NONLINEAR PROCESSES IN THE EXTREME ULTRAVIOLET REGION USING THE FEL

Similar documents
Exploring ICD and Dynamic Interference by Free Electron Lasers

Dichroism and resonances in intense radiation fields

Looking into the ultrafast dynamics of electrons

WP2: Non-linear XUV spectroscopy

FEL based non-linear and time-resolved experiments involving two-colour photoionisation of Helium atoms and nanodroplets

WP-3: HHG and ultrafast electron imaging

Attosecond Science. Jon Marangos, Director Extreme Light Consortium, Imperial College London

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

arxiv: v1 [physics.atom-ph] 4 May 2017

AMO physics with LCLS

Frank Stienkemeier Marcel Mudrich Aaron LaForge. University of Freiburg (FREIB)

Connecting Attosecond Science and XUV FEL Research

Correlated electronic decay following intense nearinfrared ionization of clusters

X-Ray Probing of Atomic and Molecular Dynamics in the Attosecond Limit

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

Overview: Attosecond optical technology based on recollision and gating

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

Laser Dissociation of Protonated PAHs

Probing Matter: Diffraction, Spectroscopy and Photoemission

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Laser-controlled Molecular Alignment and Orientation. Marc Vrakking FOM Institute AMOLF

Attosecond-correlated dynamics of two electrons in argon

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

Photoelectron Spectroscopy using High Order Harmonic Generation

PIs: Louis DiMauro & Pierre Agostini

Coherent control with a short-wavelength Free Electron Laser

Pump-Probe Experiments in the Gas Phase using the TESLA-FEL

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter

Layout of the HHG seeding experiment at FLASH

High-energy collision processes involving intense laser fields

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

X-ray production from resonant coherent excitation of relativistic HCIs in crystals as a model for polarization XFEL studies in the kev range

Theodoros Mercouris. Publications

XMDYN: Modeling radiation damage of XFEL irradiated samples

Auger electron and x-ray emission from high-z few-electron ions

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH)

Ultrafast nanoscience with ELI ALPS

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Inner-Shell Ionization in Strong High-Frequency Laser Fields and Formation of Hollow-Ions

Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy

Brief, Incomplete Summary of Some Literature on Ionization

Author(s): Niikura, Hiromichi; Wörner, Hans Jakob; Villeneuve, David M.; Corkum, Paul B.

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1)

IV. Surface analysis for chemical state, chemical composition

Laser-controlled Molecular Alignment and Orientation at FLASH and XFEL

ICPEAC XXX, Carins, Australia. Nonlinear resonant Auger spectroscopy in CO using an x-ray pump-control scheme 2017/07/31

by Intense Light Pulses

SUPPLEMENTARY INFORMATION

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014

The MEC endstation at LCLS New opportunities for high energy density science

Photon Interaction. Spectroscopy

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

Studies on the photodissociation and symmetry of SO 2 D

Atomic structure and dynamics

Stability of two-component alkali clusters formed on helium nanodroplets

Electron Spectroscopy

Core Level Spectroscopies

Atomic Photoionization Dynamics in Intense Radiation Fields

X-Ray Spectroscopy at LCLS

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms

Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals

Ultrafast XUV Sources and Applications

Detecting ultrafast interatomic electronic processes in media by fluorescence

3. Photoionization of Pure and Doped Helium Nanodroplets, M. Mudrich and F. Stienkemeier, International Reviews in Physical Chemistry 33, 301 (2014)

High-contrast pump-probe spectroscopy with high-order harmonics

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

ATTOSECOND AND ANGSTROM SCIENCE

CH Stretching Excitation Promotes its Cleavage in. Collision Energies

XUV frequency comb development for precision spectroscopy and ultrafast science

study of low-lying correlation satellites below 25 ev in xenon probed by pulsed-field-ionizationzero-kinetic-energy

Damage to Molecular Solids Irradiated by X-ray Laser Beam

An Investigation of Benzene Using Ultrafast Laser Spectroscopy. Ryan Barnett. The Ohio State University

