Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Similar documents
Lattice QCD Results on Strangeness and Quasi-Quarks in Heavy-Ion Collisions

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Quark Number Susceptibilities & The Wróblewski Parameter

Bulk Thermodynamics: What do we (want to) know?

QCD Critical Point : Inching Towards Continuum

The critical point of QCD: what measurements can one make?

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

The QCD phase diagram from the lattice

High Temperature/Density QCD

The QCD phase diagram at low baryon density from lattice simulations

New results in QCD at finite µ

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

Thermodynamics of (2+1)-flavor QCD from the lattice

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004

The QCD phase diagram from the lattice

The QCD Equation of State at μ B > 0 from Lattice QCD

Fluctuations of Conserved Charges

Opportunities for Lattice QCD Thermodynamics. 1 QCD at nonzero temperature and density

MATTER. Sourendu Gupta (TIFR, Mumbai) for the Indian Lattice Gauge Theory Initiative at IIT-Roorkee. March 13, 2005

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

Baryonic Spectral Functions at Finite Temperature

Finite Chemical Potential in N t = 6 QCD

QCD thermodynamics OUTLINE:

Past, Present, and Future of the QGP Physics

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

The QCD phase diagram at real and imaginary chemical potential

Bottomonium and transport in the QGP

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Exploring the QCD phase diagram with conserved charge fluctuations

Fluctuations, Correlations and bound states in the QGP

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Strong Interactions and QCD

Phase diagram and EoS from a Taylor expansion of the pressure

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA)

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

J/Ψ-suppression in the hadron resonance gas

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Ultra-Relativistic Heavy Ion Collision Results

The Quark-Gluon plasma in the LHC era

A prediction from string theory, with strings attached

Hydrodynamical description of ultrarelativistic heavy-ion collisions

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

MD Simulations of classical sqgp

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Bulk matter formed in Pb Pb collisions at the LHC

QGP event at STAR. Patrick Scott

Hagedorn States in Relativistic Heavy Ion Collisions

Fluctuations and QCD phase structure

arxiv: v1 [hep-lat] 19 Feb 2012

Low mass dileptons from Pb + Au collisions at 158 A GeV

The phase diagram of strongly interacting matter

Spectral functions in QCD

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Disintegration of quarkonia in QGP due to time dependent potential

Lattice QCD and transport coefficients

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld

Viscosity Correlators in Improved Holographic QCD

arxiv: v1 [hep-lat] 24 Oct 2013

The phase diagram of strongly interacting matter

First results with heavy-ion collisions at the LHC with ALICE

arxiv: v1 [nucl-th] 2 Mar 2015

Hadronic equation of state and relativistic heavy-ion collisions

Disintegration of quarkonia in QGP due to time dependent potential

Status of Heavy-Ion Physics at the LHC

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Cold quarks stars from hot lattice QCD

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

The direct photon puzzle

Charm production at RHIC

Transport Coefficients of Hadron Matter at Finite Temperature

Recent Progress in Lattice QCD at Finite Density

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

arxiv: v1 [hep-lat] 26 Dec 2009

Parton dynamics in heavy-ion collisions from FAIR to LHC

Quark-gluon plasma from AdS/CFT Correspondence

Phenomenology of Heavy-Ion Collisions

Some aspects of dilepton production in HIC

annihilation of charm quarks in the plasma

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Heavy quark free energies, screening and the renormalized Polyakov loop

Dynamical equilibration of stronglyinteracting

The Beam Energy Scan at RHIC

Overview of anisotropic flow measurements from ALICE

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Prospects with Heavy Ions at the LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC

Lessons from RHIC and Potential Discoveries at LHC with Ions

Probing QCD Phase Diagram in Heavy Ion Collisions

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Heating up QGP: towards charm quark chemical equilibration

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Quark Gluon Plasma Recent Advances

Constraints on the QCD phase diagram from imaginary chemical potential

Selected highlights from RHIC

Transcription:

Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1

Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction QGP in Bulk J/ψ suppression Jet Quenching QCD Phase Diagram Summary Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1

Introduction Measurement Fit O meas O fit /σ meas 0 1 2 3 α (5) had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A 0,l fb 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 0 1 2 3 Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 2

