SUPPORTING INFORMATION

Similar documents
Supporting Information

A Total Synthesis of Paeoveitol

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Stereoselective Synthesis of (-) Acanthoic Acid

Copper Mediated Fluorination of Aryl Iodides

Supporting Information for

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

SYNTHESIS OF A 3-THIOMANNOSIDE

Supporting Information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Supporting Information

Supplementary Table S1: Response evaluation of FDA- approved drugs

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Supporting Information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Diastereoselectivity in the Staudinger reaction of. pentafluorosulfanylaldimines and ketimines

How to build and race a fast nanocar Synthesis Information

Highly Regioselective Lithiation of Pyridines Bearing an Oxetane Unit by n-buthyllithium

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Supporting Information

Supporting Information:

Supporting Information

Supporting Information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

SUPPLEMENTARY INFORMATION

Supporting Information

Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines

Supporting Information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters

hydroxyanthraquinones related to proisocrinins

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Supporting Information for:

Supporting Information

Supporting Information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions

Chiral Sila[1]ferrocenophanes

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Qile Wang, and Nan Zheng* Department of Chemistry and Biochemistry, University of Arkansas. Fayetteville, Arkansas,

Supporting Information

Supplementary Material

Supporting Information

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Parallel sheet structure in cyclopropane γ-peptides stabilized by C-H O hydrogen bonds

Supporting Information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Supplementary information

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation

Supporting Information

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

SUPPLEMENTARY INFORMATION

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Supporting Information:

Supporting Information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Supplementary Information (Manuscript C005066K)

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information

Supplemental material for: Concise Total Syntheses of (±)-Mesembrane and (±)-Crinane. Table of Contents

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis

Supporting Information

Bulletin of the Chemical Society of Japan

SUPPLEMENTARY INFORMATION

Experimental details

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Supporting Information for

Supporting Information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Supporting Information For:

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Supporting Information

Supplementary Information

Concise and Stereocontrolled Synthesis of the Tetracyclic Core of Daphniglaucin C

Supporting Information: Regioselective esterification of vicinal diols on monosaccharide derivatives via

Total Synthesis of (±)-Gracilioether F

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones using the Intramolecular Stetter Reaction

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Supporting Information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Supporting Information

SUPPORTING INFORMATION

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA Experimental Procedures

Transcription:

SUPPORTING INFORMATION Asymmetric Vinylogous aza-darzens Approach to Vinyl Aziridines Isaac Chogii, Pradipta Das, Michael D. Delost, Mark N. Crawford and Jon T. Njardarson* Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA *To whom correspondence should be addressed. E-mail: njardars@email.arizona.edu Table of Contents General Experimental... S6 General Procedure A: Synthesis of various (E) tert-butanesulfinyl imines.. S7 Procedure for the synthesis of (E) tert-butanesulfinyl imine....s7 Characterization Data of various chiral imines..... S8 Compound SI-18.........S8 Scheme S4: Vinylogous Asymmetric aza-darzens Reaction Scope General Procedure B: For γ-bromo butenolide.......s8 Procedure for 1 mmol scale of compound 13........S9 Characterization Data for vinyl aziridines.......s9-s17 Compound 13..........S9 Compound 11...........S10 Compound 12...........S10 Compound 14...........S10 Compound 15...........S11 Compound 16...........S11 Compound 17...........S12 Compound 18...........S12 Compound 19...........S13 Compound 20.............S13

Compound 21...........S13 Compound 22...........S14 Compound 23............S14 Compound 24.........S15 Compound 25...........S15 Compound 26...........S16 Compound 27...........S16 Compound 28...........S16 Compound 29...........S17 Compound 30...........S17 Scheme S6: Altering Nucleophile Impacts Reaction Yields General Procedure C: For γ-bromo ester........s18 Characterization Data for vinyl aziridines.......s18-s20 Compound 32.......S18 Compound 33...........S19 Compound 34.......S20 Scheme S7: Titanium Enolate-Mediated Mannich Reactions General Procedure D: For γ-bromo ester........s20 Characterization Data for Mannich Adducts......S21 S25 Compound 35.......S21 Compound 36...........S21 Compound 37.......S22 Compound 38...........S22 Compound 39..............S22 Compound 40...........S23 Compound 41.......S23 Compound 42...........S24 Compound 43..............S24 Compound 44...........S25 S2

Compound 45..............S25 X-RAY Crystallographic Data Compound 12.......S26 S31 Compound 11..........S31 S36 References............S37 Compounds Spectra Chiral Imines Compound SI-18 1 H-NMR.........S38 Compound SI-18 13 C-NMR...........S39 Scheme S4: Vinylogous Asymmetric aza-darzens Reaction Scope Compound 13 1 H-NMR............S40 Compound 13 13 C-NMR..............S41 Compound 11 1 H-NMR...............S42 Compound 11 13 C-NMR..........S43 Compound 12 1 H-NMR...............S44 Compound 12 13 C-NMR...........S45 Compound 14 1 H-NMR...........S46 Compound 14 13 C-NMR.............S47 Compound 15 1 H-NMR...........S48 Compound 15 13 C-NMR..............S49 Compound 16 1 H-NMR...............S50 Compound 16 13 C-NMR..........S51 Compound 17 1 H-NMR...............S52 Compound 17 13 C-NMR..........S53 Compound 18 1 H-NMR...........S54 Compound 18 13 C-NMR.............S55 S3

Compound 19 1 H-NMR..............S56 Compound 19 13 C-NMR..............S57 Compound 20 1 H-NMR...............S58 Compound 20 13 C-NMR..............S59 Compound 21 1 H-NMR...............S60 Compound 21 13 C-NMR............S61 Compound 22 1 H-NMR...............S62 Compound 22 13 C-NMR............S63 Compound 23 1 H-NMR...............S64 Compound 23 13 C-NMR..............S65 Compound 24 1 H-NMR..............S66 Compound 24 13 C-NMR...........S67 Compound 25 1 H-NMR..............S68 Compound 25 13 C-NMR...........S69 Compound 26 1 H-NMR............S70 Compound 26 13 C-NMR.......S71 Compound 27 1 H-NMR...........S72 Compound 27 13 C-NMR...........S73 Compound 28 1 H-NMR...............S74 Compound 28 13 C-NMR...........S75 Compound 29 1 H-NMR...............S76 Compound 29 13 C-NMR..............S77 Compound 30 1 H-NMR............S78 Compound 30 13 C-NMR...........S79 Scheme S6: Altering Nucleophile Impacts Reaction Yields Compound 32 1 H-NMR.................S80 Compound 32 13 C-NMR..............S81 Compound 33 1 H-NMR...............S82 Compound 33 13 C-NMR..............S83 S4

Compound 34 1 H-NMR..................S84 Compound 34 13 C-NMR.............S85 Scheme S7: Titanium Enolate-Mediated Mannich Reactions Compound 35 1 H-NMR................S86 Compound 35 13 C-NMR...............S87 Compound 36 1 H-NMR...................S88 Compound 36 13 C-NMR...............S89 Compound 37 1 H-NMR...........S90 Compound 37 13 C-NMR.............S91 Compound 38 1 H-NMR...........S92 Compound 38 13 C-NMR..........S93 Compound 39 1 H-NMR................S94 Compound 39 13 C-NMR...............S95 Compound 40 1 H-NMR....................S96 Compound 40 13 C-NMR...........S97 Compound 41 1 H-NMR..........S98 Compound 41 13 C-NMR.............S99 Compound 42 1 H-NMR............S100 Compound 42 13 C-NMR...........S101 Compound 43 1 H-NMR.................S102 Compound 43 13 C-NMR............S103 Compound 44 1 H-NMR............S104 Compound 44 13 C-NMR..............S105 Compound 45 1 H-NMR............S106 Compound 45 13 C-NMR...........S107 S5

General Experimental: Commercial reagents were purchased and used without further purification. All glass wares were flamedried under vacuum and all reactions were performed under a nitrogen atmosphere with dry solvents, unless otherwise stated. Dry tetrahydrofuran (THF), diethyl ether (Et2O), dichloromethane (DCM), toluene were obtained by passing previously degassed solvents through activated alumina columns. Methanol was distilled in the presence of anhydrous CaH2 and stored under nitrogen atmosphere. Reactions were monitored by thin layer chromatography (TLC) carried out on EMD 250µm silica gel 60- F254 plates. Plates were visualized using mainly potassium permanganate stain, ceric ammonium molybdate and heat. Flash Chromatography was done with SiliaFlash F60 (particle size 40-63µm). 1 H and 13 C NMR data was acquired on Bruker DRX 400, 500 or 600 and the spectra were referenced using residual solvent as internal reference for 1 H and 13 C NMR (CDCl3 : 7.26 ppm for 1 H NMR, 77.00 for 13 C NMR). Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), dq (doublet of quartets), dtt (doublet of triplets of triplets), ddq (doublet of doublets of quartets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz).Infrared spectra were obtained on a Shimadzu Prestige FT-IR. High-resolution mass spectra were acquired at the University of Arizona Mass Spectral Facility. Optical rotations were recorded on Rudolph Autopol IV polarimeter. S6

Experimental Procedures: General procedure A: Synthesis of various E-tert-Butanesulfinyl imines Scheme SA: Synthesis of various E-tert-Butanesulfinyl imines Procedure for the synthesis of (E) tert-butanesulfinyl imine: To a solution of the corresponding aldehyde (6.5 mmol, 1.0 equiv in THF [0.1 M overall concentration]), was added titanium(iv) isopropoxide (Ti(O i Pr)4, 13.0 mmol, 2.0 equiv) at room temp and stirred for 10 minutes after which solution of tert-butanesulfamide (6.5 mmol, 1.0 equiv in THF) was added and reaction stirred at room temp for 6 to 8 h. Reaction was quenched with brine, filtered and the filter cake washed with ethyl acetate. The filtrate was then washed with water and brine, dried over Na2SO4, concentrated and crude purified by flash column chromatography (silica gel, 5-20% EtOAc : Hexanes) [Except SI-6 was eluted with 50% EtOAc : Hexanes]. S7

