Basics of Higgs Physics

Similar documents
The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring,

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

The search for the (SM) Higgs Boson

IX. Electroweak unification

Finding the Higgs boson

HIGGS AT HADRON COLLIDER

Higgs physics at the ILC

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Higgs Boson Phenomenology Lecture I

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

The Higgs boson. Marina Cobal University of Udine

Particle Physics: Introduction to the Standard Model

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Higgs Signals and Implications for MSSM

Hunting for the Higgs Boson. Ulrich Heintz Brown University

HIGGS BOSONS AT THE LHC

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Search for Higgs in H WW lνlν

Abdelhak DJOUADI ( LPT Orsay)

Why Higgs Boson Searches?

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Electroweak Physics at the LHC Introductory Lecture

Elementary Particles II

Beyond the Standard Model

Introduction and Theoretical Background

arxiv:hep-ph/ v1 12 Jan 1999

Electroweak Theory, SSB, and the Higgs: Lecture 2

Higgs rush at CERN. Frank Filthaut Radboud University Nijmegen / Nikhef

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Non-Standard Higgs Decays

Higgs boson(s) in the NMSSM

ATLAS Discovery Potential of the Standard Model Higgs Boson

HIGGS + 2 JET PRODUCTION AT THE LHC

The Standard Model and Beyond

Constraining New Models with Precision Electroweak Data

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Pedro Teixeira-Dias. Higgs Overview

Higgs Property Measurement with ATLAS

The Standar Model of Particle Physics Lecture II

Hidden two-higgs doublet model

New Physics Scales to be Lepton Colliders (CEPC)

Higgs Production at LHC

sin(2θ ) t 1 χ o o o

Higgs physics at the LHC

Search for the Higgs Boson at the LHC. Karl Jakobs Physikalisches Institut Universität Freiburg

Higgs-charm Couplings

δm W = 15 MeV δm top = 1 GeV

Physics at TeV Energy Scale

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Higgs Searches at Hadron Colliders

Discovery of the Higgs Boson

Channels and Challenges: Higgs Search at the LHC

Little Higgs Models Theory & Phenomenology

The Higgs discovery - a portal to new physics

Higgs Searches at CMS

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Higgs Boson Production at the LHC

Day2: Physics at TESLA

The electroweak fit at NNLO and prospects for LHC and ILC. Klaus Mönig

Discovery potential of the SM Higgs with ATLAS

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

La ricerca dell Higgs Standard Model a CDF

Particle Physics Today, Tomorrow and Beyond. John Ellis

Physics Highlights from 12 Years at LEP

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

HIGGS Bosons at the LHC

Searching for the Higgs at the LHC

The Higgs Boson and Electroweak Symmetry Breaking

The Physics of Heavy Z-prime Gauge Bosons

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen

Tilman Plehn. Mainz, July 2015

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Detecting H->hh in the Mirror Model at the LHC

arxiv: v1 [hep-ex] 5 Sep 2014

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Fourth SM Family at the LHC: ATLAS prospects. Saleh SULTANSOY

Double Higgs production via gluon fusion (gg hh) in composite models

Physics at Hadron Colliders

Composite Higgs and Flavor

Photon Coupling with Matter, u R

Higgs Boson Searches at ATLAS

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

The Origin of Mass. Understanding the Higgs Mechanism. of Mass Generation at. Marco Battaglia. TESLA Colloquium DESY, Hamburg, March 2001

Electroweak and Higgs Physics

Supersymmetry, Dark Matter, and Neutrinos

Measurements of the Higgs Boson at the LHC and Tevatron

D0 Higgs Results and Tevatron Higgs Combination

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Top Quark Measurements at the ILC. Akimasa Ishikawa (Tohoku University)

Higgs Boson Physics, Part II

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

Matter, antimatter, colour and flavour in particle physics

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Search for SUperSYmmetry SUSY

Electroweak Physics and Searches for New Physics at HERA

Transcription:

Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/1

Basics of iggs Physics (I) Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM (2/3) + (1/3) 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/1

The iggs Boson in the SM Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. iggs Theory 2. Electroweak Precision Observables 3. Properties of the SM iggs boson 4. SM iggs boson Searches at LEP 5. SM iggs boson Searches at the Tevatron 6. SM iggs boson Searches at the LC 7. SM iggs boson precision physics at the ILC Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/1

