Magnetic Monopoles and N = 2 super Yang Mills

Similar documents
Semiclassical Framed BPS States

Monopolia. Gregory Moore Nambu Memorial Symposium University of Chicago. March 13, 2016

Framed BPS States In Two And Four Dimensions. Gregory Moore. String Math, Paris, June 27, 2016

Framed BPS States In Four And Two Dimensions. Gregory Moore. String Math, Paris, June 27, 2016

Singular Monopoles and Instantons on Curved Backgrounds

BPS States in N=4. Ashoke Sen. Harish-Chandra Research Institute, Allahabad, India

Ω-deformation and quantization

Topological reduction of supersymmetric gauge theories and S-duality

wall crossing redux PILJIN YI STRINGS 2013 KOREA INSTITUTE for ADVANCED STUDY

Possible Advanced Topics Course

Current Algebra Constraints on Supersymmetric Quantum Field Theories

2d-4d wall-crossing and hyperholomorphic bundles

Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Wall-crossing from quantum multi-centered BPS black holes

d=4 N=2 Field Theory and Physical Mathematics Gregory Moore Rutgers University Stanford, Nov. 27, 2018

t Hooft Loops and S-Duality

Surface Defects and the BPS Spectrum of 4d N=2 Theories

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

d=4 N=2 Field Theory and Physical Mathematics Gregory Moore Rutgers University

The Langlands dual group and Electric-Magnetic Duality

Witten Index for Noncompact Dynamics

Spectral Networks and Their Applications. Caltech, March, 2012

Algebraic structure of the IR limit of massive d=2 N=(2,2) theories. collaboration with Davide Gaiotto & Edward Witten

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Four Lectures on Web Formalism and Categorical Wall-Crossing. collaboration with Davide Gaiotto & Edward Witten

Lecture 7: N = 2 supersymmetric gauge theory

Half BPS solutions in type IIB and M-theory

Partition functions of N = 4 Yang-Mills and applications

THE SEN CONJECTURE FOR. University of Cambridge. Silver Street U.K. ABSTRACT

Some Tools for Exploring Supersymmetric RG Flows

Morse theory and stable pairs

2-Group Global Symmetry

Techniques for exact calculations in 4D SUSY gauge theories

Wall Crossing and Quivers

Lecture 24 Seiberg Witten Theory III

Recent Advances in SUSY

t Hooft loop path integral in N = 2 gauge theories

Wall-crossing, Black holes, and Quivers

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

8.821 F2008 Lecture 5: SUSY Self-Defense

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Donaldson and Seiberg-Witten theory and their relation to N = 2 SYM

Stability data, irregular connections and tropical curves

A Localization Computation in Confining Phase

Questions arising in open problem sessions in AIM workshop on L 2 -harmonic forms in geometry and string theory

2d N = (2, 2) supersymmetry with U(1) RV in curved space

Affine SU(N) algebra from wall-crossings

Pin (2)-monopole theory I

DEFECTS IN COHOMOLOGICAL GAUGE THEORY AND DONALDSON- THOMAS INVARIANTS

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

String Math Bonn, July S.C., arxiv: S.C., & M. Del Zotto, arxiv: N = 2 Gauge Theories, Half Hypers, and Quivers

New Superconformal Chern-Simons Theories and M2-branes

Think Globally, Act Locally

Witten, Cardy, and Holonomy Saddles

4d N=2 as 6d N=(2,0) compactified on C

The u-plane Integral And Indefinite Theta Functions

Spectral networks at marginal stability, BPS quivers, and a new construction of wall-crossing invariants

REMARKS ON THE ATIYAH - HITCHIN METRIC

6d (2,0) Theories and M5 Branes

Dualities and Topological Strings

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

Montonen and Olive [1] that certain theories may possess an exact magnetic-electric duality that exchanges solitons with elementary quanta and weak wi

Singular Monopoles from Cheshire Bows

Torus actions and Ricci-flat metrics

A wall-crossing formula for 2d-4d DT invariants

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst

The topology of asymptotically locally flat gravitational instantons

Supersymmetric Gauge Theories in 3d

Elliptic Genera of non-compact CFTs

TOPOLOGICAL REDUCTION OF 4D SYM TO 2D σ MODELS

Geometric Langlands duality and the equations of Nahm and Bogomolny

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

SUSY Breaking in Gauge Theories

Geometry and Physics. Amer Iqbal. March 4, 2010

BPS states, Wall-crossing and Quivers

Web Formalism and the IR limit of massive 2D N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten

