Gradient expansion formalism for generic spin torques

Similar documents
Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Mesoscopic Spintronics

(1) Correspondence of the density matrix to traditional method

PHL424: Feynman diagrams

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

Angular Momentum, Electromagnetic Waves

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Charge carrier density in metals and semiconductors

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

(2) Orbital angular momentum

Dressing up for length gauge: Aspects of a debate in quantum optics

Diffusive DE & DM Diffusve DE and DM. Eduardo Guendelman With my student David Benisty, Joseph Katz Memorial Conference, May 23, 2017

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

(1) Introduction: a new basis set

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

A linear operator of a new class of multivalent harmonic functions

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

Discovery of the Higgs Boson

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Haar Basis Wavelets and Morlet Wavelets

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Neutron ββ-decay Angular Correlations

CHAPTER 2 Special Theory of Relativity

Lecture I. Spin Orbitronics

Quantum state measurement

Physics 371 Spring 2017 Prof. Anlage Review

General Strong Polarization

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films

PHY103A: Lecture # 4

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

General Strong Polarization

Effect of First Order Chemical Reaction for Coriolis Force and Dust Particles for Small Reynolds Number in the Atmosphere Over Territory

Supplementary Discussion 1: Site-dependent spin and orbital polarizations of the highestenergy valence bands of diamond, Si, Ge, and GaAs

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Chapter 22 : Electric potential

Elastic light scattering

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Yang-Hwan Ahn Based on arxiv:

Module 7 (Lecture 27) RETAINING WALLS

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

Lecture 3 Transport in Semiconductors

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Independent Component Analysis and FastICA. Copyright Changwei Xiong June last update: July 7, 2016

Lecture 11. Kernel Methods

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

2.4 Error Analysis for Iterative Methods

Last Name _Piatoles_ Given Name Americo ID Number

Fermi Surfaces and their Geometries

Optical pumping and the Zeeman Effect

Some Aspects of Oscillatory Visco-elastic Flow Through Porous Medium in a Rotating Porous Channel

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 22 Highlights Phys 402

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell

Extreme value statistics: from one dimension to many. Lecture 1: one dimension Lecture 2: many dimensions

Revision : Thermodynamics

Control of Mobile Robots

ABSTRACT OF THE DISSERTATION

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

Charged-Particle Interactions in Matter

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers

APPLICATIONS. A Thesis. Presented to. the Faculty of California Polytechnic State University, San Luis Obispo. In Partial Fulfillment

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Thick Shell Element Form 5 in LS-DYNA

Longitudinal Structure Function Using Thermodynamical Bag Model. S. Karthiyayini, K.K.Singh

Lecture 6. Notes on Linear Algebra. Perceptron

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Coarse-Graining via the Mori-Zwanzig Formalism

Integrated Attitude Determination and Control System via Magnetic Measurements and Actuation

Photons in the universe. Indian Institute of Technology Ropar

Inferring the origin of an epidemic with a dynamic message-passing algorithm

Approximate Second Order Algorithms. Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Introduction to Kinetic Simulation of Magnetized Plasma

A Circular Cylinder. 1 Introduction. RITA CHOUDHURY 1 and BIBHASH DEKA 2

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space.

5.6 Multistep Methods

Constitutive Relations of Stress and Strain in Stochastic Finite Element Method

Interacting atoms and molecules in triangular lattices with varying geometry. Dan Stamper-Kurn, UC Berkeley

Module 7 (Lecture 25) RETAINING WALLS

Chemical Engineering 412

Terms of Use. Copyright Embark on the Journey

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Systèmes Hybrides. Norman Birge Michigan State University

Exam 2 Fall 2015

Introduction to Density Estimation and Anomaly Detection. Tom Dietterich

MSE 7025 Magnetic Materials (and Spintronics)

10.1 Three Dimensional Space

Classical RSA algorithm

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Physics of Semiconductors

The Bose Einstein quantum statistics

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Transcription:

Gradient expansion formalism for generic spin torques Atsuo Shitade RIKEN Center for Emergent Matter Science Atsuo Shitade, arxiv:1708.03424.

Outline 1. Spintronics a. Magnetoresistance and spin torques b. Two microscopic formalisms for spin torques 2. Gradient expansion a. Wilson line b. Moyal product 3. Application to spin torques a. 1st. order spin renormalization and Gilbert damping b. 2nd. order spin transfer torque and ββ-term

Magnetic systems nonvolatile memories Reading = magnetization measurement Giant MagnetoResistance Baibich et al., PRL 61, 2472 (1988). Binasch et al., PRB 38, 4828 (1989). Tunnel MagnetoResistance Julliere, Phys. Lett. 54A, 225 (1975). Miyazaki and Tezuka, J. Magn. Magn. Mater. 139, L231 (1995). Moodera et al., PRL 74, 3273 (1995). Fert Grünberg Nobel Prize 2007 antiparallel parallel Fe Cr Fe Cr Fe Cr Fe Cr Fe Cr Fe Cr