Compounds SI-1 1, 9 2, SI-2 3, SI-3 2, SI-4 4, SI-5 5, SI-6 6, SI-7 7, SI-8 8, SI-9 9, SI-10 10, SI-11 11, SI-12 1, SI- 13 1, SI-14 1, SI-15 10, SI-16 10, SI-17 1 and SI-19 12 were prepared according to the general procedure outlined above and the spectral data matched with the literature reported ones. Yellow solid, Yield = 86%. [α] 23 D = +108.3 (c. 2.1, CHCl3). 1 H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 6.97 (d, J = 2.3 Hz, 2H), 6.58 (t, J = 2.3 Hz, 1H), 3.81 (s, 6H), 1.24 (s, 9H). 13 C NMR (101 MHz, CDCl3) δ 162.56, 161.00, 135.78, 106.91, 104.75, 57.72, 55.42, 22.52. IR (NaCl film) 2964, 1587, 1415, 1380, 1208, 1159, 1074 cm -1. HRMS (ESI + ) m/z 292.0976 [calculated mass for C13H19NaNO3S (M+Na) + 292.0978]. Scheme S4: Vinylogous Asymmetric aza-darzens Reaction Scope Scheme S4 General Procedure B: To a flame dried round bottomed flask equipped with a stir bar, tetrahydrofuran (THF, 0.1M overall concentration) and N-sulfinimine (0.4 mmol, 1.0 equiv, 1.0 M in THF) were added and the mixture cooled to -78 C. To this a solution bromo butenolide 10 in THF (0.6 mmol, 1.5 equiv, 1.0 M in THF) was added, followed by slow syringe pump addition (rate = 1mL/h) of lithium hexamethylsilyl amide (LiHMDS) (0.8 mmol, 2.0 equiv, 1.0 M in THF). The reaction mixture was stirred for additional 4-5 h at -78 C at which point TLC analysis showed complete consumption of the imine. It was then quenched with saturated ammonium chloride, warmed to room temperature and extracted using ethyl acetate (3 times). The organic fractions were combined, washed with brine, dried with anhydrous sodium sulfate (Na2SO4), filtered and concentrated in vacuo. Crude material was purified by flash column chromatography (silica gel) to afford the vinyl aziridine products. S8

Procedure for 1 mmol scale: To a flame dried round bottomed flask equipped with a stir bar, tetrahydrofuran (THF, 5.5 ml, 0.1M overall concentration) and 4-Nitrophenylsulfinimine (250 mg, 1.0 mmol, 1.0 equiv, 1.0 ml in THF) were added and the mixture cooled to -78 C. To this a solution bromo butenolide 10 in THF (265.5 mg, 1.5 mmol, 1.5 equiv, 1.5 ml in THF) was added, followed by slow syringe pump addition (rate = 1mL/h) of lithium hexamethylsilyl amide (LiHMDS) (2.0 ml, 2.0 mmol, 2.0 equiv, 1.0 M in THF/ethylbenzene). The reaction mixture was stirred for additional 5 h at -78 C at which point TLC analysis showed complete consumption of the imine. It was then quenched with saturated ammonium chloride, warmed to room temperature and extracted using ethyl acetate (3 times). The organic fractions were combined, washed with brine, dried with anhydrous sodium sulfate (Na2SO4), filtered and concentrated in vacuo. Crude material was purified by flash column chromatography (silica gel, 40-50% EtOAc/hexanes) to afford the 4-Nitrophenylvinyl aziridine product (13) in 56% yield (192.9 mg). Characterization and spectral data for the vinyl aziridine products: White solid, 112.5 mg, Yield = 82%. dr = 2:1, Rf = 0.32 [40-50% EtOAc/hexanes] [α] 23 D = -22.1 (c 1.8, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 8.23 (d, J = 10 Hz, 2H), 7.49 (d, J = 10 Hz, 2H), 5.99 (td, J = 1.9, 0.9 Hz, 1H), 4.43 (dd, J = 17.7, 2.0 Hz, 1H), 4.32 (ddd, J = 17.7, 1.9, 0.7 Hz, 1H), 3.89 (d, J = 7.1 Hz, 1H), 3.82 (d, J = 7.1 Hz, 1H), 1.33 (s, 9H) 13 C NMR (126 MHz, CDCl3) δ 171.85, 161.14, 148.06, 139.62, 128.47, 124.00, 120.25, 71.52, 57.72, 41.50, 33.42, 22.58. IR (NaCl film) 3094, 2961, 2868, 1734, 1522, 1078 cm -1. HRMS (ESI + ) m/z 373.0831 [calculated mass for C16H18N2NaO5S (M+Na) + 373.0828]. S9

White solid, 69.5 mg, Yield = 52%. dr = 2:1, Rf = 0.28 [20-30% EtOAc/hexanes] [α] 23 D = -24.8 (c 1.0, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.48 (d, J = 10 Hz, 2H), 7.17 (d, J = 10 Hz, 2H), 5.99 (td, J = 1.9, 0.8 Hz, 1H), 4.40 (dd, J = 17.7, 1.9 Hz, 1H), 4.22 (ddd, J = 17.7, 1.9, 0.8 Hz, 1H), 3.82 (d, J = 7.0 Hz, 1H), 3.70 (d, J = 7.0 Hz, 1H), 1.30 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.21, 162.05, 131.98, 131.52, 129.02, 122.87, 120.05, 71.62, 57.51, 41.61, 33.23, 22.59. IR (NaCl film) 3094, 2959, 2926, 1740, 1165, 1078 cm -1. HRMS (ESI + ) m/z 406.0083 [calculated mass for C16H18BrNNaO3S (M+Na) + 406.0083]. White solid, 34.7 mg, Yield = 26%. dr = 1:2, Rf = 0.30 [20-30% EtOAc/hexanes] [α] 23 D = -20.5 (c 0.86, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.48 (d, J = 10 Hz, 2H), 7.16 (d, J = 10 Hz, 2H), 6.02 (q, J = 1.7 Hz, 1H), 4.50 (ddd, J = 17.6, 1.9, 0.9 Hz, 1H), 4.40 (dd, J = 17.6, 2.0 Hz, 1H), 4.13 (d, J = 7.1 Hz, 1H), 3.32 (d, J = 7.0 Hz, 1H), 1.27 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.33, 161.78, 132.04, 131.00, 129.24, 122.90, 119.83, 71.55, 57.55, 38.17, 36.79, 22.59. IR (NaCl film) 3094, 2959, 2926, 1740, 1165, 1078 cm -1. HRMS (ESI + ) m/z 406.0087 [calculated mass for C16H18BrNNaO3S (M+Na) + 406.0083]. White solid, 100.5 mg, Yield = 75%. dr = 2:1, Rf = 0.25 [30-40% EtOAc/hexanes] [α] 23 D = -30.7 (c 2.6, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.62 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 6.01 (td, J = 1.9, 0.9 Hz, 1H), 4.41 (dd, J = 17.7, 2.0 Hz, 1H), 4.24 (ddd, J = 17.8, 1.9, 0.8 Hz, 1H), 3.87 (d, J = 7.1 Hz, 1H), 3.79 (d, J = 7.0 Hz, 1H), 1.31 (s, 9H). S10

13 C NMR (125 MHz, CDCl3) δ 172.09, 161.69, 136.51, 130.98 (q, 33 Hz), 127.88, 125.78 (q, 3.7 Hz), 123.66 (q, 274 Hz), 120.15, 71.57, 57.58, 41.66, 33.32, 22.58. IR (NaCl film) 2964, 2930, 1749, 1324, 1066 cm -1. HRMS (ESI + ) m/z 396.0852 [calculated mass for C17H18F3NNaO3S (M+Na) + 396.0851]. White solid, 106.7 mg, Yield = 75%. dr = 2:1, Rf = 0.3 [25-35% EtOAc/hexanes] [α] 23 D = -38.1 (c 1.0, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.28 (m, 2H), 7.05 (m, 2H), 6.00 (td, J = 1.9, 0.8 Hz, 1H), 4.40 (dd, J = 17.8, 1.9 Hz, 1H), 4.19 (ddd, J = 17.7, 1.9, 0.7 Hz, 1H), 3.82 (d, J = 7.0 Hz, 1H), 3.74 (d, J = 7.0 Hz, 1H), 1.31 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.32, 162.76(d, 247.5 Hz), 162.30, 129.15(d, 8.8 Hz), 128.32 (d, 2.5 Hz), 120.05, 115.97(d, 21.3 Hz), 71.68, 57.52, 41.57, 33.32, 22.65. IR (NaCl film) 3090, 2961, 2868, 1734, 1522, 1078 cm -1. HRMS (ESI + ) m/z 346.0885 [calculated mass for C16H18FNNaO3S (M+Na) + 346.0883]. White solid, 124.0 mg, Yield = 88%. dr = 2:1, Rf = 0.25 [40-50% EtOAc/hexanes] [α] 23 D = -39.6 (c 1.9, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.67 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 7.9 Hz, 2H), 5.99 (td, J = 2.0, 0.9 Hz, 1H), 4.41 (dd, J = 17.7, 2.0 Hz, 1H), 4.29 (dd, J = 17.8, 2.5 Hz, 1H), 3.87 (d, J = 7.3 Hz, 1H), 3.78 (d, J = 7.1 Hz, 1H), 1.32 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 171.91, 161.31, 137.73, 132.48, 128.26, 120.10, 117.98, 112.72, 71.50, 57.62, 41.60, 33.38, 22.52. IR (NaCl film) 2927, 2861, 2228, 1750, 1080 cm -1. HRMS (ESI + ) m/z 353.0929 [calculated mass for C17H18N2NaO3S (M+Na) + 353.0930]. S11