Lie n-algebras and supersymmetry

Orientation transport

A Landscape of Field Theories

On M5 Branes. Kimyeong Lee KIAS. YKIS 2012 From Gravity to Strong Coupling Physics Yukawa Institute for Theoretical Physics Oct 2012

Instantons and Donaldson invariants

Factorization Algebras Associated to the (2, 0) Theory IV. Kevin Costello Notes by Qiaochu Yuan

Some applications of light-cone superspace

PiTP Lectures on BPS States and Wall-Crossing in d = 4, N = 2 Theories

Quantising noncompact Spin c -manifolds

Mirror symmetry, Langlands duality and the Hitchin system I

QK/HK correspondence, Wall-crossing and the Rogers dilogarithm

Non-Abelian Duality and Confinement in Supersymmetric Gauge Theories Naoto YOKOI

Magne&c Monopoles. David Tong

Interpolating geometries, fivebranes and the Klebanov-Strassler theory

and the seeds of quantisation

THE OOGURI-VAFA METRIC, HOLOMORPHIC DISCS AND WALL-CROSSING

Ricci-flat metrics on complex cones

TOPOLOGICAL QUANTUM FIELD THEORY AND FOUR MANIFOLDS

Three Applications of Topology to Physics

Spectral curves and the mass of hyperbolic monopoles. Nuno M. Romão. Massachusetts Institute of Technology Cambridge MA, USA

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Transcription:

Magnetic Monopoles and N = 2 super Yang Mills Andy Royston Texas A&M University MCA Montréal, July 25, 2017 1404.5616, 1404.7158, 1512.08923, 1512.08924 with G. Moore and D. Van den Bleeken; work in progress with D. Brennan and G. Moore lecture notes available at http://ckottke.ncf.edu/senworkshop/notes

Main Idea Recent developments in 4D, N = 2 SYM? wall crossing, defects, no-exotics,... Geometry of monopole moduli space Fredholm properties of Dirac-like operators L 2 cohomology,...

Main Idea Recent developments in 4D, N = 2 SYM Seiberg Witten BPS states semiclassical? wall crossing, defects, no-exotics,... Geometry of monopole moduli space Fredholm properties of Dirac-like operators L 2 cohomology,...

Outline Moduli spaces of (singular) monopoles Consequences of N = 2 susy and quantization The SW sc map and its predictions Asymptotic analysis

(Singular) monopoles YMH on R 1,3 : S ymh = 1 [(F g0 2 A, F A ) + (d A X, d A X)] R 1,3 simple compact Lie group G, algebra g Magnetic Monopoles: F A = 3 d A X on R 3 s.t. (bc ) : X = X γ m 2r + F A = γ m 2 sin θdθdφ + as r, where X t, a Cartan subalgebra, with basis {H I } γ m Λ cr t

(Singular) monopoles YMH on R 1,3 : S ymh = 1 [(F g0 2 A, F A ) + (d A X, d A X)] R 1,3 simple compact Lie group G, algebra g t Hooft defects: (bc 0 ): (P Hom(U(1), T )) X = P 2r + F A = P 2 sin θdθdφ + as r 0 t Hooft ( 78); Kapustin ( 05)

(Singular) monopoles YMH on R 1,3 : S ymh = 1 [(F g0 2 A, F A ) + (d A X, d A X)] R 1,3 simple compact Lie group G, algebra g t Hooft defects: (bc 0 ): (P Hom(U(1), T )) X = P 2r + F A = P 2 sin θdθdφ + as r 0 t Hooft ( 78); Kapustin ( 05) Singular magnetic monopoles: F A = 3 d A X on R 3 s.t. (bc 0 ) and (bc ) hold Kronheimer ( 85); Cherkis, Kapustin ( 97)

Moduli space of (singular) monopoles M(P; γ m, X ) = space of such solutions / local g.t. s Pauly ( 98); Cherkis, Kapustin ( 97, 98); Kapustin, Witten ( 06); MRV ( 14); Foscolo ( 14)

Moduli space of (singular) monopoles M(γ m, X ) = space of such solutions / local g.t. s Weinberg ( 78); Taubes ( 83); Donaldson ( 84) Atiyah, Hitchin ( 88),...

