MECH 576 Geometry in Mechanics September 16, 2009 Using Line Geometry

Similar documents
THE ENVELOPE OF LINES MEETING A FIXED LINE AND TANGENT TO TWO SPHERES

Math 302 Outcome Statements Winter 2013

MECH 576 Geometry in Mechanics November 30, 2009 Kinematics of Clavel s Delta Robot

Analytic Projective Geometry

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

Conics and their duals

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

Elementary maths for GMT

CALC 3 CONCEPT PACKET Complete

x y = 1, 2x y + z = 2, and 3w + x + y + 2z = 0

Chapter 1: Systems of Linear Equations

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

2 Systems of Linear Equations

Largest Area Ellipse Inscribing an Arbitrary Convex Quadrangle

Methods for Solving Linear Systems Part 2

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

arxiv: v6 [math.mg] 9 May 2014

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS

MATH PROBLEM SET 6

Linear Algebra. Min Yan

Math 3108: Linear Algebra

2 Constructions of manifolds. (Solutions)

13 Spherical geometry

LS.1 Review of Linear Algebra

NEW BALANCING PRINCIPLES APPLIED TO CIRCUMSOLIDS OF REVOLUTION, AND TO n-dimensional SPHERES, CYLINDROIDS, AND CYLINDRICAL WEDGES

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

MTH 2032 Semester II

Algebra Workshops 10 and 11

Decomposition of Screw-motion Envelopes of Quadrics

Linear Algebra for Beginners Open Doors to Great Careers. Richard Han

Practical Linear Algebra: A Geometry Toolbox

TWO THEOREMS ON THE FOCUS-SHARING ELLIPSES: A THREE-DIMENSIONAL VIEW

Kinematic Analysis of a Pentapod Robot

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Week 4: Differentiation for Functions of Several Variables

MODEL ANSWERS TO HWK #3

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm.

1 Differentiable manifolds and smooth maps. (Solutions)

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Determinant: 3.2 Evaluation of Determinant with Elementary

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates...

Linear Algebra March 16, 2019

Curvilinear coordinates

1 Differentiable manifolds and smooth maps. (Solutions)

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

Chapter 7. Linear Algebra: Matrices, Vectors,

Math 1553, Introduction to Linear Algebra

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C =

We wish the reader success in future encounters with the concepts of linear algebra.

Geometry. Common Tangents to Spheres in R 3. Ciprian Borcea, 1 Xavier Goaoc, 2 Sylvain Lazard, 2 and Sylvain Petitjean 2. 1.

Solving Systems of Equations Row Reduction

M. Matrices and Linear Algebra

8. Diagonalization.

MATH10212 Linear Algebra B Homework Week 4

1. The positive zero of y = x 2 + 2x 3/5 is, to the nearest tenth, equal to

Linear Independence Reading: Lay 1.7

UNIT 1 DETERMINANTS 1.0 INTRODUCTION 1.1 OBJECTIVES. Structure

MAT2342 : Introduction to Applied Linear Algebra Mike Newman, fall Projections. introduction

II. Determinant Functions

The Gauss-Jordan Elimination Algorithm

Chapter 1: Linear Equations

Chapter Two Elements of Linear Algebra

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Upon successful completion of MATH 220, the student will be able to:

Math 251 Midterm II Information Spring 2018

Linear Algebra 1 Exam 1 Solutions 6/12/3

Linear Algebra Primer

CHAPTER 7: Systems and Inequalities

(Refer Slide Time: 2:08 min)

Common Tangents to Spheres in R 3

Chapter 1: Linear Equations

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Linear Algebra and Robot Modeling

Dot Products, Transposes, and Orthogonal Projections

Linear Systems and Matrices

MATH20411 PDEs and Vector Calculus B

Lecture Summaries for Linear Algebra M51A

Linear Algebra. Preliminary Lecture Notes

1 Determinants. 1.1 Determinant

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Rectangular Systems and Echelon Forms

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

7 Curvature of a connection

Algebraic. techniques1

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Notes on Row Reduction

Trinocular Geometry Revisited

Lesson 18: Recognizing Equations of Circles

Unit 3: Number, Algebra, Geometry 2

The Convolution of a Paraboloid and a Parametrized Surface

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1

Linear programming. Saad Mneimneh. maximize x 1 + x 2 subject to 4x 1 x 2 8 2x 1 + x x 1 2x 2 2