Measurement Fit O meas O fit /σ meas 0 1 2 3 α (5) had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A 0,l fb 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 0 1 2 3 Introduction Precision tests from LEP Standard Model Very Successful! Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 2

Measurement Fit O meas O fit /σ meas 0 1 2 3 α (5) had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A 0,l fb 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 0 1 2 3 Introduction Precision tests from LEP Standard Model Very Successful! All tests based on perturbation theory Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 2

Measurement Fit O meas O fit /σ meas 0 1 2 3 α (5) had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A 0,l fb 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 0 1 2 3 Introduction Precision tests from LEP Standard Model Very Successful! All tests based on perturbation theory Need to understand non-perturbative QCD, e.g., to explain baryonic mass in our Universe, i.e., us. Also, total cross sections, matrix elements, structure functions... Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 2

Measurement Fit O meas O fit /σ meas 0 1 2 3 α (5) had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A 0,l fb 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 0 1 2 3 Introduction Precision tests from LEP Standard Model Very Successful! All tests based on perturbation theory Need to understand non-perturbative QCD, e.g., to explain baryonic mass in our Universe, i.e., us. Also, total cross sections, matrix elements, structure functions... Lattice QCD only well-understood, viable tool for this: Iconic Results - Wilczek. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 2

Measurement Fit O meas O fit /σ meas 0 1 2 3 α (5) had (m Z ) 0.02758 ± 0.00035 0.02766 m Z [GeV] 91.1875 ± 0.0021 91.1874 Γ Z [GeV] 2.4952 ± 0.0023 2.4957 σ 0 had [nb] 41.540 ± 0.037 41.477 R l 20.767 ± 0.025 20.744 A 0,l fb 0.01714 ± 0.00095 0.01640 A l (P τ ) 0.1465 ± 0.0032 0.1479 R b 0.21629 ± 0.00066 0.21585 R c 0.1721 ± 0.0030 0.1722 A 0,b fb 0.0992 ± 0.0016 0.1037 A 0,c fb 0.0707 ± 0.0035 0.0741 A b 0.923 ± 0.020 0.935 A c 0.670 ± 0.027 0.668 A l (SLD) 0.1513 ± 0.0021 0.1479 sin 2 θ lept eff (Q fb ) 0.2324 ± 0.0012 0.2314 m W [GeV] 80.392 ± 0.029 80.371 Γ W [GeV] 2.147 ± 0.060 2.091 m t [GeV] 171.4 ± 2.1 171.7 Introduction Precision tests from LEP Standard Model Very Successful! All tests based on perturbation theory Need to understand non-perturbative QCD, e.g., to explain baryonic mass in our Universe, i.e., us. Also, total cross sections, matrix elements, structure functions... Lattice QCD only well-understood, viable tool for this: Iconic Results - Wilczek. 0 1 2 3 It predicts a transition to Quark-Gluon Plasma (QGP), and QGP properties. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 2

Quest for Quark-Gluon Plasma : Heavy Ion Collisions at SPS, RHIC and LHC. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 3

Quest for Quark-Gluon Plasma : Heavy Ion Collisions at SPS, RHIC and LHC. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 3

Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 4

Another fundamental aspect Critical Point in T -µ B plane; based on symmetries and models. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 5

Another fundamental aspect Critical Point in T -µ B plane; based on symmetries and models. Expected QCD Phase Diagram Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 5

Another fundamental aspect Critical Point in T -µ B plane; based on symmetries and models. Expected QCD Phase Diagram... but could, however, be... Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 5

Another fundamental aspect Critical Point in T -µ B plane; based on symmetries and models. Expected QCD Phase Diagram... but could, however, be... Τ Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 5

Transition temperature, Critical energy density, Order of Phase Transition? What are the properties of QGP (EoS, Excitations, Screening..)? Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 6

Transition temperature, Critical energy density, Order of Phase Transition? What are the properties of QGP (EoS, Excitations, Screening..)? Need N s N t for thermodynamic limit and large N t for continuum limit. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 6

Transition temperature, Critical energy density, Order of Phase Transition? What are the properties of QGP (EoS, Excitations, Screening..)? Need N s N t for thermodynamic limit and large N t for continuum limit. Completely parameter-free : Λ QCD and quark masses from hadron spectrum. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 6

