Random walks for deformable image registration Dana Cobzas

Similar documents
Random walks and anisotropic interpolation on graphs. Filip Malmberg

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I)

Linear Diffusion and Image Processing. Outline

Multi-class DTI Segmentation: A Convex Approach

Introduction to motion correspondence

Numerical Solutions of Geometric Partial Differential Equations. Adam Oberman McGill University

Applied Mathematics 505b January 22, Today Denitions, survey of applications. Denition A PDE is an equation of the form F x 1 ;x 2 ::::;x n ;~u

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

INTRODUCTION TO PDEs

Space-Variant Computer Vision: A Graph Theoretic Approach

A Localized Linearized ROF Model for Surface Denoising

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou

Fantope Regularization in Metric Learning

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Learning Spectral Graph Segmentation

Generalized Newton-Type Method for Energy Formulations in Image Processing

Tutorial 2. Introduction to numerical schemes

Optic Flow Computation with High Accuracy

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT

Modulation-Feature based Textured Image Segmentation Using Curve Evolution

Review for Exam 2 Ben Wang and Mark Styczynski

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

Solving linear systems (6 lectures)

Markov Random Fields

MAP Examples. Sargur Srihari

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

PDEs in Image Processing, Tutorials

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5.

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Image enhancement. Why image enhancement? Why image enhancement? Why image enhancement? Example of artifacts caused by image encoding

8.1 Concentration inequality for Gaussian random matrix (cont d)

Adaptive diffeomorphic multi-resolution demons and its application to same. modality medical image registration with large deformation 1

Introduction to Machine Learning Midterm Exam Solutions

Total Variation Image Edge Detection

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

NONRIGID IMAGE REGISTRATION WITH TWO-SIDED SPACE-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

Learning a Degree-Augmented Distance Metric from a Network. Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U

minimize x subject to (x 2)(x 4) u,

PDE Solvers for Fluid Flow

A Riemannian Framework for Denoising Diffusion Tensor Images

Facebook Friends! and Matrix Functions

Convex Optimization Algorithms for Machine Learning in 10 Slides

Self-Tuning Semantic Image Segmentation

Lecture No 1 Introduction to Diffusion equations The heat equat

Covariance Matrix Simplification For Efficient Uncertainty Management

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Additive Manufacturing Module 8

Active Contours Snakes and Level Set Method

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Splitting methods with boundary corrections

Medical Image Analysis

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion

Medical Image Analysis

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

Manifold Coarse Graining for Online Semi-supervised Learning

Scientific Computing: An Introductory Survey

Connectedness of Random Walk Segmentation

arxiv: v2 [cs.cv] 17 May 2017

Introduction to numerical schemes

Marching on the BL equations

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

Random coordinate descent algorithms for. huge-scale optimization problems. Ion Necoara

Introduction to Partial Differential Equations

Finite Difference Methods (FDMs) 1

Suboptimal Open-loop Control Using POD. Stefan Volkwein

Intelligent Systems:

Weighted Nonlocal Laplacian on Interpolation from Sparse Data

Finite difference methods for the diffusion equation

Generalization to inequality constrained problem. Maximize

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Variational Methods in Image Denoising

Lecture 42 Determining Internal Node Values

Approximation of fluid-structure interaction problems with Lagrange multiplier

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

Numerical Optimization of Partial Differential Equations

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

ME Computational Fluid Mechanics Lecture 5

Support Vector Machines and Kernel Methods

Kernel metrics on normal cycles for the matching of geometrical structures.

Block-Structured Adaptive Mesh Refinement

Low Rank Matrix Completion Formulation and Algorithm

Locally-biased analytics

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

Linear & nonlinear classifiers

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Class Meeting # 1: Introduction to PDEs

Linear & nonlinear classifiers

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Discriminative Learning and Big Data

Part 7: Structured Prediction and Energy Minimization (2/2)

Laplacian Eigenimages in Discrete Scale Space

Markov Random Fields and Bayesian Image Analysis. Wei Liu Advisor: Tom Fletcher

Generalized Gradient Descent Algorithms

Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016

Why should you care about the solution strategies?