Linear Algebra I Lecture 8

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

Linear Algebra. Preliminary Lecture Notes

MATH 2030: MATRICES. Example 0.2. Q:Define A 1 =, A. 3 4 A: We wish to find c 1, c 2, and c 3 such that. c 1 + c c

Transcription:

MECH 576 Geometry in Mechanics September 16, 2009 Using Line Geometry 1 Deriving Equations in Line Coordinates Four exercises in deriving fundamental geometric equations with line coordinates will be conducted. These results may be widely used to formulate constraint equations to solve many useful geometric problems. First the derivation of the summations, introduced earlier, p = P a P : P i = P ij p j, P = P r p : p i = p ij P j (1) that define the plane p on a given axial line P a and point P are derived using the plane equation Grassmannian. This is followed by inductive reasoning to express the dual relation, i.e., the point P on given radial line P r and plane p. Next the set of all lines tangent to a given sphere is derived. This is a simple second order complex; a three parameter set of lines. Finally the cylinder and cone of revolution, using a given tangent cylinder and an absolute point on the axis and a Euclidean point on the apex, respectively, are expressed as a one parameter set of ruling line coordinates. These are converted to point form with any two constraint equations, selected from the first set of four expressed by Eq. 1, and setting all P i = 0. 2 Spanning Plane and Piercing Point Consider a plane, given by its four homogeneous coordinates, p{p 0 : P 1 : P 2 : P 3 } and a line, given by its six homogeneous radial Plücker coordinates, P r {p 01 : p 02 : p 03 : p 23 : p 31 : p 12 } Recall the identical axial line is related as P a {P 01 : P 02 : P 03 : P 23 : P 31 : P 12 } = λ{p 23 : p 31 : p 12 : p 01 : p 02 : p 03 }, λ 0 1

The given plane and line, if linearly independent, intersect on a point. The purpose here is to illustrate how to structure the 4 4 Grassmannian determinant form of the standard point equation so as to produce the well known sum of products piercing point equation p i = p ij P j to yield the four homogeneous coordinates of the point P {p i }, i = 0,..., 3, P = P r p Recall that the conventions, p ij = 0 if i = j and p ij = p ji if i j, apply in this summation. Imagine that P r is expressed by some plane pair q{q 0 : Q 1 : Q 2 : Q 3 }, r{r 0 : R 1 : R 2 : R 3 } whose coordinates may be expanded to axial Plücker coordinates. P r P a {Q 0 R 1 R 0 Q 1 : Q 0 R 2 R 0 Q 2 : Q 0 R 3 R 0 Q 3 : So the point equation determinant is written Q 2 R 3 R 2 Q 3 : Q 3 R 1 R 3 Q 1 : Q 1 R 2 R 1 Q 2 } X 0 X 1 X 2 X 3 P 0 P 1 P 2 P 3 Q 0 Q 1 Q 2 Q 3 R 0 R 1 R 2 R 3 = 0 Expanding on top row minors computes the piercing point homogeneous coordinates as coefficients. But in this case each coefficient is computed not by directly evaluating the 3 3 cofactor determinant but by expanding on its top row minors. These are the remaining second row entries of the original 4 4 after crossing out the top row minor s row and column. The first top row minor and cofactor are P 1 P 2 P 3 + Q 1 Q 2 Q 3 X 0 R 1 R 2 R 3 which expands as which is the same as [(Q 2 R 3 R 2 Q 3 )P 1 (Q 1 R 3 R 1 Q 3 )P 2 + (Q 1 R 2 R 1 Q 2 )P 3 ]X 0 [(Q 2 R 3 R 2 Q 3 )P 1 + (Q 3 R 1 R 3 Q 1 )P 2 + (Q 1 R 2 R 1 Q 2 )P 3 ]X 0 and this becomes, via the substitution of the appropriate axial Plücker coordinates [P 23 P 1 + P 31 P 2 + P 12 P 3 ]X 0 2