White solid, 105.6 mg, Yield = 80%, dr = 1:1, inseparable mixture, Rf = 0.25 [45-55% EtOAc/hexanes] 1 H NMR (499 MHz, CDCl3) Cis-diastereomer 1: δ 5.78 (td, J = 2.0, 0.8 Hz, 1H), 4.81 (dd, J = 17.8, 2.0 Hz, 1H), 4.62 (dd, J = 17.7, 1.8 Hz, 1H), 3.79 (d, J = 6.0 Hz, 1H), 3.62 (d, J = 6.2 Hz, 1H), 1.32 (s, 9H). Cis-diastereomer 2: δ 5.99 (td, J = 2.0, 1.0 Hz, 1H), 4.65 (m, 2H), 4.62 (dd, J = 17.7, 1.8 Hz, 1H), 4.19 (d, J = 6.6 Hz, 1H), 3.34 (d, J = 6.8 Hz, 1H), 1.27 (s, 9H); 13 C NMR (126 MHz, CDCl3) Mixture of two diastereomers δ 172.05, 171.93, 161.99, 161.50, 146.75 (m), 146.44 (m), 144.74 (m), 144.45 (m), 142.52 (m), 142.21 (m), 138.61 (m), 136.61 (m), 119.11, 119.02, 107.03 (dt, 4.3, 15.5 Hz), 106.58 (dt, 4.2, 14.3 Hz), 71.70, 71.26, 57.88, 57.49, 34.96, 34.20, 31.94, 30.02, 22.31, 22.10. IR (NaCl film) 2963, 2929, 2871, 1752, 1525, 1084 cm -1. HRMS (ESI + ) m/z 418.0510 [calculated mass for C16H14F5NNaO3S (M+Na) + 418.0506]. White solid, 112.2 mg, Yield = 77%. dr = 1:1, inseparable mixture, Rf = 0.32 [80-90% EtOAc/hexanes] 1 H NMR (499 MHz, CDCl3) δ 8.61 8.57 (m, 2H), 7.57 (ddt, J = 13.3, 8.0, 2.0 Hz, 1H), 7.29 (ddd, J = 7.6, 4.8, 2.5 Hz, 1H), 5.99 (td, J = 2.0, 0.9 Hz, 1H), 4.41 (dd, J = 17.1, 2.0 Hz, 1H), 4.30 (ddd, J = 17.7, 1.8, 0.7 Hz, 1H), 3.85 (d, J = 7.0 Hz, 1H), 3.76 (d, J = 6.9 Hz, 1H), 1.31 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.01, 161.53, 150.04, 149.27, 149.06, 134.97, 123.39, 120.11, 71.59, 57.61, 40.07, 33.05, 22.55. IR (NaCl film) 2959, 2927, 1741, 1518, 1071 cm -1. HRMS (ESI + ) m/z 307.1111 [calculated mass for C15H19N2O3S (M+H) + 307.1110]. S12

White solid, 89.0 mg, Yield = 61%. dr = 3:1, Rf = 0.28 [30-40% EtOAc/hexanes] [α] 23 D = -28.4 (c 0.86, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.37 7.28 (m, 5H), 6.02 (td, J = 1.9, 0.8 Hz, 1H), 4.39 (dd, J = 17.8, 1.9 Hz, 1H), 4.13 (ddd, J = 17.8, 1.9, 0.7 Hz, 1H), 3.85 (d, J = 7.1 Hz, 1H), 3.78 (d, J = 7.0 Hz, 1H), 1.31 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.48, 162.66, 132.54, 128.80, 128.75, 127.39, 119.99, 71.71, 57.46, 42.19, 33.34, 22.65. IR (NaCl film) 2958, 2927, 1741, 1219, 1071 cm -1. HRMS (ESI + ) m/z 328.0978 [calculated mass for C16H19NNaO3S (M+Na) + 328.0977]. White solid, 66.4 mg, Yield = 51%. dr = 3:1, Rf = 0.33 [35-45% EtOAc/hexanes] [α] 23 D = -17.9 (c 2.0, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.42 (d, J = 8.7 Hz, 1H), 6.93 (d, J = 3.1 Hz, 1H), 6.75 (dd, J = 8.8, 3.1 Hz, 1H), 5.86 (td, J = 1.9, 0.8 Hz, 1H), 4.60 (dd, J = 17.8, 2.0 Hz, 1H), 4.34 (dd, J = 17.7, 1.9 Hz, 1H), 3.92 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H), 3.74 (dt, J = 7.0, 0.6 Hz, 1H), 1.31 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.51, 162.21, 158.88, 133.46, 133.42, 119.33, 116.47, 114.74, 113.59, 71.98, 57.59, 55.48, 43.59, 32.99, 22.60. IR (NaCl film) 2959, 2927, 1741, 1518, 1071 cm -1. HRMS (ESI + ) m/z 436.01884 [calculated mass for C17H20BrNNaO4S (M+Na) + 436.0188]. White solid, 63.4 mg, Yield = 46%. dr = 3:1, Rf = 0.27 [30-40% EtOAc/hexanes] [α] 23 D = -34.8 (c 1.0, CHCl3). S13

1 H NMR (499 MHz, CDCl3) δ 6.77 (d, J = 1.1 Hz, 2H), 6.74 (q, J = 0.9 Hz, 1H), 6.01 (td, J = 1.9, 0.8 Hz, 1H), 5.99 (q, J = 1.5 Hz, 2H), 4.44 (dd, J = 17.8, 1.9 Hz, 1H), 4.24 (ddd, J = 17.8, 2.0, 0.7 Hz, 1H), 3.78 (d, J = 6.9 Hz, 1H), 3.69 (d, J = 6.9 Hz, 1H), 1.30 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.54, 162.67, 148.03, 147.94, 126.17, 120.94, 119.88, 108.58, 107.60, 101.42, 71.79, 57.44, 42.00, 33.43, 22.64. IR (NaCl film) 2959, 2925, 1748, 1504, 1079 cm -1. HRMS (ESI + ) m/z 372.0880 [calculated mass for C17H19NNaO5S (M+Na) + 372.0876]. White solid, 83.9 mg, Yield = 58%. dr = 3:1, Rf = 0.3 [20-30% EtOAc/hexanes] [α] 23 D = -47.2 (c 2.0, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.33 (dd, J = 5.0, 3.0 Hz, 1H), 7.23 (m, 1H), 6.99 (dd, J = 5.0, 1.3 Hz, 1H), 6.05 (t, J = 1.9 Hz, 1H), 4.45 (dd, J = 17.8, 1.9 Hz, 1H), 4.20 (dd, J = 17.7, 1.9 Hz, 1H), 3.79 (d, J = 6.8 Hz, 1H), 3.72 (dd, J = 6.9, 1.0 Hz, 1H), 1.29 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.47, 162.70, 134.04, 127.18, 126.48, 123.76, 119.99, 77.25, 77.00, 76.74, 71.65, 57.40, 39.02, 33.20, 22.62. IR (NaCl film) 2926, 1738, 1518, 1091 cm -1. HRMS (ESI + ) m/z 334.0544 [calculated mass for C14H17NNaO3S2 (M+Na) + 334.0542]. White solid, 80.4 mg, Yield = 56%. dr = 3:1, Rf = 0.3 [20-30% EtOAc/hexanes] [α] 23 D = -18.6 (c 1.1, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 77.79 (d, J = 3.2 Hz, 1H), 7.33 (d, J = 3.3 Hz, 1H), 6.08 (td, J = 2.0, 1.0 Hz, 1H), 4.60 (d, J = 1.9 Hz, 2H), 4.02 (d, J = 6.9 Hz, 1H), 3.88 (dd, J = 7.0, 1.1 Hz, 1H), 1.32 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.21, 162.92, 160.95, 144.07, 120.26, 120.17, 71.75, 57.65, 40.27, 33.68, 22.47. IR (NaCl film) 2959, 2923, 1738, 1518, 1071 cm -1. S14

HRMS (ESI + ) m/z 313.0676 [calculated mass for C13H17N2O3S2 (M+H) + 313.0675]. White solid, 63.4 mg, Yield = 44%. dr = 3:1, Rf = 0.25 [20-30% EtOAc/hexanes] [α] 23 D = -29.6 (c 2.2, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.00 (td, J = 1.9, 1.0 Hz, 1H), 4.86 (dd, J = 17.6, 1.9 Hz, 1H), 4.79 (dd, J = 17.7, 1.9 Hz, 1H), 3.44 (d, J = 7.0 Hz, 1H), 2.28 (dd, J = 9.1, 7.0 Hz, 1H), 1.88 (d, J =11.7 Hz, 1H), 1.82 1.73 (m, 2H), 1.72 (m, 4H), 1.43 1.35 (m, 1H), 1.30 1.27 (m, 3H), 1.21 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.83, 164.09, 118.58, 72.43, 57.05, 46.34, 35.91, 30.70, 30.46, 30.02, 25.93, 25.28, 22.53. IR (NaCl film) 2925, 2853, 1751, 1074 cm -1. HRMS (ESI + ) m/z 312.1630 [calculated mass for C16H26NO3S (M+H) + 312.1627]. White solid, 75.8 mg, Yield = 52%. dr = 3:1, Rf = 0.25 [20-30% EtOAc/hexanes] [α] 23 D = -48.3 (c 2.2, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.01 (td, J = 1.8, 0.9 Hz, 1H), 4.86 (ddd, J = 17.7, 1.9, 0.7 Hz, 1H), 4.77 (dd, J = 17.7, 1.9 Hz, 1H), 3.45 (d, J = 7.1, Hz, 1H), 2.37 (dd, J = 9.2, 7.0 Hz, 1H), 1.93 1.83 (m, 1H), 1.70 1.54 (m, 8H), 1.21 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 172.82, 164.21, 118.55, 72.31, 57.01, 46.12, 37.67, 31.01, 30.97, 29.66, 25.30, 25.07, 22.50. IR (NaCl film) 2955, 2868, 1748, 1643, 1078 cm -1. HRMS (ESI + ) m/z 320.1292 [calculated mass for C15H23NNaO3S (M+Na) + 320.1290]. S15

