franz-Keldysh Effect in n-i-p-i Superlattices... 394 10.4.3. The Quantum Confined Stark Effect: "MQW-Hetero-n-i-p-fs" 395

xv 10.5. Magnetic Wave Function Tuning in Doping Superlattices 397 10.6. Impurity States and Impurity Bands in 5-Doped n-i-p-i Superlattices.. 400 References 404 11. Metallic Superlattices D. Kerkmann and D. Peseta 11.1. Growth Modes and Structural Analysis of Metallic Superlattices... 407 11.1.1. Growth of Metallic Epitaxial Layers 407 11.1.2. Growth Detection 413 11.2. Magnetic Ground State of Epitaxial Layer 418 11.2.1. "Enhanced" Magnetic Moments 418 11.2.2. The Many-Spin Ground State and Low-Lying Excited States 422 11.3. Magnetism of Epitaxial Films at Finite Temperatures 426 11.3.1. Long-Range Order at Finite Temperatures 426 11.3.2. Magnetic Anisotropy and Long-Range Order 430 11.3.3. Existence of a Phase Transition at Temperatures T ~ Г 432 References 439 12. Phonon Emission, Absorption, and Reflection from a Two-Dimensional Electron Gas L. J. Challis 12.1. Introduction 441 12.2. Phonon Emission 442 12.2.1. Zero Magnetic Fields 443 12.2.2. Quantizing Magnetic Fields 449 12.3. Phonon Scattering 453 12.4. Conclusion 459 References 460 13. Quantum Adiabatic Electron Transport in Ballistic Conductors L. P. Kouwenhoven 13.1. Introduction 463 13.2. Fabrication and Working Principles of a Split-Gate Device 465 13.3. Quantized Conductance of a Point Contact 469 13.4. Depopulation of ID Magnetoelectric Subbands 474 13.5. Electron Motion in a Magnetic Field 476 13.5.1. Electron Focusing 476 13.5.2. Edge Channels 478 13.5.3. Quantized Longitudinal Conductance 480

xvi 13.6. Anomalous Integer Quantum Hall Effect 482 13.7. Transition from Ohmic to Adiabatic Transport 485 13.7.1. Transport Through Two QPCs in Series 485 13.7.2. Electron-Beam Collimation and Electron Focusing in a Dot.. 490 13.8. Summary and Conclusions 494 References 495 14. Experiments on Two-Dimensional Wigner Crystals E. Y. Andrei, F. J. B. Williams, D. С Glattli, and G. Devil/e 14.1. Introduction 499 14.2. The Phase Diagram 500 14.2.1. Coulomb System of Classical Particles 500 14.2.2. Coulomb System of Quantum Particles T = 0, В = 0 501 14.2.3. Coulomb System of Quantum Particles T = 0, В Ф 0 502 14.2.4. Coulomb System of Quantum Particles T Ф 0, В Ф 0 503 14.3. How to Recognize the Solid? 505 14.4. Experimental Realizations of a 2D Plasma 508 14.5. Experiments on the Quantum Wigner Crystal 509 14.5.1. Shear Modulus Measurements 509 14.5.2. Conductivity Measurements 513 14.5.3. Discussion 523 14.6. Experiments on the Classical Wigner Crystal 531 14.6.1. Shear Modulus Experiments 531 14.6.2. Specific Heat Experiments 532 14.7. Summary 535 References 535 15. Artificial Semiconductor Structures: Electronic Properties and Device Applications F. Be/tram and F. Capasso 15.1. Introduction 539 15.2. Quantum Electron Devices 540 15.2.1. Resonant Tunneling Bipolar Transistors with Double Barrier in the Base 541 15.2.2. Devices with Multiple Peak /- V Characteristics and Multiple-State RTBTs 546 15.2.3. Gated Quantum-Well and Superlattice Base Transistor 555 15.3. Transport in Superlattices 562 15.3.1. Transport and Negative Differential Conductance in Superlattices with Wide Minibands 563 15.3.2. Localization and Transport in Superlattices 565

xvii 1-5.3.3. Bloch Oscillations 566 15.3.4. Observation of Negative Differential Conductance in a Superlattice 567 15.3.5. Scattering-Controlled Resonances 571 References 573 Index 577