Moduli space of (singular) monopoles M(P; γ m, X ) = space of such solutions / local g.t. s Hyperkähler Pauly ( 98); Cherkis, Kapustin ( 97, 98); Kapustin, Witten ( 06); MRV ( 14); Foscolo ( 14)

Moduli space of (singular) monopoles M(P; γ m, X ) = space of such solutions / local g.t. s Hyperkähler Pauly ( 98); Cherkis, Kapustin ( 97, 98); Kapustin, Witten ( 06); MRV ( 14); Foscolo ( 14) Dimension: 4 (# of fundamental constituents)

Moduli space of (singular) monopoles M(P; γ m, X ) = space of such solutions / local g.t. s Hyperkähler Pauly ( 98); Cherkis, Kapustin ( 97, 98); Kapustin, Witten ( 06); MRV ( 14); Foscolo ( 14) Dimension: 4 (# of fundamental constituents) Isometries: M : M : R 3 so(3) rot t so(3) rot t

Moduli space of (singular) monopoles M(P; γ m, X ) = space of such solutions / local g.t. s Hyperkähler Pauly ( 98); Cherkis, Kapustin ( 97, 98); Kapustin, Witten ( 06); MRV ( 14); Foscolo ( 14) Dimension: 4 (# of fundamental constituents) Isometries: M : M : R 3 so(3) rot t so(3) rot t G : t isom H (M) so that t H G(H)

Moduli space of (singular) monopoles M(P; γ m, X ) = space of such solutions / local g.t. s Hyperkähler Pauly ( 98); Cherkis, Kapustin ( 97, 98); Kapustin, Witten ( 06); MRV ( 14); Foscolo ( 14) Dimension: 4 (# of fundamental constituents) Isometries: M : M : R 3 so(3) rot t so(3) rot t G : t isom H (M) so that t H G(H) Product structure: M = R 4 M 0

Examples Vanilla Examples {1, 0,..., 0}, M 0 = {pt}, {nm} I = {2, 0,..., 0}, M 0 = Atiyah Hitchin m fold, {1, 1, 0,..., 0}, M 0 = Taub-NUT Defect examples SO(3) gauge theory: P = p 2 H, γ m = ñ m H, s.t. p, ñ m Z ñ m = 0, M = {pt}, ñ m = 1, M = Taub-NUT/Z p, ñ m = 2, p = 1, M = Dancer m fold

Embedding into N = 2 SYM S = S[A, ϕ, ψ a ] = 1 g 2 0 R 1,3 [(F A, F A ) + (d A ϕ, d A ϕ) + ] ϕ a complex Higgs field, ψ a, a = 1, 2, an SU(2) R doublet of Weyl fermions

Embedding into N = 2 SYM S = S[A, ϕ, ψ a ] = 1 g 2 0 R 1,3 [(F A, F A ) + (d A ϕ, d A ϕ) + ] ϕ a complex Higgs field, ψ a, a = 1, 2, an SU(2) R doublet of Weyl fermions Supersymmetry: δ ξ S = 0 δ ξ ϕ = 2iɛ ab ξ a ψ b, δ ξ ψ a = = Noether charges Q a

Embedding into N = 2 SYM S = S[A, ϕ, ψ a ] = 1 g 2 0 ϕ a complex Higgs field, R 1,3 [(F A, F A ) + (d A ϕ, d A ϕ) + ] ψ a, a = 1, 2, an SU(2) R doublet of Weyl fermions Supersymmetry: δ ξ S = 0 δ ξ ϕ = 2iɛ ab ξ a ψ b, δ ξ ψ a = = Noether charges Q a Algebra: {Q a, Q b } + δ a bh, {Q a, Q b } + ɛ ab Z H is the Hamiltonian Z = 2 (if g 0 2 S 2 A F A, ϕ) = 4πi (γ g m, ϕ ) (γ 0 2 e, ϕ ), central charge