White solid, 88 mg, Yield = 58%. dr = 3:1, Rf = 0.28 [20-30% EtOAc/hexanes] [α] 23 D = -52.4 (c 1.0, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.09 (dq, J = 2.0, 1.0 Hz, 1H), 4.91 (d, J = 17.9, 1.8 Hz, 1H), 4.81 (dd, J = 17.7, 1.9 Hz, 1H), 3.47 (d, J = 6.9 Hz, 1H), 2.19 (t, J = 6.6 Hz, 1H), 1.22 (s, 9H), 0.70 (m, 1H), 0.63 (m, 2H), 0.55 (dtd, J = 9.6, 5.0, 3.6 Hz, 1H), 0.34 (dtd, J = 10.2, 5.1, 3.6 Hz, 1H). 13 C NMR (126 MHz, CDCl3) δ 172.85, 164.11, 119.12, 72.25, 57.18, 44.00, 31.12, 22.54, 8.01, 4.07, 3.19. IR (NaCl film) 2964, 2928, 2868, 1750, 1219, 1078 cm -1. HRMS (ESI + ) m/z 292.0980 [calculated mass for C13H19NNaO3S (M+Na) + 292.0977]. White solid, 93.7 mg, Yield = 65%. dr = 3:1, Rf = 0.28 [15-25% EtOAc/hexanes] [α] 23 D = -28.2 (c 0.85, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 5.99 (td, J = 1.9, 1.0 Hz, 1H), 4.85 (ddd, J = 17.7, 1.9, 0.7 Hz, 1H), 4.77 (dd, J = 17.7, 1.9 Hz, 1H), 3.43 (d, J = 7.1 Hz, 1H), 2.52 (dq, J = 7.1, 7.3 Hz, 1H), 1.44 (m, 3H), 1.20 (m, 9H), 1.27 (m, 9H), 0.87 (t, J = 7.4 Hz, 3H). 13 C NMR (126 MHz, CDCl3) δ 172.72, 163.91, 118.78, 72.31, 57.01, 41.32, 31.65, 30.61, 29.05, 29.01, 26.90, 26.84, 22.56, 22.51, 14.04. IR (NaCl film) 2958, 2923, 1738, 1639, 1076 cm -1. HRMS (ESI + ) m/z 350.1761 [calculated mass for C17H29NNaO3S (M+Na) + 350.1760]. White solid, 82.3 mg, Yield = 53%. dr = 3:1, Rf = 0.3 [15-25% EtOAc/hexanes] [α] 23 D = -15.2 (c 0.82, CHCl3). S16

1 H NMR (499 MHz, CDCl3) δ 6.00 (td, J = 1.9, 1.0 Hz, 1H), 4.86 (ddd, J = 17.7, 1.9, 0.7 Hz, 1H), 4.79 (dd, J = 17.7, 1.9 Hz, 1H), 3.47 (d, J = 7.0 Hz, 1H), 2.25 (dd, J = 9.8, 7.0 Hz, 1H), 1.37 (m, 1H), 1.21 (s, 9H), 1.11 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H). 13 C NMR (126 MHz, CDCl3) δ 172.72, 163.88, 118.70, 72.41, 57.02, 47.75, 31.15, 26.98, 22.50, 20.04, 19.47. IR (NaCl film) 309, 2961, 2868, 1734, 1522, 1078 cm -1. HRMS (ESI + ) m/z 294.1134 [calculated mass for C13H21NNaO3S (M+Na) + 294.1134]. White solid, 90.3 mg, Yield = 63%. dr = 3:1, Rf = 0.28 [15-25% EtOAc/hexanes] [α] 23 D = -145.4 (c 1.6, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 5.99 (q, J = 1.6 Hz, 1H), 4.86 (dd, J = 17.5, 1.7 Hz, 1H), 4.77 (dd, J = 17.7, 1.9 Hz, 1H), 3.44 (d, J = 7.0 Hz, 1H), 2.53 (q, J = 6.6 Hz, 1H), 1.43 (m, 3H), 1.27 (m, 9H), 1.21 (s, 9H), 0.88 (t, J = 6.9 Hz, 3H). 13 C NMR (126 MHz, CDCl3) δ 172.74, 163.91, 118.79, 72.32, 57.02, 41.33, 31.66, 30.62, 29.05, 29.02, 26.91, 26.84, 22.57, 22.51, 14.05. IR (NaCl film) 2954, 2923, 2854, 1738, 1076 cm -1. HRMS (ESI + ) m/z 350.1760 [calculated mass for C17H29NNaO3S (M+Na) + 350.1760]. White solid, 89.8 mg, Yield = 62%. dr = 3:1, Rf = 0.3 [15-25% EtOAc/hexanes] [α] 23 D = -259.8 (c 1.0, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 5.99 (dd, J = 1.6 Hz, 1H), 4.85 (dd, J = 17.8, 1.8 Hz, 1H), 4.77 (dd, J = 17.6, 1.9 Hz, 1H), 3.43 (d, J = 7.0 Hz, 1H), 2.56 (td, J = 7.3, 5.4 Hz, 1H), 1.81 1.70 (m, J = 6.8 Hz, 1H), 1.41 1.27 (m, 2H), 1.21 (s, 9H), 0.97 (d, J = 6.7 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H). 13 C NMR (126 MHz, CDCl3) δ 172.83, 164.02, 118.85, 72.31, 57.01, 40.15, 35.58, 30.24, 27.01, 22.50, 22.48, 22.46. S17

IR (NaCl film) 2956, 2927, 2868, 1739, 1639, 1076 cm -1. HRMS (ESI + ) m/z 286.1473 [calculated mass for C14H24NO3S (M+H) + 286.1471]. Scheme S6: Altering Nucleophile Impacts Reaction Yields Scheme S6 General Procedure C: To a flame dried round bottomed flask equipped with a stir bar, tetrahydrofuran (THF, 0.1M overall concentration) and N-sulfinimine (0.2 mmol, 1.0 equiv, 1.0 M in THF) were added and the mixture cooled to -78 C. To this a solution -bromo ester (31) in THF (0.4 mmol, 2.0 equiv, 1.0 M in THF) was added, followed by slow syringe pump addition (rate = 1mL/h) of lithium hexamethylsilyl amide (LiHMDS) (0.5 mmol, 2.5 equiv, 1.0 M in THF). The reaction mixture was stirred for additional 3-5 h at -78 C at which point TLC analysis showed complete consumption of the imine. The reaction was then warmed to 0 C (ice-bath) and stirred at 0 C for 15 minutes. It was then quenched with saturated ammonium chloride, warmed to room temperature and extracted using ethyl acetate (3 times). The organic fractions were combined, washed with brine, dried with anhydrous sodium sulfate (Na2SO4), filtered and concentrated in vacuo. Crude material was purified by flash column chromatography (silica gel) to afford the vinyl aziridine products. Characterization and spectral data for the vinyl aziridine products: Colorless Oil, 40.1 mg, Yield = 56%. dr = 3:1 Inseparable Mixture of diastereomers. Rf = 0.3 [30-40% EtOAc/hexanes] [α] 23 D = -34.6 (c 1.6, CHCl3). 1 H NMR (499 MHz, CDCl3) Major Diastereomer δ 8.18 8.16 (m, 2H), 7.44 7.42 (m, 2H), 5.87 (p, J = 1.3 Hz, 1H), 3.70 (d, J = 7.5 Hz, 1H), 3.65 (d, J = 7.2 Hz, 1H), 3.64 (s, 3H), 1.95 (d, J = 1.4 Hz, 3H), 1.35 (s, 9H). S18

Minor Diastereomer δ 8.18 8.16 (m, 2H), 7.44 7.42 (m, 2H), 6.01 (t, J = 1.4 Hz, 1H), 4.11 (d, J = 7.5 Hz, 1H), 3.69 (s, 3H), 3.21 (d, J = 7.4 Hz, 1H), 1.88 (dd, J = 1.4, 0.7 Hz, 3H), 1.25 (s, 9H). 13 C NMR (126 MHz, CDCl3) Major Diastereomer δ 165.88, 148.81, 147.59, 140.47, 128.60, 123.38, 118.75, 57.40, 51.28, 42.09, 40.94, 22.60, 17.62. Minor Diastereomer δ 165.86, 148.55, 147.03, 140.39, 128.72, 123.51, 119.08, 57.42, 51.24, 45.56, 37.37, 22.68, 17.22. IR (NaCl film) 2955, 1751, 1556, 1432, 1326, 1238, 1188, 1084 cm -1. HRMS (ESI + ) m/z 389.1141 [calculated mass for C17H22NaN2O5S (M+Na) + 389.1141]. Colorless Oil, 33.3 mg, Yield = 48%. dr = 3:1 Inseparable Mixture of diastereomers. Rf = 0.3 [25-35% EtOAc/hexanes] [α] 23 D = -26.9 (c 0.4, CHCl3). 1 H NMR (499 MHz, CDCl3) Major Diastereomer δ 7.42 (d, J = 8.4 Hz, 2H), 7.18 7.10 (m, 2H), 5.86 (dq, J = 2.0, 1.2 Hz, 1H), 3.65 (s, 3H), 3.58 (d, J = 7.5 Hz, 1H), 3.56 (d, J = 7.4 Hz, 1H), 1.94 (d, J = 1.4 Hz, 3H), 1.32 (s, 9H). Minor Diastereomer δ 7.42 (d, J = 8.4 Hz, 2H), 7.18 7.10 (m, 2H), 5.99 (q, J = 1.4 Hz, 1H), 3.98 (d, J = 7.3 Hz, 1H), 3.69 (s, 3H), 3.12 (ddd, J = 7.4, 1.4, 0.8 Hz, 1H), 1.89 (dd, J = 1.4, 0.7 Hz, 3H), 1.23 (s, 9H). 13 C NMR (126 MHz, CDCl3) Major Diastereomer δ 166.11, 149.69, 132.10, 131.28, 129.31, 121.90, 118.47, 57.18, 51.14, 41.89, 41.11, 22.62, 17.60. Minor Diastereomer δ 166.26, 149.33, 131.93, 131.41, 129.49, 122.02, 118.66, 57.25, 51.17, 45.12, 37.57, 22.71, 17.24. IR (NaCl film) 2962, 1734, 1456, 1241, 1196, 1101, 1055 cm -1. HRMS (ESI + ) m/z 422.0403 [calculated mass for C17H22NaBrNO3S (M+Na) + 422.0400]. S19

