Higher dimensional Kerr-Schild spacetimes 1

Similar documents
Newman-Penrose formalism in higher dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

Algebraic classification of tensors in Lorentzian geometry and its applications

Classification of the Weyl Tensor in Higher-Dimensions

BMS current algebra and central extension

UNIVERSITY OF DUBLIN

Robinson Trautman spacetimes with an electromagnetic field in higher dimensions

arxiv:gr-qc/ v2 18 Dec 2006

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Electromagnetic fields with vanishing scalar invariants. Marcello Ortaggio Vojtěch Pravda

Geometric inequalities for black holes

On a new class of infinitesimal group actions on pseudo-riemannian manifolds

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Rigidity of Black Holes

An introduction to General Relativity and the positive mass theorem

arxiv: v1 [gr-qc] 10 Apr 2017

Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones

Angular momentum and Killing potentials

Chapter 21. The Kerr solution The Kerr metric in Boyer-Lindquist coordinates

Tensors, and differential forms - Lecture 2

Exact Solutions of the Einstein Equations

Cosmological solutions of Double field theory

arxiv: v1 [gr-qc] 23 Oct 2017

From An Apple To Black Holes Gravity in General Relativity

A Summary of the Black Hole Perturbation Theory. Steven Hochman

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics

Hyperbolic Geometric Flow

Global and local problems with. Kerr s solution.

Discrete geometric structures in General Relativity

Kerr black hole and rotating wormhole

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis

Black Hole Universe with Rotation Chan Park KAIST

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

Quasi-local Mass in General Relativity

Isolated horizons of the Petrov type D

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007

Einstein Double Field Equations

Black holes in Einstein s gravity and beyond

Gravitational Memory and BMS Symmetry in Four and Higher Dimensions

Stationarity of non-radiating spacetimes

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Faculty of Engineering, Mathematics and Science School of Mathematics

Gravitational field of relativistic gyratons

Electromagnetic spikes

PAPER 311 BLACK HOLES

Hyperbolic Geometric Flow

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions

A rotating charged black hole solution in f (R) gravity

Black-hole binary inspiral and merger in scalar-tensor theory of gravity

Algebraic Theory of Entanglement

The BKL proposal and cosmic censorship

The Algebraic properties of black holes in higher dimension

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

arxiv: v2 [gr-qc] 7 Jan 2019

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002.

A solution in Weyl gravity with planar symmetry

arxiv: v2 [gr-qc] 5 Sep 2018

4. MiSaTaQuWa force for radiation reaction

ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD *

Konstantin E. Osetrin. Tomsk State Pedagogical University

Kadath: a spectral solver and its application to black hole spacetimes

Holographic Entanglement Entropy

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Causality, hyperbolicity, and shock formation in Lovelock theories

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Global aspects of Lorentzian manifolds with special holonomy

Light Propagation in the Averaged Universe. arxiv:

An exact solution for 2+1 dimensional critical collapse

arxiv:gr-qc/ v1 11 Mar 1998

Singularity formation in black hole interiors

Section 2. Basic formulas and identities in Riemannian geometry

Vacuum Spacetimes with a Constant Weyl Eigenvalue

Liouville integrability of Hamiltonian systems and spacetime symmetry

Notes on General Relativity Linearized Gravity and Gravitational waves

Elements of differential geometry

Gravitational waves, solitons, and causality in modified gravity

arxiv:gr-qc/ v1 2 Apr 2002

Wave extraction using Weyl scalars: an application

Phys 731: String Theory - Assignment 3

Purely magnetic vacuum solutions

Three-dimensional gravity. Max Bañados Pontificia Universidad Católica de Chile

arxiv: v2 [gr-qc] 13 Mar 2015

Getting The Spin Right In Black-Hole Binaries

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Instability of extreme black holes

Chapters of Advanced General Relativity

Theoretical Aspects of Black Hole Physics

Black hole near-horizon geometries

Black rings with a small electric charge: gyromagnetic ratios and algebraic alignment

Non-vacuum twisting type-n metrics

arxiv:gr-qc/ v1 12 Sep 2002

Einstein Toolkit Workshop. Joshua Faber Apr

On Exact Kerr-Schild Type Vacuum Solutions to Salam's Two-Tensor Theory of Gravity*

Quantum Gravity and Black Holes

Non-gravitating waves

Supplement to Lesson 9: The Petrov classification and the Weyl tensor

Metrisability of Painleve equations and Hamiltonian systems of hydrodynamic type

Transcription:

Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165 [gr-qc]

Contents 1 Why Kerr-Schild spacetimes? Kerr-Schild in n = 4 dimensions Myers-Perry black holes in n > 4 dimensions 2 Formalism: null frames, classification of Weyl, geometric optics 3 Basic properties of Kerr-Schild in n 4 4 Vacuum Kerr-Schild solutions Non-expanding solutions Expanding solutions 5 Summary and outlook

Why Kerr-Schild spacetimes? Why Kerr-Schild spacetimes? Kerr-Schild ansatz g ab = η ab 2Hk a k b with k a k a = 0 Why Kerr-Schild spacetimes? original motivation: radiation [Trautman 62] contains various important solutions in n = 4 [Kerr-Schild 65, Debney-Kerr-Schild 69] rotating vacuum black holes in n > 4 [Myers-Perry 86] mathematical tractability: insight into general properties of exact solutions? find new solutions?

Why Kerr-Schild spacetimes? Kerr-Schild in n = 4 dimensions Schwarzschild ds 2 = dt 2 + dx 2 + dy 2 + dz 2 + 2m r k ak b dx a dx b Kerr ds 2 = dt 2 + dx 2 + dy 2 + dz 2 + Kerr-Newman 2mr3 r 4 + a 2 z 2 k ak b dx a dx b ds 2 = dt 2 + dx 2 + dy 2 + dz 2 + 2mr3 e 2 r 2 r 4 + a 2 z 2 k a k b dx a dx b k a dx a = dt + zdz r(xdx + ydy) a(xdy ydx) + r r 2 + a 2 r 2 + a 2, (x 2 + y 2 )(r 2 + a 2 ) 1 + z 2 r 2 = 1, A a dx a r = e 3 k r 4 +a 2 z 2 a dx a.

Why Kerr-Schild spacetimes? Myers-Perry black holes Myers-Perry black holes Black hole holes n 4: vacuum, rotating, asymptotically flat. For n even, i = 1,..., n 2 2 : ds 2 = dt 2 + dx i dx i + dy i dy i + dz 2 2Hk a k b dx a dx b k a dx a = dt + zdz + r 2H = µr 1 (n 2)/2 i=1 x 2 i + y2 i r 2 + a 2 i (n 2)/2 i=1 (n 2)/2 i=1 + z2 r 2 = 1. ( r(xi dx i + y i dy i ) r 2 + a 2 i a 2 i (x2 i + y2 i ) (r 2 + a 2 i )2 1 (n 2)/2 j=1 a ) i(x i dy i x i dy i ) r 2 + a 2, i 1 r 2 + a 2, j

Formalism: null frames, classification of Weyl, geometric optics Null frames Null frame (l, n, m (i) ) in an n-dimensional spacetime (n 4): l n = 1, m (i) m (j) = δ ij (i = 2,..., n 1) Metric g ab = 2l (a n b) + δ ij m (i) a m (j) b invariant under: Null rotations l = l, n = n + z i m (i) 1 2 zi z i l, m (i) = m (i) z i l Spatial rotations Boosts l = l, n = n, m (i) = X i jm (j) l = λl, n = λ 1 n, m (i) = m (i)

Formalism: null frames, classification of Weyl, geometric optics Classification of the Weyl tensor Frame decomposition of Weyl: C abcd = b=+2 z } { 4C 0i0j n {a m (i) b n cm (j) d } + + 4C 0101 n {a l b n c l d } + C 01ij n {a l b m (i) c m (j) d } + 8C 0i1j n {a m (i) b l cm (j) d } + C ijkl m (i) b=+1 z } { 8C 010i n {a l b n c m (i) d } + 4C 0ijk n {a m (i) {a m(j) b m(k) c m (l) d } ) b=0 b m(j) c + 8C 101i l {a n b l c m (i) d } + 4C 1ijk l {a m (i) b m(j) c m (k) d + 4C 1i1j l {a m (i) b l cm (j) d, {z } {z } b= 1 b= 2 m (k) d } Algebraically special Weyl tensors If C 0i0j = 0, i.e. l is a WAND (Weyl Aligned Null Direction). Further alignment of l (and n) algebraic types (G,)I,II,(D,)III,N. [Coley-Milson-Pravda-Pravdová 04, Milson-Coley-Pravda-Pravdová 05]

