Bilateral Laplace Transform (6A) Young Won Lim 2/23/15

Similar documents
Bilateral Laplace Transform (6A) Young Won Lim 2/16/15

Definite Integrals. Young Won Lim 6/25/15

Integrals. Young Won Lim 12/29/15

Introduction to ODE's (0A) Young Won Lim 3/12/15

Double Integrals (5A)

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

Higher Order ODE's (3A) Young Won Lim 7/7/14

Higher Order ODE's (3A) Young Won Lim 12/27/15

Introduction to ODE's (0A) Young Won Lim 3/9/15

Background Trigonmetry (2A) Young Won Lim 5/5/15

Higher Order ODE's (3A) Young Won Lim 7/8/14

General Vector Space (2A) Young Won Lim 11/4/12

Higher Order ODE's, (3A)

Matrix Transformation (2A) Young Won Lim 11/9/12

ODE Background: Differential (1A) Young Won Lim 12/29/15

Root Locus (2A) Young Won Lim 10/15/14

Separable Equations (1A) Young Won Lim 3/24/15

Complex Series (3A) Young Won Lim 8/17/13

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15

Trigonometry (3A) Quadrant Angle Trigonometry Negative Angle Trigonometry Reference Angle Trigonometry Sinusoidal Waves. Young Won Lim 12/30/14

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15

Fourier Analysis Overview (0A)

Surface Integrals (6A)

Differentiation Rules (2A) Young Won Lim 1/30/16

Fourier Analysis Overview (0B)

Fourier Analysis Overview (0A)

CT Rectangular Function Pairs (5B)

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

Complex Functions (1A) Young Won Lim 2/22/14

Expected Value (10D) Young Won Lim 6/12/17

Relations (3A) Young Won Lim 3/27/18

Matrix Transformation (2A) Young Won Lim 11/10/12

Introduction to ODE's (0P) Young Won Lim 12/27/14

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10

General CORDIC Description (1A)

Surface Integrals (6A)

Section 6.1 INTRO to LAPLACE TRANSFORMS

CLTI System Response (4A) Young Won Lim 4/11/15

Differentiation Rules (2A) Young Won Lim 2/22/16

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09

Section 6.1 INTRO to LAPLACE TRANSFORMS

Background ODEs (2A) Young Won Lim 3/7/15

Capacitor Young Won Lim 06/22/2017

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Second Order ODE's (2A) Young Won Lim 5/5/15

Capacitor in an AC circuit

Group & Phase Velocities (2A)

Signal Functions (0B)

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Audio Signal Generation. Young Won Lim 1/29/18

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Complex Trigonometric and Hyperbolic Functions (7A)

Discrete Time Rect Function(4B)

Capacitor and Inductor

Capacitor and Inductor

Discrete Time Rect Function(4B)

Down-Sampling (4B) Young Won Lim 11/15/12

Background LTI Systems (4A) Young Won Lim 4/20/15

Up-Sampling (5B) Young Won Lim 11/15/12

Bayes Theorem (10B) Young Won Lim 6/3/17

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

CT Correlation (2A) Young Won Lim 9/9/14

Digital Signal Octave Codes (0A)

Background Complex Analysis (1A) Young Won Lim 9/2/14

Propagating Wave (1B)

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09

FSM Examples. Young Won Lim 11/6/15

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A)

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13

Down-Sampling (4B) Young Won Lim 10/25/12

Digital Signal Octave Codes (0A)

Audio Signal Generation. Young Won Lim 2/2/18

The Growth of Functions (2A) Young Won Lim 4/6/18

Group Velocity and Phase Velocity (1A) Young Won Lim 5/26/12

Digital Signal Octave Codes (0A)

Harman Outline 1A1 Integral Calculus CENG 5131

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Signals and Spectra (1A) Young Won Lim 11/26/12

Student Handbook for MATH 3300

CMOS Inverter. Young Won Lim 3/31/16

Capacitor in an AC circuit

Capacitor in an AC circuit

Sequential Circuit Timing. Young Won Lim 11/6/15

Phasor Young Won Lim 05/19/2015

Integrals Depending on a Parameter

Capacitor in an AC circuit

Audio Signal Generation. Young Won Lim 2/2/18

General Vector Space (3A) Young Won Lim 11/19/12

When a force f(t) is applied to a mass in a system, we recall that Newton s law says that. f(t) = ma = m d dt v,