Colorless Oil, 27.6 mg, Yield = 36%. dr = 3:1 Inseparable Mixture of diastereomers. Rf = 0.3 [20-30% EtOAc/hexanes] [α] 23 D = -20.6 (c 1.1, CHCl3). 1 H NMR (499 MHz, CDCl3) Major Diastereomer δ 7.73 6.95 (m, 5H), 5.89 (p, J = 1.3 Hz, 0H), 3.64 (d, J = 7.5 Hz, 1H), 3.63 (s, 3H), 3.56 (dt, J = 7.4, 0.7 Hz, 1H), 1.94 (d, J = 1.4 Hz, 3H), 1.33 (s, 9H). Minor Diastereomer δ 7.73 6.95 (m, 5H), 6.01 (p, J = 1.4 Hz, 1H), 4.04 (d, J = 7.4 Hz, 1H), 3.67 (s, 3H), 3.12 (ddd, J = 7.4, 1.5, 0.8 Hz, 1H), 1.89 (dd, J = 1.4, 0.7 Hz, 3H), 1.25 (s, 9H). 13 C NMR (126 MHz, CDCl3) Major Diastereomer δ 166.25, 150.25, 133.00, 128.07, 127.78, 127.66, 118.31, 57.09, 51.04, 41.95, 41.74, 22.64, 17.55. Minor Diastereomer δ 166.41, 149.88, 132.75, 128.15, 127.88, 127.82, 118.41, 57.19, 51.07, 45.08, 38.23, 22.74, 17.21. IR (NaCl film) 2984, 2953, 1720, 1652, 1436, 1321, 1214, 1167, 1083 cm -1. HRMS (ESI + ) m/z 322.1474 [calculated mass for C17H24NO3S (M+H) + 322.1471]. Scheme S7: Titanium Enolate-Mediated Mannich Reactions Scheme S7 General Procedure D 13 : To a flame dried round bottomed flask equipped with a stir bar, a solution of lithium hexamethylsilyl amide (LiHMDS) (1.0 mmol, 2.5 equiv) in THF (1.0 M) was added and cooled to -78 C. To this a solution of the -bromo ester (31) (0.8 mmol, 2.0 equiv) in THF (1.0 M) was added via syringe pump (2.0 ml/h) and the reaction was stirred for 30 min. Then to this solution was added ClTi(O i Pr)3 (2.0 mmol, 5.0 equiv) in THF (1.0 M in hexanes) [via syringe pump 5.0 ml/h] and the orangecolored enolate was stirred for 30 min. A solution of the N-sulfinimine (0.4 mmol, 1.0 equiv) in THF (1.0 M) was slowly added via syringe pump [0.5 ml/h] and the solution was stirred for 8-10 h at -78 C. Upon reaction completion as determined by TLC, a saturated aqueous solution of NH4Cl (10 equiv) was added S20

and the suspension was warmed to room temperature. The mixture was diluted with H2O and vigorously stirred to dissolve the titanium precipitate. The mixture was then decanted into a separatory funnel, and the remaining solid was diluted with equal parts of H2O and EtOAc and vigorously stirred for 1 hr. The mixture was then added to the separatory funnel and the organic layer was collected. The aqueous layer was then extracted with EtOAc (3 times). The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated to give the N-sulfinyl-amino ester product. Crude material was purified by flash column chromatography (silica gel) to afford the Mannich adducts. Characterization and spectral data for the Mannich adducts: Colorless Oil, 137.2 mg, Yield = 78%. dr = 15:1, Rf = 0.33 [50-60% EtOAc/hexanes] [α] 23 D = +22.0 (c 1.2, CHCl3). 1 H NMR (600 MHz, CDCl3) δ 8.21 8.16 (m, 2H), 7.60 7.54 (m, 2H), 5.94 (q, J = 1.5 Hz, 1H), 4.99 4.95 (m, 2H), 4.35 4.27 (m, 1H), 3.77 (s, 3H), 1.69 (d, J = 1.6 Hz, 3H), 1.18 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 171.17, 147.83, 144.90, 134.66, 129.42, 123.60, 123.53, 107.52, 57.58, 55.87, 54.50, 52.82, 22.50, 20.11. IR (NaCl film) 3276, 2973, 1721, 1555, 1320, 1043 cm -1. HRMS (ESI + ) m/z 447.0518 [calculated mass for C17H24BrN2O5S (M+H) + 447.0511]. Colorless Oil, 111.9 mg, Yield = 67%. dr = 15:1, Rf = 0.3 [45-55% EtOAc/hexanes] [α] 23 D = +33.0 (c 2.3, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.48 7.42 (m, 2H), 7.25 7.21 (m, 2H), 5.92 (q, J = 1.5 Hz, 1H), 4.83 (dd, J = 9.6, 3.7 Hz, 1H), 4.79 (d, J = 3.8 Hz, 1H), 4.28 (d, J = 9.6 Hz, 1H), 3.76 (s, 3H), 1.66 (d, J = 1.5 Hz, 3H), 1.17 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 171.46, 136.49, 135.10, 131.51, 130.14, 122.39, 107.05, 57.71, 55.60, 54.67, 52.69, 22.55, 20.03. IR (NaCl film) 3275, 2951, 1736, 1286, 1168, 1070 cm -1. S21

HRMS (ESI + ) m/z 479.9842 [calculated mass for C17H24Br2NO3S (M+H) + 479.9838]. Colorless Oil, 131.3 mg, Yield = 72%. dr = 12:1, Rf = 0.3 [50-60% EtOAc/hexanes] [α] 23 D = +35.6 (c 2.6, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.65 7.57 (m, 2H), 7.52 7.45 (m, 2H), 5.93 (q, J = 1.5 Hz, 1H), 4.97 4.82 (m, 2H), 4.28 (d, J = 9.3 Hz, 1H), 3.76 (s, 3H), 1.67 (d, J = 1.6 Hz, 3H), 1.17 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 171.20, 142.93, 134.73, 132.10, 129.22, 118.43, 112.32, 107.39, 57.85, 55.80, 54.47, 52.77, 22.50, 20.10. IR (NaCl film) 3278, 2980, 2229, 1728, 1434, 1196, 1056 cm -1. HRMS (ESI + ) m/z 427.0784 [calculated mass for C18H24BrN2O3S (M+H) + 427.0786]. Colorless Oil, 113.5 mg, Yield = 65%. dr = 10:1, Rf = 0.28 [40-50% EtOAc/hexanes] [α] 23 D = +13.3 (c 2.9, CHCl3). 1 H NMR (400 MHz, CDCl3) δ 7.57 (dt, J = 8.2, 0.7 Hz, 2H), 7.49 (dt, J = 8.0, 0.8 Hz, 2H), 5.93 (q, J = 1.5 Hz, 1H), 4.95 4.87 (m, 2H), 4.32 4.16 (m, 3H), 1.69 (d, J = 1.6 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H), 1.18 (s, 9H). 13 C NMR (101 MHz, CDCl3) δ 170.90, 141.79, 135.11, 129.77 (dd, J = 138.6, 32.5 Hz, 1C), 128.85, 125.27 (q, J = 3.8 Hz, 1C), 122.60, 107.11, 61.79, 57.85, 55.69, 54.75, 22.50, 20.09, 14.06. IR (NaCl film) 3275, 2982, 1733, 1325, 1161, 1125, 1067 cm -1. HRMS (ESI + ) m/z 484.0766 [calculated mass for C19H26F3BrNO3S (M+H) + 484.0763]. Colorless Oil, 94.4 mg, Yield = 55%. dr = 8:1, Rf = 0.32 [40-50% EtOAc/hexanes] [α] 23 D = +53.0 (c 1.8, CHCl3). S22

1 H NMR (600 MHz, CDCl3) δ 6.50 (d, J = 2.3 Hz, 2H), 6.38 (t, J = 2.3 Hz, 1H), 5.93 (q, J = 1.5 Hz, 1H), 4.80 (dd, J = 9.7, 4.1 Hz, 1H), 4.65 (d, J = 4.1 Hz, 1H), 4.31 (d, J = 9.7 Hz, 1H), 3.77 (s, 6H), 3.77 (s, 3H), 1.71 (d, J = 1.6 Hz, 3H), 1.17 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 171.53, 160.50, 139.80, 135.52, 106.60, 106.33, 100.51, 58.60, 55.61, 55.35, 54.88, 52.65, 29.73, 22.59, 20.01. IR (NaCl film) 3247, 2925, 1725, 1607, 1597, 1292, 1204, 1151, 1064 cm -1. HRMS (ESI + ) m/z 462.0949 [calculated mass for C19H29BrNO5S (M+H) + 462.0944]. Colorless Oil, 89.9 mg, Yield = 51%. dr = 8:1, Rf = 0.33 [30-40% EtOAc/hexanes] [α] 23 D = +37.4 (c 2.5, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.85 6.79 (m, 2H), 6.72 (dd, J = 7.9, 0.5 Hz, 1H), 5.95 (q, J = 1.5 Hz, 2H), 5.91 (q, J = 1.5 Hz, 1H), 4.78 (dd, J = 9.8, 3.6 Hz, 1H), 4.74 (d, J = 3.7 Hz, 1H), 4.25 (d, J = 9.8 Hz, 1H), 3.76 (s, 3H), 1.68 (d, J = 1.5 Hz, 3H), 1.17 (s, 9H). 13 C NMR (126 MHz, CDCl3) δ 171.62, 147.58, 147.53, 135.37, 130.95, 122.38, 108.41, 107.88, 106.65, 101.10, 57.84, 55.42, 54.93, 52.60, 22.61, 19.94. IR (NaCl film) 3277, 2958, 1734, 1490, 1244, 1037 cm -1. HRMS (ESI + ) m/z 446.0634 [calculated mass for C18H25BrNO5S (M+H) + 446.0631]. Colorless Oil, 113.2 mg, Yield = 59%. dr = 6:1. Inseparable mixture of diastereomers. Rf = 0.21 [100% EtOAc] [α] 23 D = +65.1 (c. 1.2, CHCl3). 1 H NMR (499 MHz, CDCl3) Major Diastereomer: δ 8.69 8.49 (m, 2H), 7.69 (ddd, J = 7.9, 2.4, 1.6 Hz, 1H), 7.26 (s, 1H), 5.93 (q, J = 1.5 Hz, 1H), 4.89 (d, J = 9.0 Hz, 2H), 4.33 (d, J = 9.3 Hz, 1H), 3.77 (s, 3H), 1.69 (d, J = 1.5 Hz, 3H), 1.18 (s, 9H). Minor Diastereomer: δ 8.69 8.49 (m, 2H), 7.74 (dt, J = 7.9, 2.0 Hz, 1H), 7.26 (s, 1H), 6.41 (q, J = 1.5 Hz, 1H), 4.84 (dd, J = 10.5, 1.5 Hz, 2H), 4.35 (d, J = 10.5 Hz, 1H), 3.50 (s, 3H), 1.93 (d, J = 1.5 Hz, 3H), 1.15 (s, 9H). S23