Magnetic systems nonvolatile memories Writing = magnetization reversal Magnetic field Magnetoresistive Random Access Memory Spin Transfer Torque STT-MRAM Berger, J. Appl. Phys. 55, 1954 (1984). Berger, PRB 54, 9353 (1996). Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). ħnn = nn HH sp nn + ττ ττ = ħssnn ħααnn nn ȷȷ s nn ββnn ȷȷ s nn Spin renormalization Gilbert damping STT ββ-term ββ-term Due to spin relaxation Zhang and Li, PRL 93, 127204 (2004). ββ = 0, ββ αα, or ββ = αα Thiaville et al., Europhys. Lett. 69, 990 (2005).

Real materials are more complicated Textured ferromagnets w/o Spin-Orbit Interactions STT and ββ-term ττ = ȷȷ s nn ββnn ȷȷ s nn Uniform ferromagnets w/ SOIs Spin-Orbit Torque ττ = 2mmmm/ħ zz ȷȷ ss nn for Rashba SOI Manchon and Zhang, PRB 78, 212405 (2008); PRB 79, 094422 (2009). Textured ferromagnets w/ SOIs Topological insulator surface Yokoyama et al., PRB 81, 241410 (2010); Sakai and Kohno, PRB 89, 165307 (2014). different forms of STT, ββ-term, and SOT Noncentrosymmetric Weyl ferromagnet Kurebayashi and Nomura, arxiv:1702.04918. nn is assumed to have small fluctuations from zz. small-amplitude formalism SOT only, no STT or ββ-term

Small-amplitude formalism Assume small transverse fluctuations around a uniform state nn = zz + uu, uu XX = uu QQ ee iiqq μμxx μμ = uu xx, uu yy, 0, uu 2 1 Pick up the first order w.r.t. QQ, uu, EE four-point vertices Kohno et al., JPSJ 75, 113706 (2006). vv ii --EE ii σσ ββ --uu ββ vv jj --QQ jj impurities Cannot extrapolate the small-amplitude dynamics to the finiteamplitude one except for some simple cases

Gauge transformation formalism Apply a gauge transformation ψψ XX UU XX ψψ XX, nn XX σσ σσ zz Magnetization texture is described by an emergent gauge field AA μμ XX iiuu XX XX μμuu XX = uu XX XX μμuu XX σσ. Pick up the first order w.r.t. AA μμ, EE ii Kohno and Shibata, JPSJ 76, 063710 (2007). vv ii --EE ii σσ ββ vv jj ββ --AA jj impurities Quenched magnetic impurities are transformed to dynamical ones, which yield an additional AA μμ.

Motivations nn can be controlled by EE. In real materials, we have (non)magnetic impurities, SOIs, sublattice degree of freedom (in antiferromagnets), etc. Small-amplitude formalism Cannot be applied to the finite-amplitude dynamics. Gauge transformation formalism Needs careful calculation not to miss AA μμ. Particularly in the presence of magnetic impurities; otherwise αα = 0. Can we derive a first-principles formula (into which we only have to input our Hamiltonian)? Gradient expansion

Outline 1. Spintronics a. Magnetoresistance and spin torques b. Two microscopic formalisms for spin torques 2. Gradient expansion a. Wilson line b. Moyal product 3. Application to spin torques a. 1st. order spin renormalization and Gilbert damping b. 2nd. order spin transfer torque and ββ-term

Gradient expansion Green s function GG xx 1, xx 2 which satisfies the Dyson equation, L xx 1 GG xx 1, xx 2 Σ GG xx 1, xx 2 = δδ(xx 1 xx 2 ) Wigner representation to deal with convolution, GG XX 12, pp 12 = dd DD xx 12 ee iipp μμ 12μμxx 12/ħ GG (xx 1, xx 2 ) Gauge covariance Wilson line GG (xx 1, xx 2 ) transforms as GG xx 1, xx 2 = VV xx 1 GG xx 1, xx 2 VV xx 2. GG xx 1, xx 2 should transform as GG xx 1, xx 2 = VV XX 12 GG xx 1, xx 2 VV (XX 12 ). Wigner representation of convolution Moyal product Levanda and Fleurov, J. Phys.:Condens. Matter 6, 7889 (1994); Ann. Phys. 292, 199 (2001). Ordinary product if translationally invariant, but not in general.