The Transition Temperature T c 170 MeV (Bielefeld & CP-PACS, Tsukuba 2001) and Equation of State (EOS), have been predicted by lattice QCD. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 7

The Transition Temperature T c 170 MeV (Bielefeld & CP-PACS, Tsukuba 2001) and Equation of State (EOS), have been predicted by lattice QCD. OLD results on order parameters & EoS from Bielefeld 2001 (Coarse N t =4 lattices). Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 7

The Transition Temperature T c 170 MeV (Bielefeld & CP-PACS, Tsukuba 2001) and Equation of State (EOS), have been predicted by lattice QCD. OLD results on order parameters & EoS from Bielefeld 2001 (Coarse N t =4 lattices). Other quantities, notably strangeness enhancement in Heavy Ion Physics, the Wróblewski Parameter λ s (RVG & Sourendu Gupta PR D 2002) have also been predicted by lattice QCD. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 7

Thrust of new results now on continuum limit, lighter quarks, 2+1 flavours transition temperature T c = 192(7)(4)MeV (Bielefeld-RBC hep-lat/0608013). = A gap between freeze-out and transition temperatures? Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 8

Thrust of new results now on continuum limit, lighter quarks, 2+1 flavours transition temperature T c = 192(7)(4)MeV (Bielefeld-RBC hep-lat/0608013). = A gap between freeze-out and transition temperatures? more complex observables, speed of sound, transport coefficients, Fluctuations, J/ψ-dissolution/persistence, dileptons... etc. and T -µ phase diagram. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 8

Thrust of new results now on continuum limit, lighter quarks, 2+1 flavours transition temperature T c = 192(7)(4)MeV (Bielefeld-RBC hep-lat/0608013). = A gap between freeze-out and transition temperatures? more complex observables, speed of sound, transport coefficients, Fluctuations, J/ψ-dissolution/persistence, dileptons... etc. and T -µ phase diagram. An interesting theoretical issue Conformal Invariance and AdS/CFT predictions. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 8

Thrust of new results now on continuum limit, lighter quarks, 2+1 flavours transition temperature T c = 192(7)(4)MeV (Bielefeld-RBC hep-lat/0608013). = A gap between freeze-out and transition temperatures? more complex observables, speed of sound, transport coefficients, Fluctuations, J/ψ-dissolution/persistence, dileptons... etc. and T -µ phase diagram. An interesting theoretical issue Conformal Invariance and AdS/CFT predictions. Lot of activity in Model Building to explain Lattice QCD results: Quasi-particle models, Hadron Resonance Gas, Quarkonia from Lattice Q Q potential, sqgp and coloured states... Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 8

QGP in Bulk : EoS, Speed of Sound... Recent results for EoS : N t =6, Smaller quark masses. Bernard et al., MILC hep-lat/0509053; Aoki et al., hep-lat/0510084. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 9

Small differences; ɛ(t c ) 6Tc 4 still. Too small volumes = Thermodynamic Limit? Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 10

Small differences; ɛ(t c ) 6Tc 4 still. Too small volumes = Thermodynamic Limit? C s Crucial for elliptic flow, hydrodynamical studies... C v Event-by-event temperature/p T fluctuations. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 10

Small differences; ɛ(t c ) 6Tc 4 still. Too small volumes = Thermodynamic Limit? C s Crucial for elliptic flow, hydrodynamical studies... C v Event-by-event temperature/p T fluctuations. Can be obtained from ln Z by taking appropriate derivatives which relate it to the temperature derivative of anomaly measure /ɛ. (RVG, S. Gupta and S. Mukherjee, PR D71 (2005) ) New method to obtain these differentially without getting negative pressure. Introduced an improved operator than used in earlier Bielefeld studies. (RVG, S. Gupta and S. Mukherjee, hep-lat/0506015) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 10

Small differences; ɛ(t c ) 6Tc 4 still. Too small volumes = Thermodynamic Limit? C s Crucial for elliptic flow, hydrodynamical studies... C v Event-by-event temperature/p T fluctuations. Can be obtained from ln Z by taking appropriate derivatives which relate it to the temperature derivative of anomaly measure /ɛ. (RVG, S. Gupta and S. Mukherjee, PR D71 (2005) ) New method to obtain these differentially without getting negative pressure. Introduced an improved operator than used in earlier Bielefeld studies. (RVG, S. Gupta and S. Mukherjee, hep-lat/0506015) Using lattices with 8, 10, and 12 temporal sites (38 3 12 and 38 4 lattices) and with statistics of 0.5-1 million iterations, ɛ, P, s, C 2 s and C v obtained in continuum. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 10