Formalism: null frames, classification of Weyl, geometric optics Classification of the Weyl tensor Frame decomposition of Weyl: C abcd = b=+2 z } { 4C 0i0j n {a m (i) b n cm (j) d } + + 4C 0101 n {a l b n c l d } + C 01ij n {a l b m (i) c m (j) d } + 8C 0i1j n {a m (i) b l cm (j) d } + C ijkl m (i) b=+1 z } { 8C 010i n {a l b n c m (i) d } + 4C 0ijk n {a m (i) {a m(j) b m(k) c m (l) d } ) b=0 b m(j) c + 8C 101i l {a n b l c m (i) d } + 4C 1ijk l {a m (i) b m(j) c m (k) d + 4C 1i1j l {a m (i) b l cm (j) d, {z } {z } b= 1 b= 2 m (k) d } Algebraically special Weyl tensors If C 0i0j = 0, i.e. l is a WAND (Weyl Aligned Null Direction). Further alignment of l (and n) algebraic types (G,)I,II,(D,)III,N. [Coley-Milson-Pravda-Pravdová 04, Milson-Coley-Pravda-Pravdová 05]

Formalism: null frames, classification of Weyl, geometric optics Classification of the Weyl tensor Frame decomposition of Weyl: C abcd = b=+2 z } { 4C 0i0j n {a m (i) b n cm (j) d } + + 4C 0101 n {a l b n c l d } + C 01ij n {a l b m (i) c m (j) d } + 8C 0i1j n {a m (i) b l cm (j) d } + C ijkl m (i) b=+1 z } { 8C 010i n {a l b n c m (i) d } + 4C 0ijk n {a m (i) {a m(j) b m(k) c m (l) d } ) b=0 b m(j) c + 8C 101i l {a n b l c m (i) d } + 4C 1ijk l {a m (i) b m(j) c m (k) d + 4C 1i1j l {a m (i) b l cm (j) d, {z } {z } b= 1 b= 2 m (k) d } Algebraically special Weyl tensors If C 0i0j = 0, i.e. l is a WAND (Weyl Aligned Null Direction). Further alignment of l (and n) algebraic types (G,)I,II,(D,)III,N. [Coley-Milson-Pravda-Pravdová 04, Milson-Coley-Pravda-Pravdová 05]

Formalism: null frames, classification of Weyl, geometric optics Classification of the Weyl tensor Frame decomposition of Weyl: C abcd = b=+2 z } { 4C 0i0j n {a m (i) b n cm (j) d } + + 4C 0101 n {a l b n c l d } + C 01ij n {a l b m (i) c m (j) d } + 8C 0i1j n {a m (i) b l cm (j) d } + C ijkl m (i) b=+1 z } { 8C 010i n {a l b n c m (i) d } + 4C 0ijk n {a m (i) {a m(j) b m(k) c m (l) d } ) b=0 b m(j) c + 8C 101i l {a n b l c m (i) d } + 4C 1ijk l {a m (i) b m(j) c m (k) d + 4C 1i1j l {a m (i) b l cm (j) d, {z } {z } b= 1 b= 2 m (k) d } Algebraically special Weyl tensors If C 0i0j = 0, i.e. l is a WAND (Weyl Aligned Null Direction). Further alignment of l (and n) algebraic types (G,)I,II,(D,)III,N. [Coley-Milson-Pravda-Pravdová 04, Milson-Coley-Pravda-Pravdová 05]

Formalism: null frames, classification of Weyl, geometric optics Geometric optics Frame components of the covariant derivative of l: l a;b = L 11 l a l b +L 10 l a n b +L 1i l a m (i) b +L i1m (i) a l b +L i0 m a (i) n b +L ij m (i) a m (j) b. Geodesic vector field l 0 = l a;b l b = L 10 l a + L i0 m (i) a L i0 = 0 = L 10 Matrix L ij l a;b m (i)a m (j)b characterizes the optics of a geodesic l: L ij = S ij + A ij, S ij L (ij) = σ ij + θδ ij, A ij L [ij]. Optical scalars shear σ 2 σ ij σ ij = l (a;b) l a;b 1 n 2 (la ;b )2 expansion θ = 1 n 2 S ii = 1 n 2 la ;a twist ω 2 A ij A ij = l [a;b] l a;b [Frolov-Stojković 03, Pravda-Pravdová-Coley-Milson 04, Lewandowski-Pawlowski 05]

Basic properties of Kerr-Schild in n 4 Kerr-Schild ansatz Take: define: n dim. flat metric η ab = diag( 1, 1,..., 1) null 1-form k a (η ab k a k b = 0) function H g ab = η ab 2Hk a k b then: k a = η ab k b = g ab k b g ab k a k b = 0: null in both geometries g ab = η ab + 2Hk a k b : simple (linear) inverse and Γ a bc = (Hka k b ),c (Hk a k c ),b + η ad (Hk b k c ),d + 2Hk a k d (Hk b k c ),d, R a b = (Hka k b ), s s (Hk a k s ),bs (Hk b k s ), a s, etc.