Wilson line Gauge covariance Wilson line GG (xx 1, xx 2 ) transforms as GG xx 1, xx 2 = VV xx 1 GG xx 1, xx 2 VV xx 2. GG xx 1, xx 2 should transform as GG xx 1, xx 2 = VV XX 12 GG xx 1, xx 2 VV (XX 12 ). Wilson line which satisfies WW xx 1, xx 2 = VV xx 1 WW xx 1, xx 2 VV (xx 2 ), WW xx 1, xx 2 PP exp ii ħ xx 1 ddyyμμ AA μμ yy xx 2 Locally gauge-covariant Green s function GG xx 1, xx 2 WW XX 12, xx 1 GG xx 1, xx 2 WW xx 2, XX 12 GG XX 12, pp 12 = dd DD xx 12 ee iipp μμ 12μμxx 12/ħ GG (xx 1, xx 2 )

Moyal product Wigner representation of convolution Moyal product Ordinary product if translationally invariant, but not in general. Moyal product Locally gauge-covariant convolution AA XX 12, pp 12 BB XX 12, pp 12 dd DD xx 12 ee iipp μμ 12μμxx 12/ħ WW XX 12, xx 1 dd DD xx 3 AA xx 1, xx 3 BB xx 3, xx 2 WW xx 2, XX 12 = dd DD xx 12 dd DD xx 3 ee iipp μμ 12μμxx 12/ħ ee iipp μμ 13μμxx 13/ħ ee iipp μμ 32μμxx 32/ħ WW XX 12, xx 1 WW xx 1, XX 13 AA XX 13, pp 13 WW XX 13, xx 3 WW xx 3, XX 32 BB XX 32, pp 32 WW XX 32, xx 2 WW xx 2, XX 12 Integrand is expanded w.r.t. xx 13, xx 32 around XX 12. Wilson loop is evaluated by the Stokes theorem. Nonabelian Stokes theorem for a nonabelian gauge field Aref eva, Theor. Math. Phys. 43, 353 (1980); Bralić, PRD 22, 3090 (1980). Dyson equation L Σ GG = 1

Moyal product Minimum for calculating spin torques AA BB = AA BB + iii/2 PP DD AA, BB + iii/2 PP F AA, BB + iii/2 2 PP DD F AA, BB PP DD AA, BB PP F AA, BB = XX λλaa ppλλ BB ppλλ AA XX λλbb = F μμμμ ppμμ AA ppνν BB U(1) field strength PP DD F AA, BB = F μμμμ XX λλ ppμμ AA ppλλ ppνν BB ppλλ ppμμ AA XX λλ ppνν BB More for something AA BB = + 1/2! iii/2 2 PP DD 2 AA, BB + 1/2! iii/2 2 PP F 2 AA, BB PP DD 2 AA, BB = XX λλ XX κκaa ppλλ ppκκ BB 2 XX λλ ppκκ AA ppλλ XX κκbb + ppλλ ppκκ AA XX λλ XX κκbb PP F 2 AA, BB = F μμμμ F ρρρρ ppμμ ppρρ AA ppνν ppσσ BB more terms up to 4th. order w.r.t. xx 13, xx 32 for a nonabelian field strength

Perturbation theory of Green s function Dyson equation L Σ GG = 1 AA BB = AA BB + iii/2 PP DD AA, BB + iii/2 PP F AA, BB + iii/2 2 PP DD F AA, BB GG = GG 0 + ħ/2 GG DD + ħ/2 GG F + ħ/2 2 GG DD F Σ = Σ 0 + ħ/2 Σ DD + ħ/2 Σ F + ħ/2 2 Σ DD F First-principles formula (PP = DD, F) GG 0 1 GG PP = Σ PP GG 0 iipp PP GG 0 1, GG 0 STT and ββ-term SOT Spin renormalization Gilbert damping GG 0 1 GG PP QQ = Σ PP QQ GG 0 + Σ QQ GG PP + iipp PP Σ QQ, GG 0 iipp PP GG 0 1, GG QQ + PP QQ ii 2 PP PP QQ GG 0 1, GG 0 Advantages Deals with spacetime gradient and field strength on an equal footing Guarantees gauge covariance Contains retarded, advanced and lesser Green s functions Spin expectation value is available from the above formula.

Outline 1. Spintronics a. Magnetoresistance and spin torques b. Two microscopic formalisms for spin torques 2. Gradient expansion a. Wilson line b. Moyal product 3. Application to spin torques a. 1st. order spin renormalization and Gilbert damping b. 2nd. order spin transfer torque and ββ-term

Benchmark: textured ferromagnet w/o SOIs Hamiltonian H XX, pp = pp 2 /2mm JJ nn XX σσ Impurities by the self-consistent Born approximation Nonmagnetic vv i δδ XX XX ijj Magnetic vv s mm jj σσ δδ XX XX sjj ; otherwise αα = ββ = 0. What we calculate Spin torques ττ = nn JJ σσ Spin expectation value σσ XX = ±iii dddd 2πππ dd3 pp 2πππ 3 tr σσ GG< XX, ξξ, pp Momentum integral and spin trace are carried out during the self-consistent calculation of the self-energy.