Embedding into N = 2 SYM BPS bound: Set R ζ 1/2 Q + ζ 1/2 Q, ( ζ = 1) Then 0 {R, R } + = H + Re(ζ 1 Z) = H Re(ζ 1 Z)

Embedding into N = 2 SYM BPS bound: Set R ζ 1/2 Q + ζ 1/2 Q, ( ζ = 1) Then 0 {R, R } + = H + Re(ζ 1 Z) = H Re(ζ 1 Z) Saturated on fields A, ϕ =: ζ(y + ix), satisfying (F A ) ij = ɛ ijk (d A X) k, ( 3 d A 3 d A + ad(x) 2 )Y = 0, (F A ) i0 = (d A Y ) i

Embedding into N = 2 SYM BPS bound: Set R ζ 1/2 Q + ζ 1/2 Q, ( ζ = 1) Then 0 {R, R } + = H + Re(ζ 1 Z) = H Re(ζ 1 Z) Saturated on fields A, ϕ =: ζ(y + ix), satisfying (F A ) ij = ɛ ijk (d A X) k, ( 3 d A 3 d A + ad(x) 2 )Y = 0, (F A ) i0 = (d A Y ) i What about ζ? no defects ( vanilla BPS f.c. s): maximize the bound: ζ = ζ van := Z/ Z

Embedding into N = 2 SYM BPS bound: Set R ζ 1/2 Q + ζ 1/2 Q, ( ζ = 1) Then 0 {R, R } + = H + Re(ζ 1 Z) = H Re(ζ 1 Z) Saturated on fields A, ϕ =: ζ(y + ix), satisfying (F A ) ij = ɛ ijk (d A X) k, ( 3 d A 3 d A + ad(x) 2 )Y = 0, (F A ) i0 = (d A Y ) i What about ζ? no defects ( vanilla BPS f.c. s): defects ( framed BPS f.c. s): maximize the bound: ζ = ζ van := Z/ Z ζ specified by defect: ϕ = iζ P 2r + L ζ (P)

Quantum N = 2 SYM Generalities H (no defects) The Hilbert space of states H Lζ (defects) is a representation space for the (super)symmetry algebra. BPS states The subspace of BPS states H BPS H (vanilla BPS states) H BPS L ζ H Lζ (framed BPS states) consists of short representations on which ˆR is represented by 0. for a more detailed description...

Quantum N = 2 SYM A tale of two approaches A: Seiberg Witten B: semiclassical

Seiberg Witten approach (vanilla) Γ u B u u e.-values of ϕ

Seiberg Witten approach (vanilla) Γ u B u u e.-values of ϕ

Seiberg Witten approach (vanilla) Γ u B u u e.-values of ϕ

Seiberg Witten approach (vanilla) H BPS u B u u e.-values of ϕ (vanilla) BPS states: H BPS u = γ Γ u H BPS u,γ = ( com (H0 ) BPS ) u,γ γ Γ u

Seiberg Witten approach (vanilla) H BPS u B u u e.-values of ϕ (vanilla) BPS states: H BPS u = γ Γ u H BPS u,γ = ( com (H0 ) BPS ) u,γ γ Γ u (H 0) BPS u,γ mass: an so(3) rot su(2) R rep. space Z γ(u)

Seiberg Witten approach (vanilla) s 12 H BPS u,γ B u u e.-values of ϕ (vanilla) BPS states: H BPS u = γ Γ u H BPS u,γ = ( com (H0 ) BPS ) u,γ γ Γ u (H 0) BPS u,γ mass: an so(3) rot su(2) R rep. space Z γ(u) wall-crossing: (H 0) BPS u,γ 1 +γ 2 0 as u crosses W (γ 1, γ 2) B s 12 : γ 1 γ 2

Seiberg Witten approach (vanilla) s 12 H BPS u,γ B u u e.-values of ϕ (vanilla) BPS states: H BPS u = γ Γ u H BPS u,γ = ( com (H0 ) BPS ) u,γ γ Γ u (H 0) BPS u,γ mass: an so(3) rot su(2) R rep. space Z γ(u) wall-crossing: (H 0) BPS u,γ 1 +γ 2 0 as u crosses W (γ 1, γ 2) B s 12 : γ 1 γ 2

Seiberg Witten approach (framed) Core-halo picture for framed BPS states Gaiotto, Moore, Neitzke ( 10) There is an analogous story for the space of framed BPS states, H BPS L ζ,u = γ H BPS L ζ,u,γ in terms of the core-halo picture. Framed BPS states also undergo wall-crossing.