Basic properties of Kerr-Schild in n 4 Geometric optics Γ a bc =... L i0 k a;b m (i)a k b = L i0, L ij k a;b m (i)a m (j)b = L ij Optics of k inherited from flat space k geodetic in g ab k geodetic in η ab same shear, expansion and twist in both geometries

Basic properties of Kerr-Schild in n 4 Geometric optics Γ a bc =... L i0 k a;b m (i)a k b = L i0, L ij k a;b m (i)a m (j)b = L ij Optics of k inherited from flat space k geodetic in g ab k geodetic in η ab same shear, expansion and twist in both geometries and R ab k a k b = 2HL i0 L i0 Geodesic condition k geodetic T ab k a k b = 0 In particular: vacuum Λ-term aligned Maxwell (F a b kb k a ) aligned pure radiation (T ab k a k b ), etc....

Basic properties of Kerr-Schild in n 4 Geometric optics Γ a bc =... L i0 k a;b m (i)a k b = L i0, L ij k a;b m (i)a m (j)b = L ij Optics of k inherited from flat space k geodetic in g ab k geodetic in η ab same shear, expansion and twist in both geometries and R ab k a k b = 2HL i0 L i0 Geodesic condition k geodetic T ab k a k b = 0 In particular: vacuum Λ-term aligned Maxwell (F a b kb k a ) aligned pure radiation (T ab k a k b ), etc.... From now on: k geodesic + affinely parametrized (L i0 = 0 = L 10 ).

Basic properties of Kerr-Schild in n 4 Algebraic type of Weyl With k geodesic R 0i0j = R 010i = R 0ijk = 0, R 00 = R 0i = 0 C 0i0j = 0 ( Ψ 0 = 0 ) C 010i = 0, C 0ijk = 0 ( Ψ 1 = 0 ). Algebraic type for KS KS, k geodesic type II (or more special), k WAND

Basic properties of Kerr-Schild in n 4 Algebraic type of Weyl With k geodesic R 0i0j = R 010i = R 0ijk = 0, R 00 = R 0i = 0 C 0i0j = 0 ( Ψ 0 = 0 ) C 010i = 0, C 0ijk = 0 ( Ψ 1 = 0 ). Algebraic type for KS KS, k geodesic type II (or more special), k WAND Consequences for black hole spacetimes no black rings in KS (since of type I i [Pravda-Pravdová 05]) Myers-Perry BHs and uniform black strings are type D ( BHs can be only type G, I i, D, O [Pravda-Pravdová-M.O. 07b]) cf. [Hamamoto-Houri-Oota-Yasui 07]

Vacuum Kerr-Schild solutions Vacuum equations Ricci tensor R 00 = 0 = R 0i identically. R 01 and R ij are simple and depend only on the optics of k (and on H), i.e. (D k a a ) Basic equations Tracing (2): D 2 H + (n 2)θDH + 2Hω 2 = 0 (1) (D ln H)S ij = L ik L jk (n 2)θS ij (2) (n 2)θ(D ln H) = σ 2 + ω 2 (n 2)(n 3)θ 2. (3)

Vacuum Kerr-Schild solutions Vacuum equations Ricci tensor R 00 = 0 = R 0i identically. R 01 and R ij are simple and depend only on the optics of k (and on H), i.e. (D k a a ) Basic equations Tracing (2): Two families: D 2 H + (n 2)θDH + 2Hω 2 = 0 (1) (D ln H)S ij = L ik L jk (n 2)θS ij (2) (n 2)θ(D ln H) = σ 2 + ω 2 (n 2)(n 3)θ 2. (3) 1 θ = 0 non-expanding (3) σ = 0 = ω ( Kundt) (1) D 2 H = 0 2 θ 0 expanding (3) D ln H =... (2)...