or via the substitution of the appropriate radial Plücker coordinates [p 01 P 1 + p 02 P 2 + p 03 P 3 ]X 0 Finally, this compares identically to the first row of the summation where i = 0 and p 00 = 0 and p 0, the first coefficient of the point equation, is obtained. p 0 = p 00 P 0 + p 01 P 1 + p 02 P 2 + p 03 P 3 The line-point-plane relation is clearly understood by seeing through to the end the computation of the next three point equation coefficients. The second top row minor and cofactor are which expands as P 0 P 2 P 3 Q 0 Q 2 Q 3 R 0 R 2 R 3 X 1 [(Q 2 R 3 R 2 Q 3 )P 0 (Q 0 R 3 R 0 Q 3 )P 2 + (Q 0 R 2 R 0 Q 2 )P 3 ]X 1 and this becomes, via the substitution of the appropriate axial Plücker coordinates [P 23 P 0 P 03 P 2 + P 02 P 3 ]X 1 or via the substitution of the appropriate radial Plücker coordinates [p 01 P 0 p 12 P 2 + p 31 P 3 ]X 1 Finally, this compares identically to the first row of the summation where i = 1, p ij = p ji and p 11 = 0 and p 1, the second coefficient of the point equation, is obtained. The third top row minor and cofactor are which expands as p 1 = p 10 P 0 + p 11 P 1 + p 12 P 2 + p 13 P 3 + P 0 P 1 P 3 Q 0 Q 1 Q 3 R 0 R 1 R 3 X 2 [(Q 1 R 3 R 1 Q 3 )P 0 (Q 0 R 3 R 0 Q 3 )P 1 + (Q 0 R 1 R 0 Q 1 )P 3 ]X 2 and this becomes, via the substitution of the appropriate axial Plücker coordinates [ P 31 P 0 P 03 P 1 + P 01 P 3 ]X 2 or via the substitution of the appropriate radial Plücker coordinates [ p 02 P 0 p 12 P 1 + p 23 P 3 ]X 2 3

Finally, this compares identically to the first row of the summation where i = 2, p ij = p ji and p 22 = 0 and p 2, the third coefficient of the point equation, is obtained. p 2 = p 20 P 0 p 21 P 1 + p 22 P 2 + p 23 P 3 The fourth top row minor and cofactor are P 0 P 1 P 2 Q 0 Q 1 Q 2 X 3 R 0 R 1 R 2 which expands as [(Q 1 R 2 R 1 Q 2 )P 0 (Q 0 R 2 R 0 Q 2 )P 1 + (Q 0 R 1 R 0 Q 1 )P 1 ]X 3 and this becomes, via the substitution of the appropriate axial Plücker coordinates [P 12 P 0 P 02 P 1 + P 01 P 2 ]X 3 or via the substitution of the appropriate radial Plücker coordinates [p 03 P 0 p 31 P 1 + p 23 P 2 ]X 3 Finally, this compares identically to the first row of the summation where i = 3, p ij = p ji and p 33 = 0 and p 3, the fourth coefficient of the point equation, is obtained. p 3 = p 30 P 0 + p 31 P 1 + p 32 P 2 + p 33 P 3 This completes the elaboration of the intersection of a projective line and plane. It is not necessary to do the same for the intersection of a projective line and point to get the projective plane so defined. This is because one may invoke the principle of duality and exchange point with plane coordinates and radial line coordinates with axial ones. Consider now the degenerate cases, i.e., if the given elements are linearly dependent. This means that the piercing point does not exist because the line is on the plane or the spanning plane does not exist because the point is on the line. All four coordinates vanish, p i = 0 or P i = 0. This is a very useful way to express that P P or p P and will be used to derive implicit equations of ruled surfaces which are easily formulated using line geometric concepts. 3 The Spherical Tangent Line Complex The set of all lines T {t 01 : t 02 : t 03 : t 23 : t 31 : t 12 } tangent to a given sphere, radius R, centred on point M{m 0 : m 1 : m 2 : m 3 } can be deduced by equating the square of the moment magnitude of a typical tangent line s direction numbers, about the point M, obtained in two different ways. First, the square of the difference between the typical tangent line s moment t 23 : t 31 : t 12 and the moment of a line on M which has the direction numbers t 01 : t 02 : t 03 of the typical tangent line. This can be expressed as t 23 t 31 t 12 1 m 0 m 1 m 2 m 3 t 01 t 02 t 03 2 4 = t 23 1 m 0 (m 2 t 03 m 3 t 02 ) t 31 1 m 0 (m 3 t 01 m 1 t 03 ) t 12 1 m 0 (m 1 t 02 m 2 t 01 ) 2