Semiclassical approach Collective coordinate ansatz, quantization Manton ( 84) A(t, x) = A mono ( x; z m (t)) + g 0 δa(t, x) z m (t), m = 1,..., dim M, collective coordinates δa to be integrated out

Semiclassical approach Collective coordinate ansatz, quantization Manton ( 84) A(t, x) = A mono ( x; z m (t)) + g 0 δa(t, x) z m (t), m = 1,..., dim M, collective coordinates δa to be integrated out susy QM where states are { spinors on M (0, )-forms Gauntlett ( 93); Gauntlett, Harvey ( 94); Gauntlett, N. Kim, Park, Yi ( 99); Gauntlett, C. Kim, Lee, Yi ( 00); MRV ( 15)

Semiclassical approach Collective coordinate ansatz, quantization Manton ( 84) A(t, x) = A mono ( x; z m (t)) + g 0 δa(t, x) z m (t), m = 1,..., dim M, collective coordinates δa to be integrated out susy QM where states are { spinors on M (0, )-forms Gauntlett ( 93); Gauntlett, Harvey ( 94); Gauntlett, N. Kim, Park, Yi ( 99); Gauntlett, C. Kim, Lee, Yi ( 00); MRV ( 15) supercharge: ˆR = /D Y := /D M(P,γm,X ) i /G(Y) electric charge: ˆγ e = I α I G(α I ) { X = X + where Y = 4πY /g 2 0 + with ϕ = ζ(y + ix )

Semiclassical approach Semiclassical framed BPS states H scbps P,X,Y,γ m,γ e := ker (γe) ( L D / Y ) 2 M(P;γ m,x )

Semiclassical approach Semiclassical framed BPS states H scbps P,X,Y,γ m,γ e := ker (γe) ( L D / Y ) 2 M(P;γ m,x )... or L 2 coho. of ig(y) (0,1)

Semiclassical approach Semiclassical framed BPS states H scbps P,X,Y,γ m,γ e := ker (γe) ( L D / Y ) 2 M(P;γ m,x )... or L 2 coho. of ig(y) (0,1) Semiclassical vanilla BPS states (H 0 ) scbps X,Y,γ m,γ e in terms of L 2 kernel on M 0

The sc SW Map Conjecture: H scbps P,X,Y,γ m,γ e = H BPS L ζ (P),u,γ

The sc SW Map Conjecture: H scbps P,X,Y,γ m,γ e = H BPS L ζ (P),u,γ provided: X = Im(ζ 1 a(u)) Y = Im(ζ 1 a D (u)) γ m γ e = γ { a(u), ad (u) are (dual) SW special coords. }

The sc SW Map Conjecture: H scbps P,X,Y,γ m,γ e = H BPS L ζ (P),u,γ provided: X = Im(ζ 1 a(u)) Y = Im(ζ 1 a D (u)) γ m γ e = γ { a(u), ad (u) are (dual) SW special coords. } consistent with X = X + and Y = 4π g 2 0 Y +, and predicts quantum corrections

The sc SW Map Conjecture: H scbps P,X,Y,γ m,γ e = H BPS L ζ (P),u,γ provided: X = Im(ζ 1 a(u)) Y = Im(ζ 1 a D (u)) γ m γ e = γ { a(u), ad (u) are (dual) SW special coords. } consistent with X = X + and Y = 4π g 2 0 Y +, and predicts quantum corrections vanilla case with ζ ζ van = Z γ (u)/ Z γ (u)

Prediction 1: Generalized Sen from no-exotics a priori, (H 0 ) BPS u,γ and H BPS L,u,γ can be arbitrary su(2) R reps

Prediction 1: Generalized Sen from no-exotics a priori, (H 0 ) BPS u,γ... but always trivial! and H BPS L,u,γ can be arbitrary su(2) R reps

Prediction 1: Generalized Sen from no-exotics a priori, (H 0 ) BPS u,γ... but always trivial! and H BPS L,u,γ can be arbitrary su(2) R reps = no-exotics: This is always true on B Gaiotto, Moore, Neitzke ( 10); Chuang, Diaconescu, Manschot, Moore, Soibelman ( 13); Del Zotto, Sen ( 14); Cordova, Dumitrescu