Vacuum Kerr-Schild solutions Non-expanding solutions Non-expanding solutions θ = σ = ω = 0, D 2 H = 0 KS θ=0 Kundt-N all vacuum Kundt-N in [Coley-Fuster-Hervik-Pelavas 06] easy to see that vacuum Kundt-N KS θ=0 (e.g.: ds 2 = 2dudr + δ ij dx i dx j +Hdu 2 = ds 2 0 +Hdu2 ) Non-expanding vacuum KS E.g., type N pp -waves. KS + non-expanding Kundt + type N

Vacuum Kerr-Schild solutions Expanding solutions Expanding solutions R ij = 0 splits into DH = f(θ, σ, ω) and Optical constraint (OC) L ik L jk = L lkl lk (n 2)θ S ij LL T = Tr(LLT ) 2(n 2)θ (L + LT ) independent of H purely geometric restriction on the choice of k in flat space purely algebraic non-trivial (counterexamples)

Vacuum Kerr-Schild solutions Expanding solutions Algebraic type With OC, by reductio ad absurdum types III and N not possible type II, D only (e.g., Myers-Perry)

Vacuum Kerr-Schild solutions Expanding solutions Algebraic type With OC, by reductio ad absurdum types III and N not possible type II, D only (e.g., Myers-Perry) How to proceed then? 1 solve the OC form of L ij 2 solve Sachs equations r-dependence of L ij (and θ, σ, ω) (extending [Sachs 61, Newman-Penrose 62]) 3 solve DH = f(θ, σ, ω) r-dependence of H

Vacuum Kerr-Schild solutions Expanding solutions Algebraic type With OC, by reductio ad absurdum types III and N not possible type II, D only (e.g., Myers-Perry) How to proceed then? 1 solve the OC form of L ij 2 solve Sachs equations r-dependence of L ij (and θ, σ, ω) (extending [Sachs 61, Newman-Penrose 62]) 3 solve DH = f(θ, σ, ω) r-dependence of H This enables one to discuss: weak Goldberg-Sachs theorem? curvature singularities special subfamilies (not in this talk)

Vacuum Kerr-Schild solutions Expanding solutions Solving the optical constraint and the Sachs equations Optical constraint: LL T = 1 2 F(L + LT ) Sachs equations [Pravda-Pravdová-M.O. 07a]: DL = L 2

Vacuum Kerr-Schild solutions Expanding solutions Solving the optical constraint and the Sachs equations Optical constraint: LL T = 1 2 F(L + LT ) Sachs equations [Pravda-Pravdová-M.O. 07a]: DL = L 2 then in an appropriate parallely transported frame L (1) ( )... 1 r b 0 L (µ) = µ L ij = L (p) r 2 + (b 0 µ) 2 b 0, µ r, L L = 1 r diag(1, }. {{.., 1, 0,..., 0), }}{{} (m 2p) (n 2 m) with µ = 1,..., p, 0 2p m n 2, m rank(l).

Vacuum Kerr-Schild solutions Expanding solutions Solving the optical constraint and the Sachs equations Optical constraint: LL T = 1 2 F(L + LT ) Sachs equations [Pravda-Pravdová-M.O. 07a]: DL = L 2 then in an appropriate parallely transported frame L (1) ( )... 1 r b 0 L (µ) = µ L ij = L (p) r 2 + (b 0 µ) 2 b 0, µ r, L L = 1 r diag(1, }. {{.., 1, 0,..., 0), }}{{} (m 2p) (n 2 m) with µ = 1,..., p, 0 2p m n 2, m rank(l). Generically σ 0, but no shear in each 2-block: generalized Goldberg-Sachs?

Vacuum Kerr-Schild solutions Expanding solutions Solving DH = f(θ, σ, ω): r-dependence of H KS function H = H 0 r m 2p 1 p µ=1 1 r 2 + (b 0 µ) 2

Vacuum Kerr-Schild solutions Expanding solutions Solving DH = f(θ, σ, ω): r-dependence of H KS function H = H 0 r m 2p 1 p 1 r 2 + (b 0 µ) 2 H 0 for r rm 1 µ=1

Vacuum Kerr-Schild solutions Expanding solutions Solving DH = f(θ, σ, ω): r-dependence of H KS function Examples: H = H 0 r m 2p 1 p 1 r 2 + (b 0 µ) 2 H 0 for r rm 1 µ=1 n = 4 Kerr (m = 2, p = 1): H µr r 2 + a 2 cos 2 θ n = 5 Myers-Perry (m = 3, p = 1): H µ r 2 + a 2 cos 2 θ + b 2 sin 2 θ Cf. also coordinates of [Chen-Lü-Pope 06].