X-RAY LASER PULSE CHARACTERISATION VIA THZ STREAKING. John T Costello

Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters

TTF FEL Results Jacek Krzywinski TTF FEL Performance FEL Physics Experiments FELIS (Free Electron Laser - Interaction with Solids Cluster Experiment

Aarhus University Denmark

doi: /JSTQE

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Ionization of Rydberg atoms in Intense, Single-cycle THz field

On the nature and origin of di-cationic, charge-separated species formed in liquid water upon X-ray irradiation

Ultraviolet laser ionization studies of 1-fluoronaphthalene clusters and density functional theory calculations

Michael P. Ziemkiewicz ab, Daniel M. Neumark ab & Oliver Gessner a a Ultrafast X-ray Science Laboratory, Chemical Sciences Division,

Surface location of alkaline-earth atom impurities on helium nanodroplets

Small Quantum Systems Scientific Instrument

requency generation spectroscopy Rahul N

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon

High-Harmonic Generation II

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Magic numbers in transition metal Fe, Ti, Zr, Nb, and Ta clusters observed by time-of-flight mass spectrometry

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University

Yuantao Ding 8/25/2015

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

Analysis of the ultrafast dynamics of the silver trimer upon photodetachment

Transcription:

NONLINEAR PROCESSES IN THE EXTREME ULTRAVIOLET REGION USING THE FEL FERMI@ELETTRA A. Dubrouil, M. Reduzzi, C. Feng, J. Hummert, P. Finetti, O. Plekan, C. Grazioli, M. Di Fraia, V. Lyamayev,A. LaForge, F. Stienkemeier, Y. Ovcharenko, M. Coreno, P. O keeffe, M. Devetta, N. Berrah, K. Motomura, S. Mondal, P. Demekhin, A. Kuleff, L. Cederbaum, K.C. Prince, K. Ueda, C. Callegari, P. Carpeggiani, M. Negro, D. Faccialà, Klaus Bartschat, E. Gryzlova, A. Grum-Grzhimailo, G. Sansone Moscow 28 October 2014

XUV light sources High-harmonic generation Free Electron Lasers 1-10m 0.1-1 km Attosecond time resolution Low photon flux Femtosecond time resolution High photon flux-> nonlinear effects

Experiments 1) XUV nonlinear excitation of neon dimers (FEL) 2) Two-photon double ionization of neon

Motivation: Interatomic Coulombic Decay Mechanism of electronic decay (after inner valence Ionization) dominant in: Hydrogen bonded clusters (H 2 0) n, (HF) n Van der Waals clusters (Ne)n; Ne-Ar; He-He 1 Source of low energy electrons 2 3 L.S. Cederbaum et al. Phys. Rev. Lett. 79, 4778 (1997) T. Jahnke et al. Phys. Rev. Lett. 93, 163401 (2004)

ICD: excitation Mechanism of electronic decay (after inner valence Ionization) dominant in: Hydrogen bonded clusters (H 2 0) n, (HF) n Van der Waals clusters (Ne)n; Ne-Ar; He-He Neon Dimer 1 Source of low energy electrons 1) Ionization by XUV radiation of a 2s electron. 2 3 L.S. Cederbaum et al. Phys. Rev. Lett. 79, 4778 (1997) T. Jahnke et al. Phys. Rev. Lett. 93, 163401 (2004)

ICD: electron correlation Mechanism of electronic decay (after inner valence Ionization) dominant in: Hydrogen bonded clusters (H 2 0) n, (HF) n Van der Waals clusters (Ne)n; Ne-Ar; He-He Neon Dimer 1 Source of low energy electrons 1) Ionization by XUV radiation of a 2s electron. 2 2) a 2p electron fills the 2s hole; emission of a 2p electron from the neighboring atom 3 L.S. Cederbaum et al. Phys. Rev. Lett. 79, 4778 (1997) T. Jahnke et al. Phys. Rev. Lett. 93, 163401 (2004)