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem

Transcription:

Random walks for deformable image registration Dana Cobzas with Abhishek Sen, Martin Jagersand, Neil Birkbeck, Karteek Popuri Computing Science, University of Alberta, Edmonton

Deformable image registration?t I target J source Outline: Continuous formulation of deformable registration Discrete formulation and related work Diffusion and regularization from continuous to discrete Random walker for deformable registration Examples and discussion

Deformable image registration?t transformation I target I,J :R, R d T : R d, T =Idu J source Eu= E D I, J T u E R u Data similarity regularization u=argmin u E u u=(u x,u y ) displacement field

Variational image registration u=argmin u x I x, J xu x d x Data similarity (point-wise score) x J x, u x d x Adaptable regularization + EXAMPLE: SSD Linear isotropic regularization I x, J xux=i x J xu x 2 J x, u x=w J x 2 u x 2 u y 2 scalar valued diffusivity

Euler-Lagrange equations min u E D I, J T x w. u x 2 u y 2 d x E D u x w. u x =0 E D u y w. u y =0 Linear isotropic diffusion Continuous solution to deformable registration: Nonlinear optimization (gradient descent, Gauss-Newton...) Semi-implicit scheme to solve the EL PDEs Regularization can be decoupled from the data term update demon's algorithm Main limitation local minima > need for better frameworks

Discrete deformable registration u i D I I i, i=1..n J i, i=1..n J Image = Graph G = (N, E) d k Quantized deformations D = {d 1, d 2,...,d K } Labels L = {u 1, u 2,...,u K } Note: D can be very large Ex: deformations [0-20pix] 41 3 = 68921 labels

Discrete deformable registration u i D I I i, i=1..n J i, i=1..n J Image = Graph G = (N, E) Registration as labeling : MRF Quantized deformations D = {d 1, d 2,...,d k } Labels L = {u 1, u 2,...,u k } Note: D can be very large Ex: deformations [0-20pix] 41 3 = 68921 labels Eu= i N i u i i, j E ij u i, u j data similarity Regularization Interaction

Related work Eu= i N i u i i, j E ij u i, u j Global optimum ij metric graph cut optimization [T.W. Tang et al. MICCAI 2007][L. Tang et al. MICCAI 2010] More complex interaction terms linear programming method based on primal-dual principle [Glocker et al. MIA 2008]

Related work Eu= i N i u i i, j E ij u i, u j Global optimum ij metric graph cut optimization [T.W. Tang et al. MICCAI 2007][L. Tang et al. MICCAI 2010] More complex interaction terms linear programming method based on primal-dual principle [Glocker et al. MIA 2008] We propose : Gaussian MRF for deformable registration solved using random walker algorithm [Grady PAMI 2006, CVPR 2005] Fast algorithm Can easily incorporate a large number of displacements Robustness to noise Unique global minimum (has to be relaxed)

Related work Eu= i N i u i i, j E ij u i, u j ij metric graph cut optimization [T.W. Tang et al. MICCAI 2007][L. Tang et al. MICCAI 2010] More complex interaction terms linear programming method based on primal-dual principle [Glocker et al. MIA 2008] Here: Gaussian MRF for deformable registration solved using random walker algorithm [Grady PAMI 2006, CVPR 2005] Fast algorithm Can easily incorporate a large number of displacements Robustness to noise Unique global minimum (has to be relaxed) Regularization E R u= u 2 dxdy diffusion u=0 NEXT: - diffusion and regularization - diffusion on graphs - RW for image registration - Experiments and discussion

Diffusion u t Uniform =div u=u u t Isotropic =div w u u0=u 0 u0=u 0 u(0) w s 2 = 1 s 2 s= u 0 u(t) u(t)... Scalar-valued diffusivity Changes the metric of the space Slows down/blocks diffusion at edges Steady state