Vacuum Kerr-Schild solutions Expanding solutions Curvature singularities Singularities at r = 0 (caustic) of the metric function H = H p 0 1 r m 2p 1 r 2 + (b 0 µ) 2. µ=1 Confirmed by Kretschmann R abcd R abcd.

Vacuum Kerr-Schild solutions Expanding solutions Curvature singularities Singularities at r = 0 (caustic) of the metric function H = H p 0 1 r m 2p 1 r 2 + (b 0 µ) 2. µ=1 Confirmed by Kretschmann R abcd R abcd. Not valid for for m = 2p, m = 2p + 1 still singularities at possible special points where b 0 µ = 0: n = 4 Kerr (m = 2, p = 1): µr H r 2 + a 2 cos 2 θ n = 5 Myers-Perry with b = 0: µ H r 2 + a 2 cos 2 θ For BHs, more details in [Myers-Perry 86]. r = 0 and θ = π/2 r = 0 and θ = π/2

Summary and outlook Summary and outlook studied basic properties of KS ansatz g ab = η ab 2Hk a k b in n > 4 dimensions, e.g.: - k geodetic T ab k a k b = 0 - k geodetic type II or more special

Summary and outlook Summary and outlook studied basic properties of KS ansatz g ab = η ab 2Hk a k b in n > 4 dimensions, e.g.: - k geodetic T ab k a k b = 0 - k geodetic type II or more special focused on vacuum solutions: two invariant subfamilies

Summary and outlook Summary and outlook studied basic properties of KS ansatz g ab = η ab 2Hk a k b in n > 4 dimensions, e.g.: - k geodetic T ab k a k b = 0 - k geodetic type II or more special focused on vacuum solutions: two invariant subfamilies θ = 0: complete solution, equivalent to type N Kundt

Summary and outlook Summary and outlook studied basic properties of KS ansatz g ab = η ab 2Hk a k b in n > 4 dimensions, e.g.: - k geodetic T ab k a k b = 0 - k geodetic type II or more special focused on vacuum solutions: two invariant subfamilies θ = 0: complete solution, equivalent to type N Kundt θ 0: richer and more complex structure - type II and D only - found r-dependence of L ij and H (R ij = 0, R 01 = 0) - weak (and partial) Goldberg-Sachs theorem - curvature singularities - subfamilies ω = 0, σ = 0 ( with Robinson-Trautman) next: - (in principle) find explicit k and solve R 11 = 0 and R 1i = 0 - anything like Kerr s theorem in HD? - find new solutions? (symmetries, simple optics )

Riemann and Ricci tensors Riemann tensor k geodesic, affinely parametrized: R 0i0j = 0, R 010i = 0, R 0ijk = 0, R 0101 = D 2 H, R 01ij = 2A ji DH + 4HS k[j A i]k, R 0i1j = L ij DH 2HA ki L kj, R ijkl = 4H(A ij A kl + A k[j A i]l + S l[i S j]k ), R 011i = δ i (DH) + 2L [i1] DH + L ji δ j H + 2H(2L ji L [1j] + L j1 A ji ), R 1ijk = 2L [j i δ k] H + 2A jk δ i H 2H ( δ i A kj + L 1j L ki L 1k L ji L j1 A ki + L k1 A ji + 2L [1i] A kj + A lj M ki A lk M ji), R 1i1j = δ (i (δ j) H) + M k (ij) δ k H + (2L 1j L j1 )δ i H + (2L 1i L i1 )δ j H + N (ij) DH S ij H + 2H ( δ (i L 1 j) S ij 2L 1(i L j)1 + 2L 1i L 1j L k(i N k j) 2HL k(i A j)k k k k ) + L 1kM (ij) 2HA ik A jk L k(im j)1 L (i km j)1. l l

Riemann and Ricci tensors Ricci tensor k geodesic, affinely parametrized: R 00 = 0, R 0i = 0, R 01 = [D 2 H + (n 2)θDH + 2Hω 2 ], R ij = 2HL ik L jk 2[DH + (n 2)θH]S ij, R 11 = δ i (δ i H) + (N ii 2HL ii )DH + (4L 1j 2L j1 i M ji)δ j H L ii H + 2H ( 2δ i L [1i] + 4L 1i L [1i] + L i1 L i1 L 11 L ii + 2L [1j] j M ii 2A ij N ij 2Hω 2), R 1i = δ i (DH) + 2L [i1] DH + 2L ij δ j H L jj δ i H + 2H ( j i ) δ j A ij + A ij M kk A kj M kj L jj L 1i + 3L ij L [1j] + L ji L (1j).