Then the square of the moment of the typical line s direction numbers about M is formed directly as 2 t 01 R t 02 t 03 Therefore the desired equation of the line complex is the difference multiplied by m 2 0. [m 0 t 23 (m 2 t 03 m 3 t 02 )] 2 + [m 0 t 31 (m 3 t 01 m 1 t 03 )] 2 +[m 0 t 12 (m 1 t 02 m 2 t 01 )] 2 (m 0 R) 2 (t 2 01 + t 2 02 + t 2 03) = 0 The Spherical Tangent Line Complex (a 3-parameter set of lines described by a 2nd order equation in Pleucker coordinates) z (MECH576)STLC y O o x Figure 1: Complex Geometry 4 Cylinder of Revolution Beginning with the equation of the tangent line complex on the sphere [m 0 t 23 (m 2 t 03 m 3 t 02 )] 2 + [m 0 t 31 (m 3 t 01 m 1 t 03 )] 2 +[m 0 t 12 (m 1 t 02 m 2 t 01 )] 2 (m 0 R) 2 (t 2 01 + t 2 02 + t 2 03) = 0 5

consider a cylinder of revolution of radius R and whose axis is line A{a 01 : a 02 : a 03 : a 23 : a 31 : a 12 } Note that if the axial direction is given as on M, the sphere centre, and A{0 : a 1 : a 2 : a 3 }, an absolute point then A is immediately available as A = A M. If your sensibilities are offended by the use of, intersection rather than union, consider that in the space of dual, plane coordinates the these two points assume plane-like form. First the line complex is converted to the surface equation in terms of typical ruling lines P{p 01 : p 02 : p 03 : p 23 : p 31 : p 12 } by noting that t 0j = a 0j and moments m i t 0j m j t 0i = a ij and making these substitutions to yield (p 23 a 23 ) 2 + (p 31 a 31 ) 2 + (p 12 a 12 ) 2 R 2 (a 2 01 + a 2 02 + a 2 03) = 0 This becomes a one parameter set of lines when combined with the Plücker condition, in this case a linear equation. a 01 p 23 + a 02 p 31 + a 03 p 12 = 0 The point equation is produced by using two elements of the expansion P P which gives the degenerate plane defined by a line and a point on it. P i = P ij p j = 0 Substituting radial for axial line coordinates, the cylinder is given by (a 23 p 0 + a 02 p 3 a 03 p 2 ) 2 + (a 31 p 0 + a 03 p 1 a 01 p 3 ) 2 +(a 12 p 0 + a 01 p 2 a 02 p 1 ) 2 R 2 (a 2 01 + a 2 02 + a 2 03) = 0 The obvious advantage of this formulation is that it gives one the option to write the implicit form of this quadric surface directly from its geometric definition, without resort to coordinate transformation or even trigonometric functions. 5 Cone of Revolution Consider the cone of revolution, apex on point X{x 0 : x 1 : x 2 : x 3 }, with all generators tangent to a sphere centred on point M{m 0 : m 1 : m 2 : m 3 } and of radius R. Note that R is not the radius R M of the circular section on M. R M = Rh h2 R 2, h2 = (x m) 2 where x and m are the position vectors of points X and M. Again, the formulation starts with the tangent line complex on the sphere of radius R centred on M. [m 0 t 23 (m 2 t 03 m 3 t 02 )] 2 + [m 0 t 31 (m 3 t 01 m 1 t 03 )] 2 +[m 0 t 12 (m 1 t 02 m 2 t 01 )] 2 (m 0 R) 2 (t 2 01 + t 2 02 + t 2 03) = 0 6