The iggs Boson in the SM Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. iggs Theory 2. Electroweak Precision Observables 3. Properties of the SM iggs boson 4. SM iggs boson Searches at LEP 5. SM iggs boson Searches at the Tevatron 6. SM iggs boson Searches at the LC 7. SM iggs boson precision physics at the ILC Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/1

1. iggs Theory Standard Model (SM) of the electroweak and strong interaction SM: Quantum field theory interaction: exchange of field quanta Construction principle of the SM: gauge invariance Example: Quantum electro-dynamics (QED) field quanta: photon A µ e e γ nucleus L QED invariant under gauge transformation: Ψ e i e λ(x) Ψ, A µ A µ + µ λ(x) mass term for photon: m 2 A µ A µ not gauge invariant A µ is massless gauge field Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/2

Problem: Gauge fields Z, W +, W are massive explicite mass terms in the Lagrangian breaking of gauge invariance Solution: iggs mechanism scalar field postulated, mass terms from coupling to iggs field iggs sector in the Standard Model: Scalar SU(2) doublet: Φ = iggs potential: φ+ φ 0 ) V( Φ + 0, Φ µ 2>0 V (φ) = µ 2 Φ Φ + λ Φ Φ 2, λ > 0 µ 2 < 0: Spontaneous symmetry breaking µ 2 minimum of potential at Φ 0 = 2 λ v 2 v/ 2 Φ + 2 µ<0 Φ 0 Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/3

Φ = 1 2 0 v + (unitary gauge) : elementary scalar field, iggs boson Lagrange density: L iggs = (D µ Φ) (D µ Φ) g d Q L Φd R g u Q L Φ c u R V (Φ) with id µ = i g 2 I W g1 Y B Φ c = iσ 2 Φ Q L u L d L, Φ 0 v, Φ c v 0 Gauge invariant coupling to gauge fields mass terms for gauge bosons and fermions Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/4

1.) V V ΦΦ coupling: V + v + + 1 q 2 1 q 2 + j 1 q 2 ( ) 2 gv 1 2 q 2 j = 1 q 2 M 2 : M2 = g 2v2 2 2.) fermion mass terms: Yukawa couplings: f + v + + 1 q 1 q + j 1 q [ ] gf v j 1 = 2 q 1 q m f : m f = g f v 2 Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/5

1.) V V ΦΦ coupling: v x x v V V VV mass terms: g 2 2 v2 /2 M 2 W, (g2 1 + g2 2 )v2 /2 M 2 Z v x V V V V triple/quartic couplings to gauge bosons coupling masses Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/6

2.) fermion mass terms: Yukawa couplings f f v x f f m f = v g f coupling masses 3.) mass of the iggs boson: self coupling v x λ... λ = M 2 /v M = v λ free parameter v x last unknown parameter of the SM establish iggs mechanism find the iggs measure its couplings Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/7

Another effect of the iggs field: Scattering of longitudinal W bosons: W L W L W L W L W M V = γ, Z W violation of unitarity W W + γ, Z + = g 2 E 2 M 2 W + O(1) for E Contribution of a scalar particle with couplings prop. to the mass: W W M S = W W + = gww 2 E2 MW 4 + O(1) for E M tot = M V + M S = E2 ( g 2 MW 4 WW g 2 MW 2 ) +... compensation of terms with bad high-energy behavior for g WW = g M W Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/8

What else do we know about the iggs boson? Running of iggs self-interaction: λ t Renormalization group equation: d λ d t = 3 8 π 2 [ λ 2 + λg 2 t g 4 t + 1 16 ( 2g 4 2 + (g 2 2 + g2 1 )2)], t = log ( Q 2 v 2 ) Two conditions: 1.) avoid Landau pole (for large λ M 2 ) 2.) avoid vacuum instability (for small/negative λ) Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/9

1.) avoid Landau pole (for large λ M 2 ) d λ d t λ(q 2 ) = = 3 8 π 2 [ λ 2 ] λ(v 2 ) ( 1 3λ(v2 ) 8 π 2 log Q 2 v 2 ) λ(λ) < M 2 8 π2 v 2 3log ( Λ 2 ) v 2 : upper bound on M 2.) avoid vacuum instability (for small/negative λ): V (v) < V (0) λ(λ) > 0 d λ = 3 [ d t 8 π 2 gt 4 + 1 ( 2g 4 16 2 + (g2 2 + g2 1 )2)] λ(q 2 ) = λ(v 2 ) 3 8 π 2 λ(λ) > 0 M 2 > v2 4 π 2 [ g 4 t + 1 16 [ g 4 t + 1 16 ( 2g 4 2 + (g 2 2 + g2 1 )2)] log ( 2g 4 2 + (g 2 2 + g2 1 )2)] log ( Λ 2 v 2 ) ( ) Q 2 v 2 : lower bound Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/10