13 C NMR (126 MHz, CDCl3) Major Diastereomer: δ 171.32, 149.81, 149.76, 135.95, 134.80, 123.19, 107.39, 56.07, 55.76, 54.62, 52.76, 22.54, 20.03. Minor Diastereomer: δ 168.99, 150.27, 149.54, 136.43, 133.19, 123.19, 108.99, 56.14, 55.92, 54.23, 52.27, 22.38, 18.89. IR (NaCl film) 3216, 2951, 1729, 1427, 1167, 1073 cm -1. HRMS (ESI + ) m/z 403.0689 [calculated mass for C16H24BrN2O3S (M+H) + 403.0686]. Colorless Oil, 106.2 mg, Yield = 56%. dr = 9:1, Rf = 0.33 [30-40% EtOAc/hexanes] [α] 23 D = +42.4 (c 1.8, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 7.26 (s, 2H), 7.09 7.06 (m, 1H), 5.95 (q, J = 1.5 Hz, 1H), 5.02 (dd, J = 9.7, 4.2 Hz, 1H), 4.66 (d, J = 4.2 Hz, 1H), 4.31 (d, J = 9.7 Hz, 1H), 3.76 (s, 3H), 1.69 (d, J = 1.5 Hz, 3H), 1.17 (s, 9H). 13 C NMR (1126 MHz, CDCl3) δ 171.45, 138.33, 135.48, 126.77, 125.88, 124.07, 106.53, 55.46, 54.84, 53.90, 52.55, 22.56, 19.82. IR (NaCl film) 3275, 2952, 1734, 1433, 1288, 1190, 1064 cm -1. HRMS (ESI + ) m/z 430.0115 [calculated mass for C15H22NaBrNO3S2 (M+Na) + 430.0117]. Colorless Oil, 71.7 mg, Yield = 38%. dr = 9:1, Rf = 0.3 [20-30% EtOAc/hexanes] [α] 23 D = +35.9 (c 2.5, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.16 (q, J = 1.5 Hz, 1H), 4.03 (t, J = 7.9 Hz, 2H), 3.79 3.72 (m, 1H), 3.72 (s, 3H), 1.81 (d, J = 1.5 Hz, 3H), 1.60 1.44 (m, 3H), 1.27 (dddt, J = 14.7, 6.5, 5.0, 2.1 Hz, 10H), 1.20 (s, 9H), 0.94 0.81 (m, 3H). 13 C NMR (126 MHz, CDCl3) δ 171.50, 136.38, 106.23, 56.22, 56.14, 54.33, 52.21, 33.43, 31.69, 29.03, 25.28, 22.72, 22.60, 19.89, 14.06. IR (NaCl film) 3275, 2954, 2927, 2888, 1733, 1457, 1242, 1196, 1165, 1055 cm -1. HRMS (ESI + ) m/z 410.1361 [calculated mass for C17H33BrNO3S (M+H) + 410.1359]. S24

Colorless Oil, 100.9 mg, Yield = 48%. dr = 6:1, Rf = 0.3 [20-30% EtOAc/hexanes] [α] 23 D = +29.7 (c 2.4, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.11 (q, J = 1.5 Hz, 1H), 4.00 (d, J = 8.9 Hz, 1H), 3.75 (s, 4H), 3.62 (td, J = 8.8, 2.9 Hz, 1H), 1.88 (d, J = 1.5 Hz, 3H), 1.68 (pd, J = 6.8, 2.9 Hz, 1H), 1.24 (s, 9H), 0.96 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). 13 C NMR (126 MHz, CDCl3) δ 171.11, 136.67, 105.76, 77.00, 61.67, 56.79, 53.20, 52.40, 31.20, 23.04, 20.67, 19.88, 16.08. IR (NaCl film) 3228, 2958, 1729, 1436, 1244, 1169, 1073 cm -1. HRMS (ESI + ) m/z 368.0892 [calculated mass for C14H27BrNO3S (M+H) + 368.0890]. White solid, 78.5 mg, Yield = 40%. dr = 6:1, Rf = 0.3 [20-30% EtOAc/hexanes] [α] 23 D = +25.6 (c 2.2, CHCl3). 1 H NMR (499 MHz, CDCl3) δ 6.13 (q, J = 1.5 Hz, 1H), 4.05 (d, J = 8.5 Hz, 1H), 3.91 (d, J = 8.6 Hz, 1H), 3.76 (s, 3H), 3.58 (td, J = 8.6, 2.6 Hz, 1H), 1.89 (d, J = 1.5 Hz, 3H), 1.80 1.70 (m, 2H), 1.70 1.60 (m, 3H), 1.33 1.27 (m, 3H), 1.25 1.15(s, 12H) 1.11-1.02 (m, 2H). 13 C NMR (126 MHz, CDCl3) δ 171.41, 136.88, 105.70, 61.70, 56.79, 52.48, 52.40, 41.76, 30.89, 26.93, 26.46, 26.35, 26.04, 23.11, 20.15. IR (NaCl film) 3022, 2922, 1734, 1446, 1166, 1076 cm -1. HRMS (ESI + ) m/z 430.1021 [calculated mass for C17H30NaBrNO3S (M+Na) + 430.1022]. S25

X-Ray Crystallographic Data For Compound 12: 4-((2S, 3R)-3-(4-bromophenyl)-1-((S)-tert-butylsulfinyl)aziridin-2-yl)furan-2(5H)-one Table 1: Crystal data and structure refinement for compound 12 Identification Code CCDC # 1451353 Formula C16H18NO3SBr Formula weight 384.28 Size 0.6 x 0.04 x 0.01 mm Crystal morphology Colorless fragment Temperature 99.99 K Wavelength MoKα (λ = 0.71073) Crystal system monoclinic Space group P21 Unit cell dimensions a = 6.3924(13) Å α = 90 b = 14.594(3) Å β = 109.540 c = 9.1182(19) Å γ = 90 Volume 801.6(3) Å 3 S26

Z 2 Density (calculated) 1.592 Mg/m 3 Absorption coefficient 2.706 mm -1 F(000) 392.0 Data collection range 4.74 to 50.67 Index ranges -7 h 7, -17 k 17, -10 l 10 Reflections collected 8579 Independent reflections 2923 [Rint = 0.0454, Rsigma = 0.0529] Absorption correction multi-scan Max. and min. transmission 0.7453 and 0.6092 Refinement method Full Data / restraints / parameters 2923/187/202 Goodness of fit 1.023 Final R indices [I >2 σ (I)] R1 = 0.0321, wr2 = 0.0666 R indices (all data) R1 = 0.0380, wr2 = 0.0688 Largest diff. peak and hole 0.53 and -0.43e.Å -3 Absolute structure parameter -0.016(7) Table 2: Atomic co-ordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ) for compound 12. Ueq is defined as 1/3 of of the trace of the orthogonalised Uij tensor. Atom x y z U(eq) Br(1) 6242.0(8) 2140.3(4) 1157.5(6) 17.13(15) S(1) 883(2) -2309.1(9) 4738.4(16) 11.1(3) O(2) 7959(6) -98(3) 9610(4) 14.1(9) C(9) 5263(9) -643(4) 7357(6) 9.2(11) O(1) 10951(6) -556(3) 9048(4) 15.3(9) O(3) -1306(6) -1884(3) 4548(5) 18.0(9) C(7) 5914(9) 451(4) 2640(6) 11.2(11) C(11) 8969(8) -504(4) 8665(6) 9.8(11) C(6) 4988(9) 1319(4) 2257(6) 13.5(12) C(5) 3187(9) 1593(4) 2658(7) 15.7(12) N(1) 2847(7) -1463(3) 4971(5) 10.2(10) C(13) 794(8) -2705(4) 2807(6) 11.5(11) C(10) 7255(9) -835(4) 7249(7) 11.0(12) C(8) 4976(9) -155(4) 3420(6) 13.0(12) S27