Diffusion u t Uniform =div u=u u t Isotropic =div w u u0=u 0 u0=u 0 u(0) w s 2 = 1 s 2 s= u 0 u(t) u(t)... Steady state Scalar-valued diffusivity Changes the metric of the space Slows down/blocks diffusion at edges Numerical solution: Parabolic PDEs fully implicit time discretization > elliptic PDEs solve with implicit or semi-implicit FD schemes

Regularization and diffusion f u? Energy functional : Euler Lagrange Equation : E u u= 1 2 f u 2 u 2 dxdy u=argmin u E u u u f =u data regularization

Regularization and diffusion f u? Energy functional : Euler Lagrange Equation : data E u u= 1 2 f u 2 u 2 dxdy u=argmin u E u u u f regularization Uniform diffusion u =u t =u Fully implicit time discretization of the uniform diffusion with initial value f and time step α

Regularization Uniform Isotropic w E R u= u 2 dxdy E R u= w f 2 u 2 dxdy Euler Lagrange u f =u u f = w. u

Regularization Uniform Isotropic w E R u= u 2 dxdy E R u= w f 2 u 2 dxdy Euler Lagrange u f =u u f = w. u Deformable registration min u E D I, J T x w. u x 2 u y 2 d x E D u x w. u x =0 E D u y w. u y =0

u : u=0 ux=f B, x K B Discrete diffusion Finite differences + implicit scheme 1 1-4 1 1 Boundary conditions u i-1,j-1 u i-1,j u i-1,j+1 u i,j-1 u i,j u i,j+1 u i+1,j-1 u i+1,j u i+1,j+1 Pixel location u Nx1 L NxN Lu=0 [ L u B B][ u B] u B L f =0 L u u u = B T f B

u: u=0 ux=f B, x K B Discrete diffusion Finite differences + implicit scheme 1 1-4 1 1 Boundary conditions u i-1,j-1 u i-1,j u i-1,j+1 u i,j-1 u i,j u i,j+1 u i+1,j-1 u i+1,j u i+1,j+1 Pixel location Lu=0 [ L u B B][ u B] u B L f =0 L u u u = B T f B Generalize L isotropic diffusion Combinatorial Laplacian L ij = d i = k w ik w ij if i= j if i, j E 0 otherwise Positive semi-definite (PSD)

u=0 ux=f B, x K B Discrete diffusion Boundary conditions Combinatorial Dirichlet integral u: Finite differences + implicit scheme 1 u i-1,j-1 u i-1,j u i-1,j+1 1-4 1 u i,j-1 u i,j u i,j+1 1 u i+1,j-1 u i+1,j u i+1,j+1 Pixel location D [u]= u 2 dx D[u ]=u t A T A u=u t L u A (ij)k incidence matrix (combinatorial gradient) Critical points = minima [L-PSD] Lx=0 Lu=0 [ L u B B][ u B] u B L f =0 L u u u = B T f B Generalize L isotropic diffusion Combinatorial Laplacian L ij = d i = k w ik w ij if i= j if i, j E 0 otherwise Positive semi-definite (PSD)

Random walker algorithm Lu=0 [ L u B B][ u B] u B L f =0 L u u u = B T f B [Grady PAMI 2006] Combinatorial Laplacian L ij = d i = k w ik if i= j if i, j E 0 otherwise w ij w ij =exp I i I j 2 f B seeds ; u i prob that a random walker from node i first reaches a seed.

RW for deformable registration u i D Quantized deformations D = {d 1, d 2,...,d K } Labels L = {u 1, u 2,...,u K } I i, i=1..n Registration as labeling : MRF J i, i=1..n E u= i N i u i i, j E ij u i,u j data similarity potential Regularization Interaction

RW for deformable registration u i D Quantized deformations D = {d 1, d 2,...,d K } Labels L = {u 1, u 2,...,u K } I i, i=1..n Registration as labeling : MRF J i, i=1..n E u= i N i u i i, j E ij u i,u j data similarity potential Gaussian MRF : Regularization Interaction E k u k = i N l=1: K,l k i l u i k 2 i k 1 u i k 2 ij E w ij u i k u j k 2 Modifications : 1. u i k = prob of node i having label u k 2. Gaussian MRF with interaction u i k,u j k =w ij u i k u j k 2 3. 'priors' for probability of a displacement i k =exp I i J id k 2