Both limits combined: 800.0 m t = 174 GeV 600.0 M (GeV) 400.0 Landau pole 200.0 0.0 Potential bounded from below 10 3 10 6 10 9 10 12 10 15 Λ (GeV) Λ: scale up to which the SM is valid Λ = M GUT 130 GeV < M < 180 GeV Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/11

2. Electroweak Precision Observables (EWPO): Comparison of electro-weak precision observables with theory: EW Precision data: Theory: M W,sin 2 θ eff, a µ SM, MSSM,... Test of theory at quantum level: Sensitivity to loop corrections, e.g. SM: limits on M Very high accuracy of measurements and theoretical predictions needed Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/12

Example: prediction of M W Theoretical prediction for M W in terms of M Z, α, G µ, r: M 2 W ( 1 M2 W M 2 Z ) = π α 2 Gµ (1 + r) loop corrections Evaluate r from µ decay M W One-loop result for M W in the SM: [A. Sirlin 80], [W. Marciano, A. Sirlin 80] r 1 loop = α c2 W s 2 ρ + r rem (M ) W log M Z m f m 2 t log(m /M W ) 6% 3.3% 1% Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/13

Comparison of SM prediction of M W with direct measurements: r = 11g2 2 96 π 2 s 2 W c 2 W log ( M M W ) 80.5 LEP1 and SLD LEP2 and Tevatron (prel.) 68% CL general for EWPO: g 2 2 [ log ( M M W ) leading term: log(m ) + g 2 2 M 2 M 2 W first term M 2 with g4 2 light iggs boson preferred ] m W [GeV] 80.4 80.3 α m [GeV] 114 300 1000 150 175 200 [LEPEWWG 07] m t [GeV] Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/14

Results for M from other EWPO: light iggs preferred by: M W, A LR l (SLD) heavier iggs preferred by: A FB b (LEP) keeps SM alive Γ Z σ 0 had R 0 l A 0,l fb A l (P τ ) R 0 b R 0 c A 0,b fb A 0,c fb A b A c A l (SLD) sin 2 θ lept eff (Q fb ) m W * Γ W * Q W (Cs) sin 2 θ (e e MS ) sin 2 θ W (νn) g 2 L (νn) g 2 R (νn) *preliminary 10 10 2 10 3 M [GeV] light iggs boson preferred [LEPEWWG 07] Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/15

Global fit to all SM data: [LEPEWWG 07] M = 76 +33 24 GeV M < 144 GeV, 95% C.L. 6 5 4 Theory uncertainty α had = α (5) 0.02758±0.00035 0.02749±0.00012 incl. low Q 2 data m Limit = 144 GeV χ 2 3 Assumption for the fit: SM incl. iggs boson no confirmation of iggs mechanism 2 1 Excluded Preliminary 0 30 100 300 m [GeV] iggs boson seems to be light, M < 150 GeV Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/16

3. Properties of the SM iggs boson 1.) Decay to fermions: coupling: g f f = [ 2 Gµ ] 1/2 mf decay width: Γ( f f) = N c G µ M 4 2 π m2 f (M2 ) 1 4 m2 f M 2 3/2 with N c = number of colors Bulk of QCD corrections for decays to quarks are mapped into m 2 q (pole) m2 q (M2 ) Dominant decay process: b b Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/17

2.) Decay to heavy gauge bosons (V = W, Z): coupling: g V V = 2 [ 2 Gµ ] 1/2 M 2 V on-shell decay width (M > 2M V ): Γ( V V ) = δ V G µ M 3 16 2 π with δ W,Z = 2,1 ( 1 4 M2 V M 2 + 12 M4 ) ( V M 4 1 4 M2 ) 1/2 V M 2 off-shell decay width (M < 2M V ): Γ( V V ) = δ V 3G 2 µ M 16 π 3 M4 V Integral Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/18