30 0.4 25 20 Ideal Gas 0.35 0.3 0.25 Ideal Gas C v /T 3 15 C s 2 0.2 10 5 ( f ) 0.15 0.1 0.05 ( e ) 0 1 1.5 2 2.5 3 3.5 T/T c 0 1 1.5 2 2.5 3 3.5 T/T c (RVG, S. Gupta and S. Mukherjee, hep-lat/0506015) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 11

30 0.4 25 20 Ideal Gas 0.35 0.3 0.25 Ideal Gas C v /T 3 15 C s 2 0.2 10 5 ( f ) 0.15 0.1 0.05 ( e ) 0 1 1.5 2 2.5 3 3.5 T/T c 0 1 1.5 2 2.5 3 3.5 T/T c (RVG, S. Gupta and S. Mukherjee, hep-lat/0506015) C v 4ɛ for 2T c but No Ideal Gas limit. Specific heat fluctuations in p T? Cs 2 closer to Ideal Gas limit; Any structure near T c?? Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 11

Entropy agrees with strong coupling SYM prediction (Gubser, Klebanov & Tseytlin, NPB 98, 202) for T = 2 3T c but fails at lower T, as do various weak coupling schemes : s s 0 = f(g 2 N c ), where f(x) = 3 4 + 45 32 ζ(3)x 3/2 + and s 0 = 2 3 π2 Nc 2 T 3. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 12

Entropy agrees with strong coupling SYM prediction (Gubser, Klebanov & Tseytlin, NPB 98, 202) for T = 2 3T c but fails at lower T, as do various weak coupling schemes : s s 0 = f(g 2 N c ), where f(x) = 3 4 + 45 32 ζ(3)x 3/2 + and s 0 = 2 3 π2 Nc 2 T 3. 1 3T c 2T c 1.5T c 1.25T c ( b ) AdS/CFT (s/s 0 )-(3/4) 0.1 0.01 0.001 5 6 7 g 2 N 8 9 10 c Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 12

Entropy agrees with strong coupling SYM prediction (Gubser, Klebanov & Tseytlin, NPB 98, 202) for T = 2 3T c but fails at lower T, as do various weak coupling schemes : s s 0 = f(g 2 N c ), where f(x) = 3 4 + 45 32 ζ(3)x 3/2 + and s 0 = 2 3 π2 Nc 2 T 3. 1 ( b ) 3T c 2T c 1.5T c AdS/CFT 1.25T c 2 1.5 Ideal gas (s/s 0 )-(3/4) 0.1 0.01 P/T 4 1 0.5 Conformal 0.001 5 6 7 g 2 N 8 9 10 c 0 0 1 2 3 4 5 6 ε/t 4 Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 12

Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 13

Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 14

QGP - (Almost) Perfect Liquid v 2 (p T ) 0.2 0.18 0.16 0.14 0.12 b 6.8 fm (16-24% Central) STAR Data Γ s /τ o = 0 0.1 0.08 0.06 0.04 0.02 Γ s /τ o = 0.1 Γ s /τ o = 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 p T (GeV) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 15

QGP - (Almost) Perfect Liquid v 2 (p T ) 0.2 0.18 b 6.8 fm (16-24% Central) Elliptic flow consistent with Ideal Hydrodynamics bound on Shear viscosity. (D. Teaney, nucl-th/03010099; PRC 2003) 0.16 0.14 0.12 STAR Data Γ s /τ o = 0 0.1 0.08 Γ s /τ o = 0.1 0.06 0.04 Γ s /τ o = 0.2 0.02 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 p T (GeV) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 15