Spin renormalization and Gilbert damping 1st. order w.r.t. time gradient XX 0 GG 0 1 GG PP = Σ PP GG 0 iiηη PP IIII II GG 0 1 JJ GG 0 PP IIII PP AA, BB ηη IIII PP II AA JJ BB XX ηη μμ pp νν pp DD = ηη νν XX μμ μμ DD = δδ νν pp ηη μμ pp νν F = F μμμμ Lesser Green s function GG PP < = ± GG PP R GG PP A ff pp 0 + GG PP < 1 ff pp 0 GG 0 R 1 GG PP R = Σ PP R GG 0 R iiηη PP IIII II GG 0 R 1 JJ GG 0 R Fermi-surface terms only for XX 0 or F jjj GG 0 R 1 GG PP < 1 = Σ PP < 1 GG 0 A + iiηη PP IIpp 0 II GG 0 R 1 GG 0 R GG 0 A GG 0 R 1 GG 0 A 1 II GG 0 A Example of calculation gg R DD XX, ξξ = gg R DDD gg R DDD Σ R DDD Momentum integral ξξ = AA ξξ Σ R DDD ξξ nn XX nn XX σσ ξξ + BB ξξ ξξ = (γγ i γγ s /3)gg R DD2 ξξ Contribution to spin renormalization γγ i nn i vv i 2, γγ s nn s vv s 2

STT and ββ-term 2nd. order w.r.t. space gradient XX ii and electric field F jjj Lesser Green s function GG < R PP QQ = ± GG PP QQ A < GG PP QQ ff pp 0 + GG 1 PP QQ ff < pp 0 + GG 2 PP QQ ff pp 0 R GG 1 R 0 GG PP QQ = Σ R PP QQ GG RR 0 + Σ R QQ GG R PP + iiηη IIII PP II Σ R QQ JJ GG R 0 iiηη IIII R PP II GG 1 0 JJ GG R QQ + (PP QQ) + ηη PP IIII ηη QQ KKKK II KK GG 0 R 1 JJ LL GG 0 R R GG 1 < 0 GG 1 < PP QQ = Σ 1 PP QQ GG A 0 + Σ R < QQ GG 1 < PP + (Σ 1 QQ GG A PP + iiηη IIII < PP II Σ 1 QQ JJ GG A IIpp 0 iiηη 0 PP II Σ R QQ GG R 0 GG A 0 Σ R QQ Σ A A QQ II GG 0 iiηη PP IIII II GG 0 R 1 JJ GG QQ < 1 + iiηη PP IIpp 0 II GG 0 R 1 GG QQ R GG QQ A GG 0 R 1 GG 0 A 1 II GG QQ A ηη PP IIpp 0 ηη QQ KKKK II KK GG 0 R 1 LL GG 0 R GG 0 A + LL GG 0 R 1 GG 0 A 1 II KK GG 0 A + PP QQ ) Example of calculation R R gg DD F XX, ξξ = gg DD F1 Momentum integral ξξ F iii XX iinn XX σσ /mm Contribution to ββ-term R gg DD F1 R Σ DD F1 R ξξ = CC(ξξ)Σ DD F1 ξξ + DD ξξ R ξξ = (γγ i γγ s /3)gg DD F1 ξξ

Chemical-potential dependence ττ = nn JJ σσ ττ = ħ 4ππ 2 2mmmm ħ 2 3/2 ττ rrrrrr = JJ 1/2 dddd ff ξξ ττ ren + ττ αα nn nn 1 4ππ 2 2mmmm ħ 2 1/2 Igg RR DDD ξξ ff < ξξ iigg 1 DDD /2 F iii ττ STT + ττ ββ nn XX iinn Fermi-sea term of GG DD < ττ αα = JJ 1/2 dddd ff ξξ < iigg 1 DDD ξξ /2 Fermi-surface term of GG DD < ττ STT = JJ 1/2 dddd ff ξξ < 1 gg DD F2 ξξ /2ii Fermi-surface term < of GG DD F ττ ββ = JJ 1/2 dddd ff ξξ RR Igg DD F1 ξξ + ff < ξξ gg 1 DD F1 /2ii Fermi-sea term < of GG DD F

Outline 1. Spintronics a. Magnetoresistance and spin torques b. Two microscopic formalisms for spin torques 2. Gradient expansion a. Wilson line b. Moyal product 3. Application to spin torques a. 1st. order spin renormalization and Gilbert damping b. 2nd. order spin transfer torque and ββ-term

Summary Gradient expansion: Wilson line Wigner representation Perturbation theory w.r.t. spacetime gradient and field strength Explicit gauge covariance Application to spin torques Spin renormalization and Gilbert damping 1st. order w.r.t time gradient SOT 1st. order w.r.t. electric field STT and ββ-term 2nd. order w.r.t. space gradient and electric field