C(1) 3037(9) -856(4) 6305(6) 11.4(12) C(3) 3154(9) 105(4) 3836(7) 12.9(12) C(12) 5587(8) -175(4) 8874(6) 11.6(12) C(2) 2043(9) -511(4) 4648(6) 12.6(12) C(16) -971(9) -3469(4) 2432(7) 17.6(13) C(4) 2263(9) 986(4) 3439(6) 14.5(12) C(14) 93(10) -1942(4) 1619(6) 20.2(14) C(15) 3079(9) -3089(4) 2975(7) 21.8(16) Table 3: Anisotropic displacement parameters (Å 2 10 3 ) for compound 12. The anisotropic displacement factor exponent takes the form: -2π 2 [h 2 a* 2 U11+2hka*b*U12+ ]. Atom U11 U22 U33 U23 U13 U12 Br(1) 24.2(3) 11.9(3) 16.4(3) 1.2(3) 8.3(2) -3.8(3) S(1) 11.5(6) 8.0(7) 15.2(7) -1.7(5) 6.2(5) -1.2(5) O(2) 9.6(19) 15(2) 17(2) -3.9(17) 4.1(16) -1.2(16) C(9) 14(3) 3(3) 10(3) 0(2) 5(2) -2(2) O(1) 11.7(19) 16(2) 19(2) 3.1(17) 6.4(17) 0.3(17) O(3) 13.2(19) 14(2) 29(2) -8.0(18) 10.8(18) -1.3(17) C(7) 10(3) 12(3) 10(3) -3(2) 2(2) -1(2) C(11) 10.2(15) 9.0(16) 10.2(16) 1.9(12) 3.4(12) -1.2(12) C(6) 16(3) 13(3) 11(3) 0(2) 4(2) -4(2) C(5) 22(3) 5(3) 20(3) 0(2) 7(2) 3(2) N(1) 12(2) 6(2) 12(2) -1.7(18) 3.4(19) -1.2(18) C(13) 12.4(15) 10.0(17) 11.6(15) -1.1(12) 3.4(12) -0.9(12) C(10) 11(3) 7(3) 16(3) 3(2) 7(2) 0(2) C(8) 17(3) 7(3) 15(3) -5(2) 6(2) 0(2) C(1) 14(3) 6(3) 17(3) -1(2) 8(2) 1(2) C(3) 12(3) 9(3) 17(3) -2(2) 5(2) -2(2) C(12) 8(3) 11(3) 18(3) -3(2) 7(2) 1(2) C(2) 10(3) 8(3) 18(3) -1(2) 3(2) 1(2) C(16) 19(3) 11(3) 21(3) -7(2) 4(3) -3(2) C(4) 16(3) 9(3) 18(3) -3(2) 6(2) 1(2) C(14) 29(3) 14(3) 12(3) 0(2) 0(3) -2(3) C(15) 23(3) 26(5) 20(3) -6(2) 11(2) 1(2) Table 4: Hydrogen atom co-ordinates (Å 104) and isotropic displacement parameters (Å2 103) for compound 12. S28

Atom x y z U(eq) H(7) 7171 276 2373 13 H(5) 2587 2191 2403 19 H(10) 7515-1135 6401 13 H(8) 5584-751 3671 16 H(1) 1928-980 6836 14 H(12A) 4886 439 8704 14 H(12B) 4931-541 9525 14 H(2) 390-452 4279 15 H(16A) -491-3953 3217 26 H(16B) -1157-3724 1402 26 H(16C) -2386-3214 2438 26 H(4) 1012 1169 3709 17 H(14A) -1271-1658 1668 30 H(14B) -176-2194 575 30 H(14C) 1271-1481 1843 30 H(15A) 4172-2591 3235 33 H(15B) 3040-3373 1992 33 H(15C) 3496-3549 3805 33 Table 5: Bond lengths (Å) for compound 12. Atom Atom Length/Å Atom Atom Length/Å Br(1) C(6) 1.903(5) C(11) C(10) 1.468(7) S(1) O(3) 1.487(4) C(6) C(5) 1.379(8) S(1) N(1) 1.723(5) C(5) C(4) 1.386(8) S(1) C(13) 1.836(5) N(1) C(1) 1.476(7) O(2) C(11) 1.372(6) N(1) C(2) 1.476(7) O(2) C(12) 1.442(6) C(13) C(16) 1.541(7) C(9) C(10) 1.339(8) C(13) C(14) 1.512(8) C(9) C(1) 1.459(8) C(13) C(15) 1.524(7) C(9) C(12) 1.494(8) C(8) C(3) 1.393(8) O(1) C(11) 1.199(6) C(1) C(2) 1.516(8) C(7) C(6) 1.392(8) C(3) C(2) 1.487(8) C(7) C(8) 1.390(8) C(3) C(4) 1.405(8) Table 6: Bond angles ( ) for compound 12. S29

Atom Atom Atom Angle/ Atom Atom Atom Angle/ O(3) S(1) N(1) 109.5(2) C(14) C(13) S(1) 111.2(4) O(3) S(1) C(13) 107.1(2) C(14) C(13) C(16) 110.7(4) N(1) S(1) C(13) 97.5(2) C(14) C(13) C(15) 112.8(5) C(11) O(2) C(12) 108.4(4) C(15) C(13) S(1) 107.3(3) C(10) C(9) C(1) 130.5(5) C(15) C(13) C(16) 111.2(5) C(10) C(9) C(12) 108.8(5) C(9) C(10) C(11) 108.4(5) C(1) C(9) C(12) 120.6(5) C(7) C(8) C(3) 120.6(5) C(8) C(7) C(6) 119.2(5) C(9) C(1) N(1) 117.6(5) O(2) C(11) C(10) 109.0(4) C(9) C(1) C(2) 125.2(5) O(1) C(11) O(2) 121.2(5) N(1) C(1) C(2) 59.1(3) O(1) C(11) C(10) 129.8(5) C(8) C(3) C(2) 123.6(5) C(7) C(6) Br(1) 119.1(4) C(8) C(3) C(4) 118.9(5) C(5) C(6) Br(1) 119.5(4) C(4) C(3) C(2) 117.5(5) C(5) C(6) C(7) 121.3(5) O(2) C(12) C(9) 105.4(4) C(6) C(5) C(4) 119.2(5) N(1) C(2) C(1) 59.1(3) C(1) N(1) S(1) 112.8(3) N(1) C(2) C(3) 118.4(5) C(2) N(1) S(1) 117.4(3) C(3) C(2) C(1) 125.9(5) C(2) N(1) C(1) 61.8(3) C(5) C(4) C(3) 120.8(5) C(16) C(13) S(1) 103.1(3) Table 7: Torsion Angles ( ) for compound 12. A B C D Angle/ A B C D Angle/ Br(1) C(6) C(5) C(4) 179.1(4) N(1) C(1) C(2) C(3) -104.6(6) S(1) N(1) C(1) C(9) 133.7(4) C(13) S(1) N(1) C(1) 168.5(4) S(1) N(1) C(1) C(2) -109.9(4) C(13) S(1) N(1) C(2) 99.6(4) S(1) N(1) C(2) C(1) 102.6(4) C(10) C(9) C(1) N(1) 7.5(9) S(1) N(1) C(2) C(3) -140.5(4) C(10) C(9) C(1) C(2) -62.6(8) O(2) C(11) C(10) C(9) -0.8(6) C(10) C(9) C(12) O(2) 1.3(6) C(9) C(1) C(2) N(1) 103.8(6) C(8) C(7) C(6) Br(1) -178.9(4) C(9) C(1) C(2) C(3) -0.8(9) C(8) C(7) C(6) C(5) 1.1(8) O(1) C(11) C(10) C(9) 178.1(6) C(8) C(3) C(2) N(1) -2.8(8) O(3) S(1) N(1) C(1) 57.4(4) C(8) C(3) C(2) C(1) 68.0(8) O(3) S(1) N(1) C(2) -11.5(4) C(8) C(3) C(4) C(5) -0.5(9) O(3) S(1) C(13) C(16) -65.9(4) C(1) C(9) C(10) C(11) -177.2(6) O(3) S(1) C(13) C(14) 52.8(4) C(1) C(9) C(12) O(2) 178.6(5) O(3) S(1) C(13) C(15) 176.6(4) C(1) N(1) C(2) C(3) 116.9(5) C(7) C(6) C(5) C(4) -0.9(9) C(12) O(2) C(11) O(1) -177.4(5) S30

C(7) C(8) C(3) C(2) 179.0(5) C(12) O(2) C(11) C(10) 1.6(6) C(7) C(8) C(3) C(4) 0.7(8) C(12) C(9) C(10) C(11) -0.3(6) C(11) O(2) C(12) C(9) -1.8(6) C(12) C(9) C(1) N(1) -169.1(5) C(6) C(7) C(8) C(3) -1.0(8) C(12) C(9) C(1) C(2) 120.8(6) C(6) C(5) C(4) C(3) 0.7(9) C(2) N(1) C(1) C(9) -116.4(5) N(1) S(1) C(13) C(16) -179.0(4) C(2) C(3) C(4) C(5) -178.9(5) N(1) S(1) C(13) C(14) -60.3(4) C(4) C(3) C(2) N(1) 175.5(5) N(1) S(1) C(13) C(15) 63.5(4) C(4) C(3) C(2) C(1) -113.7(6) For Compound 11: 4-((2R,3S)-3-(4-bromophenyl)-1-((S)-tert-butylsulfinyl)aziridin-2-yl)furan-2(5H)-one Table 1: Crystal data and structure refinement for compound 11. Identification code CCDC # 1451253 Formula C16H18NO3SBr Formula weight 384.28 Size 0.3 x 0.15 x 0.1 mm S31

Crystal morphology Temperature Colorless fragment 99.99 K Wavelength MoKα (λ = 0.71073) Crystal system Space group Unit cell dimensions orthorhombic P212121 a = 8.4979(11) Å b = 6.3008(6) Å c = 31.150(4) Å Volume 1667.9 Å 3 Z 4 Density (calculated) 1.530 Mg/m 3 Absorption coefficient 2.601 mm -1 F(000) 784.0 Data collection range 2.614 to 51.016 Index ranges -10 h 9, -7 k 5, -37 l 32 Reflections collected 12889 Independent reflections 3116 [Rint = 0.0468, Rsigma = 0.0445] Absorption correction multi-scan Max. and min. transmission 0.745 and 0.532 Refinement method Full Data / restraints / parameters 3116/0/202 Goodness of fit 1.036 Table 2: Fractional Atomic Coordinates ( 10 4 ) and Equivalent Isotropic Displacement Parameters (Å 2 10 3 ) for compound 11. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. Atom x y z U(eq) Br(1) -5409.2(5) -7477.4(7) -635.7(2) 31.99(14) S(1) -7500.7(13) -15087.6(14) 1484.7(3) 18.5(2) O(3) -6827(3) -17259(4) 1443.4(8) 23.8(6) S32