Prediction 1: Generalized Sen from no-exotics a priori, (H 0 ) BPS u,γ... but always trivial! and H BPS L,u,γ can be arbitrary su(2) R reps = no-exotics: This is always true on B Semiclassical su(2) R use (0, )-forms: λ = q λ(0,q) ω := ω 3 cmplx. coords. ω ± := ω 1 ± iω 2 hol.-sympl. form Î 3 λ (0,q) = 1 2 (q N)λ(0,q), Î + λ = ω + λ Î λ = ι ω λ (dim M = 4N)

Prediction 1: Generalized Sen from no-exotics a priori, (H 0 ) BPS u,γ... but always trivial! and H BPS L,u,γ can be arbitrary su(2) R reps = no-exotics: This is always true on B Semiclassical su(2) R use (0, )-forms: λ = q λ(0,q) ω := ω 3 cmplx. coords. ω ± := ω 1 ± iω 2 hol.-sympl. form Î 3 λ (0,q) = 1 2 (q N)λ(0,q), Î + λ = ω + λ Î λ = ι ω λ (dim M = 4N) No-exotics all nontriv. L2 coho. of ig(y) (0,1) is in middle deg, i.e. (0, N), and primitive

Prediction 1: Generalized Sen from no-exotics a priori, (H 0 ) BPS u,γ... but always trivial! and H BPS L,u,γ can be arbitrary su(2) R reps = no-exotics: This is always true on B Semiclassical su(2) R use (0, )-forms: λ = q λ(0,q) ω := ω 3 cmplx. coords. ω ± := ω 1 ± iω 2 hol.-sympl. form Î 3 λ (0,q) = 1 2 (q N)λ(0,q), Î + λ = ω + λ Î (dim M = 4N) λ = ι ω λ a generalization of Sen s conjecture ( 94) No-exotics all nontriv. L2 coho. of ig(y) (0,1) is in middle deg, i.e. (0, N), and primitive

Prediction 2: Fredholmness and WCF for Dirac Conjecture: Dirac operators in the family /D Y0 M 0(γ m,x ) for (X, Y 0 ) W + t γ m fail to be Fredholm only if there are charges γ 1,2 = γ m,1,2 γ e,1,2 such that γ m,1 + γ m,2 = γ m, γ 1, γ 2 (γ e,2, γ m,1 ) (γ e,1, γ m,2 ) 0, ker L 2( /D Y0 M 0(γ m,1,x )) 0 and ker L 2( /D Y0 M 0(γ m,2,x )) 0, and (Y 0, γ m,1 ) + (γ e,1 γ m,1 (γ e,x ) (γ m,x ), X ) = 0. At these real co-dimension one walls in (X, Y 0 )-space, the kernel jumps in a way dictated by the (Kontsevich Soibelman) WCF.

Prediction 2: Fredholmness and WCF for Dirac Conjecture: Dirac operators in the family /D Y0 M 0(γ m,x ) for (X, Y 0 ) W + t γ m fail to be Fredholm only if there are charges γ 1,2 = γ m,1,2 γ e,1,2 such that γ m,1 + γ m,2 = γ m, γ 1, γ 2 (γ e,2, γ m,1 ) (γ e,1, γ m,2 ) 0, ker L 2( /D Y0 M 0(γ m,1,x )) 0 and ker L 2( /D Y0 M 0(γ m,2,x )) 0, and (Y 0, γ m,1 ) + (γ e,1 γ m,1 (γ e,x ) (γ m,x ), X ) = 0. At these real co-dimension one walls in (X, Y 0 )-space, the kernel jumps in a way dictated by the (Kontsevich Soibelman) WCF.... there is an analogous conjecture for the family /D Y M(P,γ m,x ).