ICD: Coulomb explosion Mechanism of electronic decay (after inner valence Ionization) dominant in: Hydrogen bonded clusters (H 2 0) n, (HF) n Van der Waals clusters (Ne)n; Ne-Ar; He-He Neon Dimer 1 Source of low energy electrons 1) Ionization by XUV radiation of a 2s electron. 2 2) a 2p electron fills the 2s hole; emission of a 2p electron from the neighboring atom 3 3) Coulomb explosion of the molecules. timescale 80 fs L.S. Cederbaum et al. Phys. Rev. Lett. 79, 4778 (1997) T. Jahnke et al. Phys. Rev. Lett. 93, 163401 (2004)

Nonlinear excitation of ICD 49,0 2 u + 2 g + 48,5 Ne + (2s -1 )Ne N 2 Energy (ev) 48,0 47,5 23 22 21 2 u + 2 g 2 u 2 g + = 26.888 ev Ne + (2p -1 )-Ne + (2p -1 ) Ne + (2p -1 )Ne E 2s -E 2p =ħω = 26.9 ev 0,002 20 0,000-0,002-0,004 Ne 2 (GS) 2 3 4 5 R (angstrom) P. V. Demekhin et al., Phys Rev Lett 107 (2011).

FERMI@ELETTRA: seeded FEL 3 rd harmonic of Ti:Sa laser or OPA Modulator Radiator N 2 First seeded FEL user facility Energy 1-100 J Photon energy tunability 19-62 ev Pulse duration: 100 fs https://www.elettra.trieste.it/fermi/index.php?n=main.parameter

FERMI@ELETTRA: characteristics Intensity (arb.units) 2,4x10 8 26.40 ev 26.43 ev 2,0x10 8 26.45 ev 26.47 ev 1,6x10 8 1,2x10 8 8,0x10 7 4,0x10 7 Photon energy tunability Δω XUV ~10 mev Number of shots 100 80 60 40 20 Pulse energy stability ΔE = 10% 20% 0,0 26,30 26,35 26,40 26,45 26,50 26,55 26,60 Photon energy (ev) 0 0 10 20 30 40 50 60 70 Energy ( J) Single shot information (energy-spectrum) Ideal source for investigating nonlinear resonant effects in the XUV region!

Low Density Matter (LDM) end station Two supersonic Even-Lavie valves (monomers, cluster, doped clusters) www.elettra.eu/lightsources/fermi/fermi.html Experimental chamber: 1)Velocity map imaging spectrometer 2) Time-of-flight ion spectrometer

Signature of neon dimers: ions N 2 22 Ne + Dimers : 22 Ne 22 Ne + 20 Ne 22 Ne + 20 Ne + 20 Ne 2 + 1) Clear signature of singly ionized neon dimers in the TOF mass spectrum 2) 1% concentration of neon dimers (quadrupole mass spectometer)

Signature of neon dimers : electrons (below ionization threshold of neon) Differences of VMI images (for the same XUV pulse energy); no artefact introduced by the inversion procedure E 0 =27 J l 2 =60.19 nm 20.60 ev S ref =S(l 1 ) l 1 =60.13 nm 20.62 ev l 3 =60.24 nm 20.58 ev DS= S(l 2 )- S(l 1 ) >0 DS= S(l 3 )- S(l 1 ) <0 Differences in the low energy electron region

Single photon ionization of neon dimers Autoionization features in Neon dimers λ 1 =60.13 nm λ 2 =60.19 nm λ 3 =60.24 nm 605 λ 1 60. 13 nm < λ 2 60. 19 nm < λ 3 60. 24 nm S λ 3 < S λ 1 < S λ 2 Trevor et al. J. Chem. Phys. 80 6083 (1984)

Nonlinear excitation of ICD: electrons Photoelectron spectra dominated by ICD for the dimers ħ xuv =26.9 ev N 2 Single photon ionization Ne + ħω Ne + + e?? 2p Competing channel: two-site single photon ionization of neon monomers 2s 1s ħ xuv ħ xuv 2s 1s 2p No clear indication of ICD electrons In the gas jet 1% of neon dimer The photoelectron signal is dominated by the single photon ionization of the monomer P. V. Demekhin et al., Phys Rev Lett 107 (2011).