QGP - (Almost) Perfect Liquid v 2 (p T ) 0.2 0.18 0.16 0.14 0.12 0.1 0.08 b 6.8 fm (16-24% Central) STAR Data Γ s /τ o = 0 Γ s /τ o = 0.1 Elliptic flow consistent with Ideal Hydrodynamics bound on Shear viscosity. (D. Teaney, nucl-th/03010099; PRC 2003) 4 3 Γ s = η st, (1) where η is Shear Viscosity and s is entropy density; τ = t 2 z 2 is the time scale of expansion. 0.06 0.04 Γ s /τ o = 0.2 0.02 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 p T (GeV) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 15

QGP - (Almost) Perfect Liquid v 2 (p T ) 0.2 0.18 0.16 0.14 0.12 0.1 0.08 b 6.8 fm (16-24% Central) STAR Data Γ s /τ o = 0 Γ s /τ o = 0.1 Elliptic flow consistent with Ideal Hydrodynamics bound on Shear viscosity. (D. Teaney, nucl-th/03010099; PRC 2003) 4 3 Γ s = η st, (1) where η is Shear Viscosity and s is entropy density; τ = t 2 z 2 is the time scale of expansion. 0.06 0.04 0.02 Γ s /τ o = 0.2 Perturbation theory Large η/s Small η/s Strongly Coupled Liquid. 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 p T (GeV) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 15

2.0 1.5 1.0 0.5 0.0 η s 16 3 8 24 3 8 Perturbative Theory KSS bound -0.5 1 1.5 2 2.5 3 Nakamura and Sakai, PRL 94 (2005). T Tc Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 16

2.0 1.5 η s 16 3 8 24 3 8 Kubo s Linear Response Theory : Transport Coefficients in terms of equilibrium correlation functions. 1.0 Perturbative Theory 0.5 KSS bound 0.0-0.5 1 1.5 2 2.5 3 Nakamura and Sakai, PRL 94 (2005). T Tc Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 16

2.0 1.5 1.0 0.5 η s 16 3 8 24 3 8 Perturbative Theory KSS bound Kubo s Linear Response Theory : Transport Coefficients in terms of equilibrium correlation functions. Obtain Energy-Momentum Correlation functions on Lattice (at discrete Matsubara frequencies). 0.0-0.5 1 1.5 2 2.5 3 T Tc Continue them to get Retarded ones Shear, Bulk Viscosities. Nakamura and Sakai, PRL 94 (2005). Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 16

2.0 1.5 1.0 0.5 η s 16 3 8 24 3 8 Perturbative Theory KSS bound Kubo s Linear Response Theory : Transport Coefficients in terms of equilibrium correlation functions. Obtain Energy-Momentum Correlation functions on Lattice (at discrete Matsubara frequencies). 0.0-0.5 1 1.5 2 2.5 3 Nakamura and Sakai, PRL 94 (2005). T Tc Continue them to get Retarded ones Shear, Bulk Viscosities. Larger lattices and inclusion of dynamical quarks in future. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 16

Wróblewski Parameter Measure of Strangeness produced. Quark number susceptibilities, χ ij ln Z/ µ i µ j, can provide a handle; QNS also useful theoretical check on models. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 17

Wróblewski Parameter Measure of Strangeness produced. Quark number susceptibilities, χ ij ln Z/ µ i µ j, can provide a handle; QNS also useful theoretical check on models. Fluctuation-Dissipation Theorem Production of Strange quark-antiquark pair imaginary part of generalized strange quark susceptibility. Kramers - Krönig relation can be used to relate it to the real part of the susceptibility, which we obtain from lattice QCD simulations. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 17

Wróblewski Parameter Measure of Strangeness produced. Quark number susceptibilities, χ ij ln Z/ µ i µ j, can provide a handle; QNS also useful theoretical check on models. Fluctuation-Dissipation Theorem Production of Strange quark-antiquark pair imaginary part of generalized strange quark susceptibility. Kramers - Krönig relation can be used to relate it to the real part of the susceptibility, which we obtain from lattice QCD simulations. Finally, make a relaxation time approximation (ωτ 1) ratio of real parts is the same as the ratio of imaginary parts. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 17

We use m/t c = 0.03 for u, d and m/t c = 1 for s quark; At each T, ratio of χ s and χ ud λ s (T ). Extrapolate it to T c. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 18