Framed ex: G = SO(3), p = 1 2, γ h = 1 n e 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) 1 X

Framed ex: G = SO(3), p = 1 2, γ h = 1 n e 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) 1 X M = Taub NUT

Framed ex: G = SO(3), p = 1 2, γ h = 1 n e 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B M = Taub NUT /D Y -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) Pope ( 77); Gauntlett, N. Kim, Park, Yi ( 99); Jante, Schroers ( 13); MRV ( 15) 1 X

Framed ex: G = SO(3), p = 1 2, γ h = 1 n e 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B M = Taub NUT /D Y -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) Pope ( 77); Gauntlett, N. Kim, Park, Yi ( 99); Jante, Schroers ( 13); MRV ( 15) 1 X spectrum of /D Y :

Framed ex: G = SO(3), p = 1 2, γ h = 1 n e 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B M = Taub NUT /D Y -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) Pope ( 77); Gauntlett, N. Kim, Park, Yi ( 99); Jante, Schroers ( 13); MRV ( 15) 1 X spectrum of /D Y :

Asymptotic Analysis Goal: Prove Fredholm and wall-crossing properties by utilizing techniques from the compactification on manifolds-with-corners approach. Kottke, Singer ( 15) Fritszch, Kottke, Melrose, Singer

Asymptotic Analysis Goal: Prove Fredholm and wall-crossing properties by utilizing techniques from the compactification on manifolds-with-corners approach. Kottke, Singer ( 15) Fritszch, Kottke, Melrose, Singer Current work with Brennan and Moore: asymptotic analysis of /D Y near boundary face corresponding to a generic 2-partition: γ m = γ m,1 + γ m,2 ds 2 (M 0 ) = ds 2 (M 1 0 ) + ds2 (M 2 0 ) + ds2 (TN) + O(ε 2 ) can reproduce location of walls, primitive WCF

Asymptotic Analysis Goal: Prove Fredholm and wall-crossing properties by utilizing techniques from the compactification on manifolds-with-corners approach. Kottke, Singer ( 15) Fritszch, Kottke, Melrose, Singer Current work with Brennan and Moore: asymptotic analysis of /D Y near boundary face corresponding to a generic 2-partition: γ m = γ m,1 + γ m,2 ds 2 (M 0 ) = ds 2 (M 1 0 ) + ds2 (M 2 0 ) + ds2 (TN) + O(ε 2 ) can reproduce location of walls, primitive WCF note: a complimentary approach available for γ m = (1,..., 1) spaces Stern, Yi ( 00)

Conclusions Summary compared semiclassical and Seiberg Witten descriptions of (framed) BPS states SW sc map allows one to translate no-exotics and wall-crossing into precise and nontrivial predictions about the geometry of M Outlook rigorous verification of these predictions requires L 2 control over forms, spinors on M 0, M technology that is currently being developed Fritszch, Kottke, Melrose, Singer; Bielawski

Conclusions Summary compared semiclassical and Seiberg Witten descriptions of (framed) BPS states SW sc map allows one to translate no-exotics and wall-crossing into precise and nontrivial predictions about the geometry of M Outlook rigorous verification of these predictions requires L 2 control over forms, spinors on M 0, M technology that is currently being developed Fritszch, Kottke, Melrose, Singer; Bielawski Thank you!

Seiberg Witten approach (framed) Γ L,u B u susy t Hooft defects: L ζ (P)

Seiberg Witten approach (framed) H BPS L,u B u susy t Hooft defects: L ζ (P) framed BPS states: H BPS u = γ H BPS L,u,γ Gaiotto, Moore, Neitzke ( 10)

Seiberg Witten approach (framed) H BPS L,u B u susy t Hooft defects: L ζ (P) framed BPS states: H BPS u = γ H BPS L,u,γ an so(3)rot su(2) R rep. space mass: Re [ ζ 1 Z γ(u) ] H BPS L,u,γ Gaiotto, Moore, Neitzke ( 10)

Seiberg Witten approach (framed) s h H BPS L,u,γ B u susy t Hooft defects: L ζ (P) s h : framed BPS states: H BPS u = γ H BPS L,u,γ γ h γ h γ h γ h H BPS L,u,γ an so(3)rot su(2) R rep. space mass: Re [ ζ 1 Z γ(u) ] framed wall-crossing at W (γ h ) via core-halo picture γ h γ h γ h γ c γ h γ h γ h