However this time the set of generators is not on the point that closes A = M X but upon the apex X. This condition is expressed by the degenerate plane Switching to radial coordinates produces X i = T ij x j = 0 0 + x 1 t 23 + x 2 t 31 + x 3 t 12 = 0 x 0 t 23 + 0 + x 2 t 03 x 3 t 02 = 0 x 0 t 31 x 1 t 03 + 0 + x 3 t 01 = 0 x 0 t 12 + x 1 t 02 x 2 t 01 + 0 = 0 Since the cone is ruled by Euclidean lines and t 2 01 + t 2 02 + t 2 03 0, the second and third equations can be augmented with the Plücker condition to eliminate t 23, t 31, t 12. x 0 0 0 t 23 x 2 t 03 x 3 t 02 0 x 0 0 t 31 = x 3 t 01 x 1 t 03 t 01 t 02 t 03 t 12 0 which is solved for the t ij vector. Substituting this into the complex yields x 0 t 23 = x 2 t 03 x 3 t 02 x 0 t 31 = x 3 t 01 x 1 t 02 x 0 t 03 t 12 = (x 2 t 03 x 3 t 02 )t 01 (x 3 t 01 x 1 t 03 )t 02 [m 0 (x 2 t 03 x 3 t 02 ) x 0 (m 2 t 03 m 3 t 02 )] 2 t 2 03 +[m 0 (x 3 t 01 x 1 t 03 ) x 0 (m 3 t 01 m 1 t 03 )] 2 t 2 03 +[m 0 (x 1 t 02 x 2 t 01 )t 03 x 0 (m 1 t 02 m 2 t 01 )t 03 ] 2 (m 0 R) 2 (t 2 01 + t 2 02 + t 2 03)t 2 03 = 0 Setting m 0 = x 0 = 1 and eliminating t 2 03 produces the line equation of the cone. [(m 3 x 3 )t 02 (m 2 x 2 )t 03 ] 2 + [(m 1 x 1 )t 03 (m 3 x 3 )t 01 ] 2 +[(m 2 x 2 )t 01 (m 1 x 1 )t 02 ] 2 R 2 (t 2 01 + t 2 02 + t 2 03) = 0 This is converted to a point equation by invoking and the second and third equations of P T, P i = T ij p j = 0 0 + t 23 p 1 + t 31 p 2 + t 12 p 3 = 0 t 23 p 0 + 0 + t 03 p 2 t 02 p 3 = 0 t 31 p 0 t 03 p 1 + 0 + t 01 p 3 = 0 t 12 p 0 + t 02 p 1 t 01 p 2 + 0 = 0 7

are used to eliminate t 02 and t 03. [ (x3 p 0 x 0 p 3 ) (x 2 p 0 x 0 p 2 ) 0 (x 1 p 0 x 0 p 1 ) ] [ t02 t 03 ] = [ 0 (x 3 p 0 x 0 p 3 )t 01 ] which is solved for the t 0j vector. Substituting these and simplifying (x 1 p 0 x 0 p 1 )t 02 = (x 2 p 0 x 0 p 2 )t 01 (x 1 p 0 x 0 p 1 )t 03 = (x 3 p 0 x 0 p 3 )t 01 [(m 3 x 3 )(x 2 p 0 x 0 p 2 ) (m 2 x 2 )(x 3 p 0 x 0 p 3 )] 2 +[(m 1 x 1 )(x 3 p 0 x 0 p 3 ) (m 3 x 3 )(x 1 p 0 x 0 p 1 )] 2 +[(m 2 x 2 )(x 1 p 0 x 0 p 1 ) (m 1 x 1 )(x 2 p 0 x 0 p 2 )] 2 R 2 [(x 1 p 0 x 0 p 1 ) 2 + (x 2 p 0 x 0 p 2 ) 2 + (x 3 p 0 x 0 p 3 ) 2 ] = 0 The surface is expressed in ordinary Cartesian coordinates of P and X by setting p 0 = x 0 = 1. [(m 3 x 3 )(x 2 p 2 ) (m 2 x 2 )(x 3 p 3 )] 2 +[(m 1 x 1 )(x 3 p 3 ) (m 3 x 3 )(x 1 p 1 )] 2 +[(m 2 x 2 )(x 1 p 1 ) (m 1 x 1 )(x 2 p 2 )] 2 R 2 [(x 1 p 1 ) 2 + (x 2 p 2 ) 2 + (x 3 p 3 ) 2 ] = 0 The obvious advantage of this formulation is that it gives one the option to write the implicit form of this quadric surface directly from its geometric definition, without resort to coordinate transformation or even trigonometric functions. 6 Elliptical Cone Examine Fig. 2. Two circular sections are shown. The given circle appears in both principal views while an elliptical section appears in the auxiliary projection. Also shown is the given apex X. Consider the following three sets of point-on-line specifications. The line in question is a typical generator given in axial Plücker coordinates. P a {P 01 : P 03 : P 03 : P 23 : P 31 : P 12 } The last three coordinates are the line direction numbers. the first three are the moment of each direction number about the origin. The first set states that any point P (p 1, p 2, p 3 ) on the given circle is on the line. P 01 p 1 +P 02 p 2 +P 03 p 3 = 0 P 01 +P 12 p 2 P 31 p 3 = 0 (2) P 02 P 12 p 1 +P 23 p 3 = 0 P 03 +P 31 p 1 P 23 p 2 = 0 8