We use m/t c = 0.03 for u, d and m/t c = 1 for s quark; At each T, ratio of χ s and χ ud λ s (T ). Extrapolate it to T c. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006) AGS Si-Au Quenched QCD (T ) c RHIC Au-Au SpS S-S SpS S-Ag SpS Pb-Pb AGS Au-Au 0.2 0.4 0.6 0.8 1 λs Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 18

We use m/t c = 0.03 for u, d and m/t c = 1 for s quark; At each T, ratio of χ s and χ ud λ s (T ). Extrapolate it to T c. (RVG & Sourendu Gupta, PRD 2002, PRD 2003 and PRD 2006) Quenched QCD (T ) c 1 RHIC Au-Au 0.8 SpS S-S SpS S-Ag 0.6 SpS Pb-Pb AGS Au-Au λ s 0.4 Nt = 4 Nf = 2 QCD AGS Si-Au 0.2 0.2 0.4 0.6 0.8 1 λs 0 0 0.5 1 1.5 2 2.5 3 T/Tc Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 18

Baryon-Strangeness Correlation Correlation between quantum numbers K and L can be studied through the ratio C (KL)/L = KL K L. L 2 L 2 These are robust : theoretically & experimentally. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 19

Baryon-Strangeness Correlation Correlation between quantum numbers K and L can be studied through the ratio C (KL)/L = KL K L. L 2 L 2 These are robust : theoretically & experimentally. Baryon Number(Charge) Strangeness correlation : C (BS)/S (C (QS)/S ) (Koch, Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); u-d Correlation. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 19

Baryon-Strangeness Correlation Correlation between quantum numbers K and L can be studied through the ratio C (KL)/L = KL K L. L 2 L 2 These are robust : theoretically & experimentally. Baryon Number(Charge) Strangeness correlation : C (BS)/S (C (QS)/S ) (Koch, Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); u-d Correlation. 1.5 1.25 X=Q 1 XS C 0.75 0.5 0.25 X=B 0 0.5 1 1.5 2 2.5 T/Tc Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 19

Baryon-Strangeness Correlation Correlation between quantum numbers K and L can be studied through the ratio C (KL)/L = KL K L. L 2 L 2 These are robust : theoretically & experimentally. Baryon Number(Charge) Strangeness correlation : C (BS)/S (C (QS)/S ) (Koch, Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); u-d Correlation. XS C 1.5 1.25 1 0.75 0.5 0.25 X=Q X=B C (ud)/u 1 0.8 0.6 0.4 0.2 0 0.5 1 1.5 2 2.5 T/Tc 0 0.5 1 1.5 2 2.5 T/Tc Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 19

Anomalous J/ψ Suppression : CERN NA50 results Matsui-Satz idea J/ψ suppression as a signal of QGP. Deconfinement Screening of coloured quarks, which cannot bind. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 20

Anomalous J/ψ Suppression : CERN NA50 results Matsui-Satz idea J/ψ suppression as a signal of QGP. Deconfinement Screening of coloured quarks, which cannot bind. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 20

Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 21

J/ψ Suppression Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 22

J/ψ Suppression or Not? Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence dissolution of J/ψ and χ c by 1.1T c. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 22

J/ψ Suppression or Not? Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence dissolution of J/ψ and χ c by 1.1T c. Impressive NA50 results from CERN and now PHENIX at RHIC. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 22

J/ψ Suppression or Not? Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence dissolution of J/ψ and χ c by 1.1T c. Impressive NA50 results from CERN and now PHENIX at RHIC. A critical assessment of the original theoretical argument: Made feasible by the recognition of MEM technique as a tool to extract spectral functions from the temporal correlators computed on the Euclidean lattice. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 22

J/ψ Suppression or Not? Original Matsui-Satz idea Based on Quarkonium potential model calculations and an Ansatz for temperature dependence dissolution of J/ψ and χ c by 1.1T c. Impressive NA50 results from CERN and now PHENIX at RHIC. A critical assessment of the original theoretical argument: Made feasible by the recognition of MEM technique as a tool to extract spectral functions from the temporal correlators computed on the Euclidean lattice. Caution : nonzero temperature obtained by making temporal lattices shorter : 48 3 12 to 64 3 24 Lattices used. (S. Datta et al., Phys. Rev. D 69, 094507 (2004).) Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 22

