Contents. Preface...VII. Introduction... 1

Similar documents
Modern Geometric Structures and Fields

Patrick Iglesias-Zemmour

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions

Vertex Algebras and Algebraic Curves

Factorization Algebras Associated to the (2, 0) Theory IV. Kevin Costello Notes by Qiaochu Yuan

Burgers equation 324. Calugareanu formula 189. Calabi invariant 261, 265. integral, 265. form, 265. Casimir-momentum method 101. cat map 111, 281, 305

Traces and Determinants of

Donaldson Invariants and Moduli of Yang-Mills Instantons

Groups and topology in the Euler hydrodynamics and KdV

Higgs Bundles and Character Varieties

arxiv: v1 [math-ph] 13 Feb 2008

Linear connections on Lie groups

Lectures on the Orbit Method

Knot Homology from Refined Chern-Simons Theory

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

Classical Geometry of Quantum Integrability and Gauge Theory. Nikita Nekrasov IHES

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula

Cocycles and stream functions in quasigeostrophic motion

Schedule of the Lectures

Integrable spin systems and four-dimensional gauge theory

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

ANNOTATED BIBLIOGRAPHY. 1. Integrable Systems

Contents. Chapter 3. Local Rings and Varieties Rings of Germs of Holomorphic Functions Hilbert s Basis Theorem 39.

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Lecture I: Overview and motivation

arxiv: v1 [math-ph] 28 Aug 2008

Two simple ideas from calculus applied to Riemannian geometry

IGA Lecture I: Introduction to G-valued moment maps

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS

J-holomorphic curves in symplectic geometry

Morse theory and stable pairs

Notes on the geometry of Lagrangian torus fibrations

Syllabuses for Honor Courses. Algebra I & II

Supersymmetric gauge theory, representation schemes and random matrices

Contributors. Preface

The topology of symplectic four-manifolds

ON THE MAPPING CLASS GROUP ACTION ON THE COHOMOLOGY OF THE REPRESENTATION SPACE OF A SURFACE

Stable bundles on CP 3 and special holonomies

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves

Flat connections on 2-manifolds Introduction Outline:

The Strominger Yau Zaslow conjecture

HYPERKÄHLER MANIFOLDS

Compatible Hamiltonian Operators for the Krichever-Novikov Equation

The Dirac-Ramond operator and vertex algebras

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

CURVATURES OF SOBOLEV METRICS ON DIFFEOMORPHISM GROUPS

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

The Structure of Compact Groups

Algebraic geometry over quaternions

THEORY OF GROUP REPRESENTATIONS AND APPLICATIONS

Torus actions and Ricci-flat metrics

Gauged Linear Sigma Model in the Geometric Phase

Topics in Geometry: Mirror Symmetry

Kähler manifolds and variations of Hodge structures

Lagrangian knottedness and unknottedness in rational surfaces

Dynamics of symplectic fluids and point vortices

A Gauge Theoretic Proof of the Abel-Jacobi Theorem

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Integrable evolution equations on spaces of tensor densities

Differential Geometry, Lie Groups, and Symmetric Spaces

BRST and Dirac Cohomology

Lecture 1: Introduction

GEOMETRIC QUANTIZATION

CHERN-SIMONS THEORY AND LINK INVARIANTS! Dung Nguyen! U of Chicago!

Complexification of real manifolds and complex Hamiltonians

Gravitating vortices, cosmic strings, and algebraic geometry

Fundamentals of Differential Geometry

Topological reduction of supersymmetric gauge theories and S-duality

TITLE AND ABSTRACT OF HALF-HOUR TALKS

COTANGENT MODELS FOR INTEGRABLE SYSTEMS

A Crash Course of Floer Homology for Lagrangian Intersections

MATHEMATICAL STRUCTURES IN CONTINUOUS DYNAMICAL SYSTEMS

Math 550 / David Dumas / Fall Problems

Part I Non-Associative and Non-Commutative Structures for Physics

Many of the exercises are taken from the books referred at the end of the document.

OPEN PROBLEMS IN NON-NEGATIVE SECTIONAL CURVATURE

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

Invariance of tautological equations

MULTIVALUED FUNCTIONS AND FUNCTIONALS. AN ANALOGUE OF THE MORSE THEORY

Transverse geometry. consisting of finite sums of monomials of the form

Stringy Topology in Morelia Week 2 Titles and Abstracts

Mirror Symmetry: Introduction to the B Model

Delzant s Garden. A one-hour tour to symplectic toric geometry

arxiv:hep-th/ v3 13 Oct 1995

Virasoro hair on locally AdS 3 geometries

RIEMANNIAN MANIFOLDS WITH INTEGRABLE GEODESIC FLOWS

LECTURE 3 MATH 261A. Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

Algebraic Curves and Riemann Surfaces

The Hopf Bracket. Claude LeBrun SUNY Stony Brook and Michael Taylor UNC Chapel Hill. August 11, 2013

Lecture 22 - F 4. April 19, The Weyl dimension formula gives the following dimensions of the fundamental representations:

Introduction to Index Theory. Elmar Schrohe Institut für Analysis

WHAT IS K-HOMOLOGY? Paul Baum Penn State. Texas A&M University College Station, Texas, USA. April 2, 2014