Seiberg Witten approach (framed) s h H BPS L,u,γ B u γ h γ h susy t Hooft defects: L ζ (P) γ h s h : γ h framed BPS states: H BPS u H BPS L,u,γ = γ H BPS L,u,γ an so(3)rot su(2) R rep. space mass: Re [ ζ 1 Z γ(u) ] γ h γ c γ h framed wall-crossing at W (γ h ) via core-halo picture γ h γ h γ h γ h

Embedding into N = 2 SYM S = 1 g 2 0 R 1,3 { (F A, F A ) + (d A ϕ, d A ϕ) 1 ([ϕ, ϕ], [ϕ, ϕ])+ 4 i [ 2( ψ a, /D + (A)ψ a ) + ɛ ab (ψ a, [ψ b, ϕ]) + ɛ ab ( ψ a, [ ψ b, ϕ]) ] 1 } ϕ a complex Higgs field, ψ a, a = 1, 2, an SU(2) R doublet of Weyl fermions

Embedding into N = 2 SYM S = 1 g 2 0 R 1,3 { (F A, F A ) + (d A ϕ, d A ϕ) 1 ([ϕ, ϕ], [ϕ, ϕ])+ 4 i [ 2( ψ a, /D + (A)ψ a ) + ɛ ab (ψ a, [ψ b, ϕ]) + ɛ ab ( ψ a, [ ψ b, ϕ]) ] 1 } ϕ a complex Higgs field, ψ a, a = 1, 2, an SU(2) R doublet of Weyl fermions Supersymmetry: δ ξ S = 0 δ ξ ϕ = 2iɛ ab ξ a ψ b, δ ξ ψ a = = Noether charges Q a

Embedding into N = 2 SYM S = 1 g 2 0 R 1,3 { (F A, F A ) + (d A ϕ, d A ϕ) 1 ([ϕ, ϕ], [ϕ, ϕ])+ 4 i [ 2( ψ a, /D + (A)ψ a ) + ɛ ab (ψ a, [ψ b, ϕ]) + ɛ ab ( ψ a, [ ψ b, ϕ]) ] 1 } ϕ a complex Higgs field, ψ a, a = 1, 2, an SU(2) R doublet of Weyl fermions Supersymmetry: δ ξ S = 0 δ ξ ϕ = 2iɛ ab ξ a ψ b, δ ξ ψ a = = Noether charges Q a Algebra: {Q a, Q b } + δ a bh, {Q a, Q b } + ɛ ab Z H is the Hamiltonian Z = 2 (if g 0 2 S 2 A F A, ϕ) = 4πi (γ g m, ϕ ) (γ 0 2 e, ϕ ), central charge

Framed ex: G = SO(3), p = 1 2, n m = 1 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) 1 X

Framed ex: G = SO(3), p = 1 2, n m = 1 1.0-2 4-1 -2 Y c -1-1 c 0 c -1 0.5 2 SW sc map 0 0.0 c 0-2 3 c 0-0.5-4 c 2 c 1 1 2-4 -2 0 2 4 W (γ h ) B c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) 1 X

Framed ex: G = SO(3), p = 1 2, n m = 1 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) 1 X

Framed ex: G = SO(3), p = 1 2, n m = 1 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) 1 X M = Taub NUT

Framed ex: G = SO(3), p = 1 2, n m = 1 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B M = Taub NUT /D Y -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) Pope ( 77); Gauntlett, N. Kim, Park, Yi ( 99); Jante, Schroers ( 13); MRV ( 15) 1 X

Framed ex: G = SO(3), p = 1 2, n m = 1 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B M = Taub NUT /D Y -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) Pope ( 77); Gauntlett, N. Kim, Park, Yi ( 99); Jante, Schroers ( 13); MRV ( 15) 1 X spectrum of /D Y :

Framed ex: G = SO(3), p = 1 2, n m = 1 200 1.0-2 -1 c -1-2 Y c -1-1 100 c 0 SW sc map 0.5 0 0.0 c 0 c 0-100 3 c 2-200 -200-100 0 100 200 2 c 1 W (γ h ) 1 B M = Taub NUT /D Y -0.5 c 2 3 2-1.0 0.0 0.2 0.4 0.6 0.8 1.0 c 1 scw (γ h ) Pope ( 77); Gauntlett, N. Kim, Park, Yi ( 99); Jante, Schroers ( 13); MRV ( 15) 1 X spectrum of /D Y :