0.16 η c J/ψ 0.1 0.75T c 1.1T c 1.5T c 0.12 χ c0 χ c1 ρ(ω) 0.08 ρ(ω) 0.05 0.04 0.9T c 1.5T c 2.25T c 3T c 0 0 2 4 6 2 4 6 ω[gev] 0 1 3 5 1 3 5 ω[gev] χ c seems to indeed dissolve by 1.1T c, however, J/ψ and η c persist up to 2.25 T c and are gone at 3T c ; Similar results by Asakawa-Hatsuda and Matsufuru. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 23

0.16 η c J/ψ 0.1 0.75T c 1.1T c 1.5T c 0.12 χ c0 χ c1 ρ(ω) 0.08 ρ(ω) 0.05 0.04 0.9T c 1.5T c 2.25T c 3T c 0 0 2 4 6 2 4 6 ω[gev] 0 1 3 5 1 3 5 ω[gev] χ c seems to indeed dissolve by 1.1T c, however, J/ψ and η c persist up to 2.25 T c and are gone at 3T c ; Similar results by Asakawa-Hatsuda and Matsufuru. Since about 30-40 % observed J/ψ come through χ and ψ decays, expect changes of suppression patterns as a function of T or s. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 23

0.16 η c J/ψ 0.1 0.75T c 1.1T c 1.5T c 0.12 χ c0 χ c1 ρ(ω) 0.08 ρ(ω) 0.05 0.04 0.9T c 1.5T c 2.25T c 3T c 0 0 2 4 6 2 4 6 ω[gev] 0 1 3 5 1 3 5 ω[gev] χ c seems to indeed dissolve by 1.1T c, however, J/ψ and η c persist up to 2.25 T c and are gone at 3T c ; Similar results by Asakawa-Hatsuda and Matsufuru. Since about 30-40 % observed J/ψ come through χ and ψ decays, expect changes of suppression patterns as a function of T or s. No Significant Effect of inclusion of dynamical fermions? Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 23

Jet Quenching Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 24

Jet Quenching Rare, Highly Energetic Scatterings produce jets of particles : g + g g + g. Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to lose energy Jet Quenching. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 24

On-Off test possible Compare Collisions of Heavy-Heavy nuclei with Light-Heavy or Light-Light. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 25

On-Off test possible Compare Collisions of Heavy-Heavy nuclei with Light-Heavy or Light-Light. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 25

Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 26

QCD Phase Diagram Expected QCD Phase Diagram and Lattice Approaches to unravel it. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 27

QCD Phase Diagram Expected QCD Phase Diagram and Lattice Approaches to unravel it. Lee-Yang Zeroes and Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ). Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 27

QCD Phase Diagram Expected QCD Phase Diagram and Lattice Approaches to unravel it. Lee-Yang Zeroes and Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ). Imaginary Chemical Potential (Ph. Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D Elia PR D67 (2003) 014505 ). de Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 27

QCD Phase Diagram Expected QCD Phase Diagram and Lattice Approaches to unravel it. Lee-Yang Zeroes and Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ). Imaginary Chemical Potential (Ph. Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D Elia PR D67 (2003) 014505 ). de Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ). Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 27

Critical Point Estimate 5 4 3 B /T µ 2 1 RVG & S. Gupta, PR D 71 2005. /T B µ 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 n 0 1 2 3 4 5 6 7 n Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 28

Critical Point Estimate 5 4 3 B /T µ 2 1 RVG & S. Gupta, PR D 71 2005. /T B µ 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 n 0 1 2 3 4 5 6 7 n Radii of convergence as a function of the order of expansion at T = 0.95T c on N s = 8 (circles) and 24 (boxes). Left panel for ρ n and right one for r n. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 28

Critical Point Estimate 5 4 3 B /T µ 2 1 RVG & S. Gupta, PR D 71 2005. /T B µ 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 n 0 1 2 3 4 5 6 7 n Radii of convergence as a function of the order of expansion at T = 0.95T c on N s = 8 (circles) and 24 (boxes). Left panel for ρ n and right one for r n. Extrapolation in n µ E /T E = 1.1 ± 0.2 at T E = 0.95T c. Finite volume shift consistent with Ising Universality class. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 28

Summary Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 29

Lattice QCD predicts transition to Quark-Gluon Plasma and several of its properties, T c, EoS, λ s, η... RHIC data exhibits tell-tale signs of QGP : Flow, Jet Quenching, J/ψ... BUT agreement with theory still not very quantitative, e.g., v 2. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 30