Residue Integrals (4C)

Capacitors in an AC circuit

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

Digital Signal Octave Codes (0A)

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

Bayes Theorem (4A) Young Won Lim 3/5/18

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

Propositional Logic Resolution (6A) Young W. Lim 12/12/16

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

Capacitor in an AC circuit

Transcription:

Bilterl Lplce Trnsform (6A)

Copyright (c) 25 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version.2 or ny lter version published by the Free Softwre Foundtion; with no Invrint Sections, no Front-Cover Texts, nd no Bck-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documenttion License". Plese send corrections (or suggestions) to youngwlim@hotmil.com. This document ws produced by using OpenOffice nd Octve.

An Improper Integrtion F (s) = f (t)e s t dt Complex Number Rel Number Rel Number s = + i t Integrtion Vrible R{s} rel prt I {s} img prt The improper integrl converges if the limit defining it exists. Bilterl Trnsform (6A) 3

Lplce trnsforms of nd exp( t) L s F(s) = e s t dt b = lim b s e st] = lim b s e sb + ] s e s s < lim e s b = s > F(s) = b s e t L s+ F(s) = e t e s t dt = lim b e (s+ = lim b (s+) b )t] (s+) e (s+ )b + (s+) e (s+ )] (s+) < lim e (s+ )b = s > F(s) = (s+) b Bilterl Trnsform (6A) 4

Lplce trnsforms of exp(+t) nd exp( t) e t L s+ F(s) = e t e s t dt = lim b e (s+ = lim b (s+) b )t] (s+) e (s+ )b + (s+) e (s+ )] (s+) < lim e (s+ )b = s > F(s) = (s+) b e +t L s F (s) = e + t e s t dt = lim b e t] b = lim b e (s )b + e ] < lim e b = s > + F (s) = b Bilterl Trnsform (6A) 5

Converging Improper Integrls e +k t dt = + k k > ek t] = + k (ek e +k ) = k k < e k t dt = k k < e k t] = k (e k e k ) = k k > Bilterl Trnsform (6A) 6

Existence of Lplce Trnsforms Right-sided function e t < M e α t Right-sided function e t < M e α t α > + > e t u(t) e +t u(t ) α α Left-sided function Left-sided function e t < M e βt e t < M e βt β β e t u( t ) β < < β < < e +t u( t) Bilterl Trnsform (6A) 7

ROC nd Exponentil Order Right-sided function Right-sided function exponentil order β < s > exponentil order α > s > + e t u(t) Lplce trnsform exists β < β < e +t u(t ) α < + < α Left-sided function exponentil order β < Left-sided function exponentil order α > β α e t u( t ) β < < s < e +t u( t) < α < s < + Bilterl Trnsform (6A) 8

Improper Integrls of f(t)u(+t) nd f(t)u( t) f (t ) L + dt F (s) F (s) = f (t ) e s t dt ( < t < +) f (t) t f (t )u(+t ) right side of f(t) is used f (t ) ^L dt G(s) G(s) = f (t ) e s t dt ( < t < + ) f (t) t f (t )u( t ) left side of f(t) is used Bilterl Trnsform (6A) 9

Improper Integrls of e t u(+t) nd e t u( t) e t u(t ) e t u( t) e t u( t) t t t F (s) = e + t e s t dt G(s) = e + t e s t dt F (s) = e +t e s t dt = e t] = e t] = e t] s > + s < + s < + e +t e s t dt = e + t e s t dt = e +t e s t dt = G(s) = F (s) e +t e s t dt = F (s) Bilterl Trnsform (6A)

Two functions of s : G(s) = -F(s) f (t )u(t ) f (t )u( t ) f (t)u( t) F (s) = f (t) e s t dt G(s) = f (t) e s t dt F (s) = f (t) e s t dt s > + s < + s < + f (t ) L F (s) f (t ) ^L G(s) f (t) ^L F (s) dt s > + s < + dt dt the sme function of s the different ROC's F (s) s > + s < + Bilterl Trnsform (6A)

Improper Integrls of One-Sided Functions Right-sided function exponentil order α > e + t u(+t) L s > e +t u(t ) F (s) = e +t e s t dt s > + F (s) = Left-sided function exponentil order α > e +t u( t ) ^L s > +e + t u( t) G(s) = e + t e s t dt s < + G(s) = = F (s) Bilterl Trnsform (6A) 2