Gaussian MRF for deformable registration Displacement probability i k =exp I i J id k 2 1 if displacement d k fits perfectly the similarity score Small - otherwise Data potential i u i k = l =1: K,l k i l u i k 2 i k 1 u i k 2 Displacement l k has high prob. > low prob. for label k Displacement k has high prob. > high prob. for label k

Gaussian MRF for deformable registration Displacement probability i k =exp I i J id k 2 1 if displacement d k fits perfectly the similarity score Small - otherwise Data potential Regularization Interaction i u i k = l =1: K,l k i l u i k 2 i k 1 u i k 2 Displacement l k has high prob. > low prob. for label k u i k,u j k =w ij u i k u j k 2 w ij =exp J i J j 2 Displacement k has high prob. > high prob. for label k Recall : regularization term (Dirichlet integral) Encourages two neighbors to have similar labels if the image intensity is similar. D[u]= w J 2 u 2 dx D[ u]=u t Lu

RW with priors [following Grady CVPR 2005] E k u k = i N l=1 : K, l k i l u i k 2 i k 1 u i k 2 ij E w ij u i k u j k 2 Combinatorial Laplacian L L ij = d i = k w ik if i= j if i, j E 0 otherwise w ij k =diag k

RW with priors [following Grady CVPR 2005] E k u k = i N l=1: K,l k i l u i k 2 i k 1 u i k 2 ij E w ij u i k u j k 2 Combinatorial Laplacian L L ij = d i = k w ik if i= j if i, j E 0 otherwise w ij k =diag k E k u k = l=1 : K,l k u kt l u k 1 u k T k 1 u k u kt Lu k Minimum when K L l=1 l u k = k Note: The combined matrix still positive semi-definite One equation system per label!!

Augmented graph K L l=1 l u k = k Combinatorial Laplace equation for an augmented graph w ij =exp J i J j 2 Large (1) if neighbors have similar color (allows diffusion)

Augmented graph K L l=1 l u k = k Combinatorial Laplace equation for an augmented graph u 1...... u 1l u K i l =exp I i J id l 2 w ij =exp J i J j 2 Large (1) if Matching color (SSD) Large (1) if neighbors have similar color (allows diffusion)

Implementation Computational cost Need to solve for each displacement label (actually K-1) Size of K L l=1 l u k = k Multi-resolution pyramid Loose global optimality displacements # range ¼ 60 [15,15] ½ 40 [-10,10] 1 30 [-7,7]

Implementation Computational cost Need to solve for each displacement label (actually K-1) Size of K L l=1 l u k = k Multi-resolution pyramid Loose global optimality displacements # range ¼ 60 [15,15] ½ 40 [-10,10] 1 30 [-7,7]

Synthetic image + Experiments: Quality of deformations known deformation field Demon's alg. RW 256x256 image 3 levels resol. 160sec (MATLAB) Ang. err. (deg) 1.58 ± 1.20 0.45 ± 0.97 Mag. Err. (deg) 1.12 ± 1.54 1.65 ± 2.89 SSD [0-255] 10.88 5.01

Brain MRI with WM/GM/CSF segmentation source target Reg. Demons SSD=8.82 Reg. RW SSD=3.38 Data from Brain segmentation Repository Dice 0.82 0.79 0.83 0.84 0.81 0.84

Dice 0.62 0.79 Abdominal CT with muscle segmentation source target Data from CCI, Edmonton Reg. Demons SSD=15.46 Reg. RW SSD=9.64

Discussion CONTRIBUTION: New discrete formulation of deformable image registration based on the RW method Image dependent regularization term Global solution with respect to discretization LIMITATIONS AND EXTENSIONS : Computational cost : Solve a large equation system for each label FFD Requirement of a point-wise similarity score Eu= i N i u i i, j E ij u i, u j Possible solution Lower dim models : Compute displacements only at control points Approximate non-local scores in a neighborhood defined by the control points FFD