X x 2 A K (FD3)ECone7Ch P x 1 right truncated base A given circular section x 3 P K A-A P X x 1 X K given circular section Figure 2: Three Views of an Elliptical Cone The second set states that X(x 1, x 2, x 3 ) the given cone vertex is on the line. P 01 x 1 +P 02 x 2 +P 03 x 3 = 0 P 01 +P 12 x 2 P 31 x 3 = 0 P 02 P 12 x 1 +P 23 x 3 = 0 P 03 +P 31 x 1 P 23 x 2 = 0 (3) The third set maps the line to an arbitrary variable point K(k 1, k 2, k 3 ) on the cone surface. P 01 k 1 +P 02 k 2 +P 03 k 3 = 0 P 01 +P 12 k 2 P 31 k 3 = 0 P 02 P 12 k 1 +P 23 k 3 = 0 P 03 +P 31 k 1 P 23 k 2 = 0 (4) Only two equations in every set are linearly independent so the second and fourth equation in each set will be chosen for solution by eliminating all Plücker coordinates. First, however, the equations from set Eq. 2 are rewritten to lie on the plane p 2 = 0 of the circle and to be at distance R from the circle centre, chosen on the origin. P 01 + P 31 p 3 = 0, P 03 P 31 R 2 p 2 3 = 0 9

Eliminate p 3 from these and rewrite the remaining five equations thus. P 2 01 + P 2 03 R 2 P 2 31 = 0 P 01 + P 12 x 2 P 31 x 3 = 0 P 03 + P 31 x 1 P 23 x 2 = 0 P 01 + P 12 k 2 P 31 k 3 = 0 P 03 + P 31 k 1 P 23 k 2 = 0 (5) Set P 23 = 1 because Plücker coordinates are homogeneous. No cone generator may be normal to this direction therefore P 23 0. Then eliminate the five other P ij. This results in a product of two trivial double solutions and the quadric we seek. In Fig. 2 the problem is defined, without loss of generality, in a frame where x 3 = 0 to simplify Eqs. 6 and 7. (k 2 x 2 ) 2 (k 3 x 3 ) 2 [R 2 x 2 2 2R 2 x 2 k 2 x 2 2k 2 1+2x 1 x 2 k 1 k 2 +(R 2 x 2 1 x 2 3)k 2 2+2x 2 x 3 k 2 k 3 x 2 2k 2 3] = 0 (6) The first four solutions all map to the cone vertex. Eq. 7 presents the quadric in symmetric coefficient matrix form. The cone of revolution is engendered therein. R 2 x 2 2 0 R 2 x 2 0 1 0 x [1 k 1 k 2 k 3 ] 2 2 x 1 x 2 0 k 1 R 2 x 2 x 1 x 2 R 2 x 2 1 x 2 3 x 2 x 3 k 2 = 0 (7) 0 0 x 2 x 3 x 2 2 k 3 7 Conclusion Other line geometric formulations will be encountered later. These include other, non-degenerate quadrics like the hyperboloid of one sheet and hyperbolic paraboloid as well as the two lines that intersect four given ones. These surfaces play important rôles in solving problems in manipulator kinematics. The ambitious student may try to find more formal and authoritative literature on line geometry by searching libraries and related web-sites. The author has obtained little success in this way. When asked, knowledgable central European authorities inevitably reply, I don t know where this is written but everyone knows all about it anyway. In 1908 Felix Klein[1] summed up the situation elegantly. In geometry we possess no unified textbooks corresponding to the level of the science,... -note that he considers mathematics to be science with profound engineering application-... such as exist in algebra and analysis, thanks to the model French Cours. We find, rather, a single page here, another there, of an extensive subject, just as it has been developed by one or another group of investigators. This situation has persisted and worsened during the intervening century. References [1] Klein, F.C. (2004) Elementary Mathematics from an Advanced Standpoint -Geometry-, Dover, ISBN 0-486-43481-8, p.-v-. 10