Lattice QCD predicts transition to Quark-Gluon Plasma and several of its properties, T c, EoS, λ s, η... RHIC data exhibits tell-tale signs of QGP : Flow, Jet Quenching, J/ψ... BUT agreement with theory still not very quantitative, e.g., v 2. Our results on correlations of quantum numbers suggest quark-like excitations in QGP. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 30

Lattice QCD predicts transition to Quark-Gluon Plasma and several of its properties, T c, EoS, λ s, η... RHIC data exhibits tell-tale signs of QGP : Flow, Jet Quenching, J/ψ... BUT agreement with theory still not very quantitative, e.g., v 2. Our results on correlations of quantum numbers suggest quark-like excitations in QGP. Phase diagram in T µ B plane has begun to emerge: Our estimate for the critical point is µ B /T 1 2. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 30

Lattice QCD predicts transition to Quark-Gluon Plasma and several of its properties, T c, EoS, λ s, η... 1.1 RHIC data exhibits tell-tale signs of QGP : Flow, Jet Quenching, J/ψ... BUT agreement with theory still not very quantitative, e.g., v 2. T/Tc 1 0.9 30 GeV 20 GeV 18 GeV (CERN) 10 GeV Our results on correlations of quantum numbers suggest quark-like excitations in QGP. Phase diagram in T µ B plane has begun to emerge: Our estimate for the critical point is µ B /T 1 2. 0.8 Freezeout curve 0.7 0 1 2 3 4 5 µ B /T Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 30

1.0 NL 0.9 HTL χ 3 /Τ 2 0.8 0.7 0.6 1 2 3 T/T c Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 31

Quarkonia moving in the Heat Bath Should see more energetic gluons. More Dissociation at the same T as momentum of J/ψ increases? Datta et al. SEWM 2004, PANIC 2005. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 32

Quarkonia moving in the Heat Bath Should see more energetic gluons. More Dissociation at the same T as momentum of J/ψ increases? Datta et al. SEWM 2004, PANIC 2005. 0.2 0.15 ρ(ω) η c 0.2 0.15 ρ(ω) J/ψ T 0 0.64 1.28 1.92 p[gev] 0.1 0.05 0 0.75T c 1.1T c 0 0.64 1.28 1.92 p [GeV] 1 3 5 1 3 5 ω[gev] 0.1 0.05 0 0.75T c 1.1T c 1 3 5 1 3 5 ω[gev] Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 32

Quarkonia moving in the Heat Bath Should see more energetic gluons. More Dissociation at the same T as momentum of J/ψ increases? Datta et al. SEWM 2004, PANIC 2005. 0.2 0.15 ρ(ω) η c 0.2 0.15 ρ(ω) J/ψ T 0 0.64 1.28 1.92 p[gev] 0.1 0.05 0 0.75T c 1.1T c 0 0.64 1.28 1.92 p [GeV] 1 3 5 1 3 5 ω[gev] 0.1 0.05 0 0.75T c 1.1T c 1 3 5 1 3 5 ω[gev] Both J/ψ and η c do show this trend. The effect is significant at both 0.75 and 1.1T c. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 32

m ρ /T c m π /m ρ m N /m ρ N s m π flavours T E /T c µ E B /T E 5.372 (5) 0.185 (2) 1.9 3.0 2+1 0.99 (2) 2.2 (2) 5.12 (8) 0.307 (6) 3.1 3.9 2+1 0.93 (3) 4.5 (2) 5.4 (2) 0.31 (1) 1.8 (2) 3.3 10.0 2 0.95 (2) 1.1 (2) 5.4 (2) 0.31 (1) 1.8 (2) 3.3 2 5.5 (1) 0.70 (1) 15.4 2 Table 1: Summary of critical end point estimates the lattice spacing is a = 1/4T. N s is the spatial size of the lattice and N s m π is the size in units of the pion Compton wavelength, evaluated for T = µ = 0. The ratio m π /m K sets the scale of the strange quark mass. Results are sequentially from Fodor-Katz 04, Fodor-Katz 02, Gavai-Gupta, de Forcrand- Philipsen and Bielefeld-Swansea. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 33