3.) Decay to massless gauge bosons (gg, γγ): t t via the top quark loop with huge QCD corrections t g g Γ( gg) = G µ α 2 s(m 2 ) M3 36 2 π 3 C = 215 12 23 6 log ( µ 2 M 2 ) W W [ W 1 + C α s(µ) π + O(α s ) γ γ ] Γ( γγ) = G µ α 2 M 3 128 2 π 3 via the top quark and W boson loop 4 3 e2 t 7 2 Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/19

Overview of the branching ratios: [taken from hep-ph/0503172] Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/20

The total SM iggs boson width: [taken from hep-ph/0503172] Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/21

Discovering the iggs boson What has to be done? 1. Find the new particle Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle 2. measure its mass ( ok?) Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle 2. measure its mass ( ok?) 3. measure coupling to gauge bosons 4. measure couplings to fermions Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle 2. measure its mass ( ok?) 3. measure coupling to gauge bosons 4. measure couplings to fermions 5. measure self-couplings Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle 2. measure its mass ( ok?) 3. measure coupling to gauge bosons 4. measure couplings to fermions 5. measure self-couplings 6. measure spin,... Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle T 2. measure its mass ( ok?) T 3. measure coupling to gauge bosons 4. measure couplings to fermions 5. measure self-couplings 6. measure spin,... T = Tevatron, Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle T L 2. measure its mass ( ok?) T L 3. measure coupling to gauge bosons L 4. measure couplings to fermions L 5. measure self-couplings 6. measure spin,... T = Tevatron, L = LC, Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

Discovering the iggs boson What has to be done? 1. Find the new particle T L I 2. measure its mass ( ok?) T L I 3. measure coupling to gauge bosons L I 4. measure couplings to fermions L I 5. measure self-couplings I 6. measure spin,... I T = Tevatron, L = LC, I = ILC (International Linear e + e collider) We need the LC and the ILC to find the iggs and to establish the iggs mechanism! The LC can do a crucial part... Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/22

4. SM iggs search at LEP: Dominant production process: e + e Z: e Z e + Z σ(e + e Z) = G2 µm 4 Z 96 π s [ v 2 e + a 2 e] β β 2 + 12M 2 Z /s (1 M 2 Z /s)2 with β 2 = (1 (M + M Z ) 2 /s)(1 (M M Z ) 2 /s) (1) Dominant decay process: b b b b Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/23

Search for the Standard Model iggs at LEP: [LEP iggs WG 03] Exclusion limit at the 95% C.L.: M > 114.4 GeV expected: 115.3 GeV (LEP has seen exactly as many iggs-like events as could be expected for M 116 GeV, not more, not less) -2 ln(q) 50 40 30 20 10 0-10 -20-30 Observed Expected for background Expected for signal plus background LEP 106 108 110 112 114 116 118 120 m (GeV/c 2 ) Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/24

5. SM iggs search at the Tevatron Tevatron: p p accelerator: T Production processes as at LEP: q W q Z q W q Z Other important production channels: g t q t g t q Dominant decays: b, τ W W q q W b, τ + W Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/25

Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/26

Overview of production cross sections: [F. Maltoni et al. 05] SM iggs production σ [fb] 10 3 10 2 qq Wh qq qqh gg h TeV II 10 bb h qq Zh gg,qq tth TeV4LC iggs working group 1 100 120 140 160 180 200 m h [GeV] Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/27

Expectations for iggs discovery at the Tevatron: Unfortunately: luminosity problems in the start of RunII progress slower than anticipated For SM iggs boson with M 120 GeV: 2008/09: sensitivity for 95% C.L. exclusion 2009: sensitivity for 3σ evidence or exclude SM iggs with M < 130 GeV Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/28

Results for various search channels for SM iggs: [CDF, D0 06] 95% CL Limit/SM 10 3 10 2 10 1 CDF 320 pb -1 tt D0 378 pb -1 W lνbb Can they close the gap? Tevatron Run 2 Preliminary CDF 289 pb -1 Z ννbb D0 261 pb -1 Z ννbb CDF 360 pb -1 W lνbb D0 325 pb -1 WW lνlν D0 950 pb -1 combined CDF 360 pb -1 WW lνlν April 20, 2006 110 120 130 140 150 160 170 180 190 m (GeV) Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/29

Current status (latest results) of SM iggs search: [CDF, D0 06] Can they close the gap? Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007 I/30