Nonlinear excitation of ICD: ions N 2 22 Ne + Dimers : 22 Ne 22 Ne + 20 Ne 22 Ne + 20 Ne + 20 Ne 2 + Neon monomer Ne + Neon dimers Ne + 2 Off resonance Weakly dependent on the photon energy Weakly dependent on photon energy On resonance (around 26.9 ev) Weakly dependent on thephoton energy Reduction of neon dimers because ICD and Coulomb explosion

Nonlinear excitation of ICD: dimers vs monomers Ne + 2 Ne + = Ne + 2 Ne + monomers + Ne + dimers Ne + 2 Ne + monomers

Ratio dimers/monomers (theory) Ratio = Ne+ 2 Ne + = Ne + 2 Ne + monomers + Ne + dimers Ne + 2 Ne + monomers (dimers fraction ~ 0.25%) Ratio Ne + 2 / Ne + 5,5x10-3 5,0x10-3 4,5x10-3 4,0x10-3 3,5x10-3 3,0x10-3 2,5x10-3 2,0x10-3 1,5x10-3 1,0x10-3 Assumed dimers fraction ~ 0.25% 5e11(GS=0.870, PiP=0.06) 1e12(GS=0.757, PiP=0.11) 2e12(GS=0.573, PiP=0.18) 26,8 26,9 27,0 Photon energy (ev)

Experiments 1) XUV nonlinear excitation of neon dimers (FEL) 2) Two-photon double ionization of neon

Motivation Resonant (vs nonresonant) two-photon double ionization in neon atoms Autoionizing state ħ 1 2p ħ 2p 2s 1s Nonresonant two-photon ionization Electron yield Angular distribution 2s 1s Resonant two-photon ionization Towards time-resolved dynamics (pump-probe experiment)

Two-photon double ionization of Neon exp exp 1 D 2 44.167 3.204 41.077 41.043 40.963 0 2s 2 2p 4 ( 3 P) Ne III N 2 2s2p 6 3p ħω = 45. 6 ev 0.0968 21.565 0 ħω = 45. 6 ev 2s 2 2p 5 2 P Ne II 0 эв 2s 2 2p 6 Ne I Influence of the autoionization resonance (2s2p63p) on the second ionization step

Two-photon double ionization of Neon exp exp 1 D 2 44.167 3.204 41.077 41.043 40.963 0 2s 2 2p 4 ( 3 P) Ne III N 2 2s2p 6 3p ħω = 45. 6 ev 0.0968 21.565 0 ħω = 45. 6 ev 2s 2 2p 5 2 P Ne II 0 эв 2s 2 2p 6 Ne I Influence of the autoionization resonance (2s2p63p) on the second ionization step

Two-photon double ionization of Neon Exp, ev 57.7 2 S Theory, ev 2.4 2 2 S P 2 4 D P 4 D 4 S 2s2p 5 3p 55.3 55.6 Exp,eV 47.875 0.96 4 0.80-0.82 P, 2 D 4 D 0.50 4 S 0.00 1 S 0 2 P Autoionizing states 44.167 41.077 41.043 40.963 1 D 2 2s 2 2p 4 ( 3 P) Ne III ħω = 56. 5 ev Exp,eV 21.565 0 ev 2s 2 2p 6 Ne I 2s 2 2p 5 2 P Ne II ħω = 56. 5 ev Influence of the autoionization resonance (2s2p53p) on the second ionization step

Conclusions and outloook 1) Nonlinear excitation of neon dimers 2) Two-photon double ionization of neon I) FERMI: pump-probe experiments for time-resolved ICD dynamics II) FERMI: theoretical simulations and data interpretation for two-photon double ionization