The Sme Formul with Different ROCs Right-sided function exponentil order α > s > + > e +t u(t ) s < + Left-sided function Left-sided function exponentil order α > exponentil order α > +e + t u( t) e +t u( t) Bilterl Trnsform (6A) 3

ROCs nd one-sided functions e t u( t) e t u(t ) e t (t < ) e t (t > ) e + t e s t dt t < t > e + t e st dt s < s < I{s} s > s > R{s} Bilterl Trnsform (6A) 4

Improper Integrls of f(t)u(+t) nd f(-t)u(+t) f (t )u(t ) f (t )u( t ) f ( t)u(t ) L {f (t )u(t)} = F (s) + = f (t) e st dt L { f (+ v) } = F (+s) L { f ( v) } = G ( s) ^L {f (t )u( t )} = G(s) = f (t ) e s t dt L {f ( t )u(t )} = H (s) = G( s) G(s) = H ( s) L {f ( t )u(t )} = H (s) + = = = = G( s) f ( t ) e s t dt f (v) e s( v) dv f (v) e s v dv Bilterl Trnsform (6A) 5

Improper Integrls : e t u(+t), e t u( t), e t u(+t) e + t u(+t) L dt s F (s) = e + t e s t dt = lim b e t] b = lim b < lim e b = s > + F (s) = b b > e (s )b + e ] e +t u( t ) ^L dt s G(s) = e +t e s t dt = lim b < lim e b = s < + G(s) = b b < e t] b = lim b e + e b] = F (s) L { f (+v) } = F (+s) L{e + t } = F (+s) = ^L{e +t } = G(+s) = L { f ( v) } = G( s) G(+s) = L{e t } = G( s) = (s+) ( s+) = Bilterl Trnsform (6A) 6

Unilterl nd Bilterl Lplce Trnsform Unilterl Lplce Trnsform + F (s) = f (t )e st dt f (t ) = + j 2π j j F(s)e +s t ds Bilterl Lplce Trnsform + F (s) = f (t )e st dt f (t ) = + j 2π j j F(s)e +s t ds includes ll includes ll singulrities singulrities (t > ) ROC (t > ) ROC includes ll singulrities (t < ) Bilterl Trnsform (6A) 7

ROCs nd two-sided functions e t u( t) e t u(t ) e t (t < ) e t (t > ) t < t > Bilterl Lplce Trnsform + e + t e st dt no overlpping ROC No Convergence e + t e s t dt s < I{s} s > e t e st dt s < R{s} s > Bilterl Trnsform (6A) 8

ROCs nd two-sided functions e t u( t) e t u(t ) e t (t < ) e t (t > ) t < t > Bilterl Lplce Trnsform + e + t e st dt = ( s+) ( s ) = 2 s 2 2 e + t e s t dt I{s} ROC e t e st dt s < R{s} (s+) s > Bilterl Trnsform (6A) 9

ROCs nd two-sided functions e t u( t) e t u(t ) e t (t < ) e t (t > ) t < t > Bilterl Lplce Trnsform + e + t e st dt no overlpping ROC No Convergence e t e s t dt s < I{s} ROC s > e t e st dt (s+) s < R{s} s > Bilterl Trnsform (6A) 2

ROCs nd two-sided functions e t u( t) e b t u(t) e b t u( t ) e t u(t ) t < t > t < t > (s+b) (s+b) s < s > b s < b s > I{s} ROC I{s} ROC b R{s} b R{s} < b < < b < Bilterl Trnsform (6A) 2

ROCs nd two-sided functions e b t u( t ) e t u(t) e t u( t) e bt u(t ) t < t > t < t > (s+b) (s+) (s b) s < b s > s < s > b I{s} ROC I{s} ROC b R{s} b R{s} < b < < b < Bilterl Trnsform (6A) 22

References ] http://en.wikipedi.org/ 2] http://plnetmth.org/ 3] M.L. Bos, Mthemticl Methods in the Physicl Sciences 4] E. Kreyszig, Advnced Engineering Mthemtics 5] D. G. Zill, W. S. Wright, Advnced Engineering Mthemtics 6] T. J. Cvicchi, Digitl Signl Processing 7] F. Wleffe, Mth 32 Notes, UW 22/2/ 8] J. Nering, University of Mimi 9] http://scipp.ucsc.edu/~hber/ph6a/complexfunbrnchtheory.pdf