C(4) -4632(5) -12682(7) 143.2(11) 25.2(9) C(3) -5454(5) -12221(6) 515.4(11) 19.7(8) C(1) -4507(5) -13833(5) 1260.3(12) 17.8(9) N(1) -6198(4) -13266(4) 1276.6(10) 16.5(8) C(2) -5517(5) -13847(6) 862.5(12) 19.5(9) C(8) -6250(5) -10284(6) 547.3(12) 21.0(9) C(6) -5405(5) -9381(6) -160.6(12) 23.0(9) C(5) -4595(6) -11270(6) -196.7(13) 26.9(10) C(7) -6230(5) -8877(6) 207.4(13) 23.6(10) C(9) -3417(5) -12095(6) 1357.0(11) 18(1) C(12) -1669(4) -12369(8) 1325.3(13) 28.3(9) C(14) -5678(5) -14769(6) 2222.8(13) 23.7(10) C(13) -7326(5) -14350(5) 2054.7(12) 18.6(9) C(16) -8529(6) -15785(7) 2276.9(14) 33.1(12) O(2) -1024(3) -10367(4) 1460.2(10) 25.9(7) C(10) -3718(5) -10119(6) 1485.9(12) 19.8(9) C(11) -2233(5) -9015(6) 1561.9(12) 20.6(10) O(1) -1982(3) -7251(5) 1692.7(8) 26.7(7) C(15) -7801(5) -12014(6) 2101.6(13) 25.1(10) Table 3: Anisotropic Displacement Parameters (Å 2 10 3 ) for compound 11. The Anisotropic displacement factor exponent takes the form: -2π 2 [h 2 a* 2 U11+2hka*b*U12+ ] Atom U11 U22 U33 U23 U13 U12 Br(1) 38.3(3) 36.3(2) 21.3(2) 4.6(2) -2.7(2) -2.8(3) S(1) 14.3(5) 22.1(5) 19.1(5) -3.0(4) -0.7(5) -1.6(5) O(3) 23.1(16) 18.5(13) 29.8(14) -4.5(14) 2.2(12) -0.8(14) C(4) 22(2) 29(2) 25(2) -4(2) 1.0(18) 8(3) C(3) 17(2) 25(2) 17.6(19) -5.4(16) -5.0(17) -2(2) C(1) 18(2) 15.8(18) 20(2) -0.7(16) 1(2) 2.5(19) N(1) 14.2(19) 19.9(17) 15.5(17) -1.6(12) -0.3(15) -0.1(14) C(2) 16(2) 19.2(19) 23(2) -5.0(16) -2(2) -2.8(19) C(8) 20(2) 26(2) 17(2) -5.8(17) -1.4(18) 0.4(19) C(6) 17(2) 31(2) 21(2) 0.4(17) -4(2) -7(2) C(5) 24(3) 38(2) 19(2) -2.4(18) 4(2) 4(2) C(7) 25(3) 24(2) 22(2) -5.3(18) -3(2) 0.2(19) C(9) 16(2) 26(3) 12.0(19) 4.7(16) -1.4(16) -1.0(19) C(12) 17(2) 24(2) 43(2) -1(2) -1.4(19) 1(2) C(14) 24(3) 29(2) 18(2) -0.4(17) -7.2(19) 4(2) S33

C(13) 16(2) 21(2) 19(2) -0.8(16) 1.3(19) -1.1(18) C(16) 34(3) 43(3) 23(2) -5(2) 8(2) -15(2) O(2) 12.4(15) 21.4(14) 43.8(19) 8.1(13) -3.2(15) -1.2(12) C(10) 19(2) 21(2) 20(2) -0.9(18) -0.6(19) 1.4(19) C(11) 22(3) 25(2) 15(2) 10.2(17) -2.2(19) -3.2(19) O(1) 29.4(18) 21.1(16) 29.5(15) 2.8(14) -5.1(12) -5.8(14) C(15) 23(2) 30(2) 22(2) -8.5(17) -0.7(19) 5.6(19) Table 4: Bond Lengths for compound 11. Atom Atom Length/Å Atom Atom Length/Å Br(1) C(6) 1.905(4) C(8) C(7) 1.381(5) S(1) O(3) 1.488(3) C(6) C(5) 1.380(6) S(1) N(1) 1.722(3) C(6) C(7) 1.381(6) S(1) C(13) 1.841(4) C(9) C(12) 1.498(5) C(4) C(3) 1.384(5) C(9) C(10) 1.333(5) C(4) C(5) 1.383(6) C(12) O(2) 1.438(5) C(3) C(2) 1.490(5) C(14) C(13) 1.519(6) C(3) C(8) 1.399(5) C(13) C(16) 1.530(5) C(1) N(1) 1.481(5) C(13) C(15) 1.533(5) C(1) C(2) 1.507(5) O(2) C(11) 1.372(5) C(1) C(9) 1.466(5) C(10) C(11) 1.460(6) N(1) C(2) 1.460(5) C(11) O(1) 1.203(5) Table 5: Bond Angles for compound 11. Atom Atom Atom Angle/ Atom Atom Atom Angle/ O(3) S(1) N(1) 109.45(16) C(7) C(6) Br(1) 119.9(3) O(3) S(1) C(13) 106.53(16) C(6) C(5) C(4) 118.8(4) N(1) S(1) C(13) 98.21(16) C(8) C(7) C(6) 119.7(4) C(5) C(4) C(3) 121.2(4) C(1) C(9) C(12) 121.8(4) C(4) C(3) C(2) 118.8(4) C(10) C(9) C(1) 129.7(4) C(4) C(3) C(8) 119.1(4) C(10) C(9) C(12) 108.5(4) C(8) C(3) C(2) 122.0(3) O(2) C(12) C(9) 104.9(4) N(1) C(1) C(2) 58.5(3) C(14) C(13) S(1) 111.3(3) C(9) C(1) N(1) 115.2(3) C(14) C(13) C(16) 110.9(3) C(9) C(1) C(2) 122.2(3) C(14) C(13) C(15) 112.1(3) S34

C(1) N(1) S(1) 118.4(2) C(16) C(13) S(1) 103.5(3) C(2) N(1) S(1) 114.9(2) C(16) C(13) C(15) 110.4(3) C(2) N(1) C(1) 61.6(3) C(15) C(13) S(1) 108.2(3) C(3) C(2) C(1) 124.9(3) C(11) O(2) C(12) 109.1(3) N(1) C(2) C(3) 118.9(3) C(9) C(10) C(11) 109.1(4) N(1) C(2) C(1) 59.9(2) O(2) C(11) C(10) 108.3(3) C(7) C(8) C(3) 120.0(4) O(1) C(11) O(2) 121.3(4) C(5) C(6) Br(1) 118.7(3) O(1) C(11) C(10) 130.4(4) C(5) C(6) C(7) 121.3(4) Table 6: Torsion Angles for compound 11. A B C D Angle/ A B C D Angle/ Br(1) C(6) C(5) C(4) -178.0(3) C(2) C(3) C(8) C(7) -176.3(4) Br(1) C(6) C(7) C(8) 178.6(3) C(2) C(1) N(1) S(1) 104.5(3) S(1) N(1) C(2) C(3) 134.0(3) C(2) C(1) C(9) C(12) -108.5(4) S(1) N(1) C(2) C(1) -110.2(3) C(2) C(1) C(9) C(10) 72.5(6) O(3) S(1) N(1) C(1) -24.3(3) C(8) C(3) C(2) C(1) -82.4(5) O(3) S(1) N(1) C(2) 45.6(3) C(8) C(3) C(2) N(1) -10.8(6) O(3) S(1) C(13) C(14) 48.8(3) C(5) C(4) C(3) C(2) 177.0(4) O(3) S(1) C(13) C(16) -70.3(3) C(5) C(4) C(3) C(8) -0.4(6) O(3) S(1) C(13) C(15) 172.5(3) C(5) C(6) C(7) C(8) 0.0(6) C(4) C(3) C(2) C(1) 100.2(5) C(7) C(6) C(5) C(4) 0.6(7) C(4) C(3) C(2) N(1) 171.9(4) C(9) C(1) N(1) S(1) -141.7(3) C(4) C(3) C(8) C(7) 1.0(6) C(9) C(1) N(1) C(2) 113.7(4) C(3) C(4) C(5) C(6) -0.4(7) C(9) C(1) C(2) C(3) 4.2(6) C(3) C(8) C(7) C(6) -0.8(6) C(9) C(1) C(2) N(1) -101.8(4) C(1) N(1) C(2) C(3) -115.8(4) C(9) C(12) O(2) C(11) -0.2(4) C(1) C(9) C(12) O(2) -177.8(3) C(9) C(10) C(11) O(2) 2.1(4) C(1) C(9) C(10) C(11) 177.0(4) C(9) C(10) C(11) O(1) -177.3(4) N(1) S(1) C(13) C(14) -64.3(3) C(12) C(9) C(10) C(11) -2.1(4) N(1) S(1) C(13) C(16) 176.5(3) C(12) O(2) C(11) C(10) -1.1(4) N(1) S(1) C(13) C(15) 59.3(3) C(12) O(2) C(11) O(1) 178.4(3) N(1) C(1) C(2) C(3) 106.0(4) C(13) S(1) N(1) C(1) 86.6(3) N(1) C(1) C(9) C(12) -175.8(3) C(13) S(1) N(1) C(2) 156.4(3) N(1) C(1) C(9) C(10) 5.1(6) C(10) C(9) C(12) O(2) 1.5(4) S35

Table 7: Hydrogen Atom Coordinates (Å 10 4 ) and Isotropic Displacement Parameters (Å 2 10 3 ) for compound 11. Atom x y z U(eq) H(4) -4084-13991 121 30 H(1) -4221-15254 1380 21 H(2) -5813-15298 761 23 H(8) -6805-9937 803 25 H(5) -4023-11595 -450 32 H(7) -6781-7568 227 28 H(12A) -1306-13530 1515 34 H(12B) -1354-12698 1027 34 H(14A) -5345-16198 2138 35 H(14B) -5676-14659 2537 35 H(14C) -4949-13721 2102 35 H(16A) -9556-15624 2138 50 H(16B) -8615-15383 2580 50 H(16C) -8186-17266 2256 50 H(10) -4736-9524 1522 24 H(15A) -7045-11119 1948 38 H(15B) -7807-11626 2406 38 H(15C) -8854-11804 1981 38 S36