NilBott Tower of Aspherical Manifolds and Torus Actions

An Invitation to Geometric Quantization

DERIVED HAMILTONIAN REDUCTION

Homological mirror symmetry via families of Lagrangians

CYCLIC HOMOLOGY AND THE BEILINSON-MANIN-SCHECHTMAN CENTRAL EXTENSION. Ezra Getzler Harvard University, Cambridge MA 02138

Transcription:

Preface...VII Introduction... 1 I Preliminaries... 7 1 LieGroupsandLieAlgebras... 7 1.1 Lie Groups and an Infinite-Dimensional Setting....... 7 1.2 TheLieAlgebraofaLieGroup... 9 1.3 The Exponential Map.............................. 12 1.4 AbstractLieAlgebras... 15 2 Adjoint and Coadjoint Orbits............................. 17 2.1 The Adjoint Representation........................ 17 2.2 The Coadjoint Representation...................... 19 3 CentralExtensions... 21 3.1 LieAlgebraCentralExtensions... 22 3.2 CentralExtensionsofLieGroups... 24 4 The Euler Equations for Lie Groups....................... 26 4.1 PoissonStructuresonManifolds... 26 4.2 Hamiltonian Equations on the Dual of a Lie Algebra... 29 4.3 A Riemannian Approach to the Euler Equations...... 30 4.4 Poisson Pairs and Bi-Hamiltonian Structures.......... 35 4.5 Integrable Systems and the Liouville Arnold Theorem. 38 5 Symplectic Reduction.................................... 40 5.1 Hamiltonian Group Actions......................... 41 5.2 Symplectic Quotients.............................. 42 6 Bibliographical Notes.................................... 44 II Infinite-Dimensional Lie Groups: Their Geometry, Orbits, and Dynamical Systems... 47 1 LoopGroupsandAffineLieAlgebras... 47 1.1 The Central Extension of the Loop Lie algebra........ 47

X 1.2 Coadjoint Orbits of Affine Lie Groups................ 52 1.3 Construction of the Central Extension of the Loop Group... 58 1.4 Bibliographical Notes.............................. 65 2 Diffeomorphisms of the Circle and the Virasoro Bott Group.. 67 2.1 CentralExtensions... 67 2.2 Coadjoint Orbits of the Group of Circle Diffeomorphisms 70 2.3 The Virasoro Coadjoint Action and Hill s Operators... 72 2.4 The Virasoro Bott Group and the Korteweg de Vries Equation......................................... 80 2.5 The Bi-Hamiltonian Structure of the KdV Equation... 82 2.6 Bibliographical Notes.............................. 86 3 Groups of Diffeomorphisms............................... 88 3.1 The Group of Volume-Preserving Diffeomorphisms and Its Coadjoint Representation.................... 88 3.2 The Euler Equation of an Ideal Incompressible Fluid... 90 3.3 The Hamiltonian Structure and First Integrals of the Euler Equations for an Incompressible Fluid.... 91 3.4 Semidirect Products: The Group Setting for an Ideal Magnetohydrodynamics and Compressible Fluids...... 95 3.5 Symplectic Structure on the Space of Knots and the Landau Lifschitz Equation.................. 99 3.6 Diffeomorphism Groups as Metric Spaces............. 105 3.7 Bibliographical Notes.............................. 109 4 The Group of Pseudodifferential Symbols................... 111 4.1 The Lie Algebra of Pseudodifferential Symbols........ 111 4.2 Outer Derivations and Central Extensions of ψ DS...113 4.3 The Manin Triple of Pseudodifferential Symbols....... 117 4.4 The Lie Group of α-pseudodifferential Symbols....... 119 4.5 The Exponential Map for Pseudodifferential Symbols.. 122 4.6 Poisson Structures on the Group of α-pseudodifferential Symbols..................... 124 4.7 Integrable Hierarchies on the Poisson Lie Group G INT. 129 4.8 Bibliographical Notes.............................. 132 5 Double Loop and Elliptic Lie Groups...................... 134 5.1 Central Extensions of Double Loop Groups andtheirliealgebras...134 5.2 Coadjoint Orbits.................................. 136 5.3 Holomorphic Loop Groups and Monodromy.......... 138 5.4 Digression: Definition of the Calogero Moser Systems.. 142 5.5 The Trigonometric Calogero Moser System andaffineliealgebras...146 5.6 The Elliptic Calogero Moser System and Elliptic Lie Algebras...149 5.7 Bibliographical Notes.............................. 152

XI III Applications of Groups: Topological and Holomorphic Gauge Theories...155 1 Holomorphic Bundles and Hitchin Systems................. 155 1.1 Basics on Holomorphic Bundles..................... 155 1.2 HitchinSystems...159 1.3 Bibliographical Notes.............................. 162 2 PoissonStructuresonModuliSpaces...163 2.1 Moduli Spaces of Flat Connections on Riemann Surfaces...163 2.2 Poincaré Residue and the Cauchy Stokes Formula..... 170 2.3 Moduli Spaces of Holomorphic Bundles.............. 173 2.4 Bibliographical Notes.............................. 179 3 Around the Chern Simons Functional...................... 180 3.1 A Reminder on the Lagrangian Formalism............ 180 3.2 The Topological Chern Simons Action Functional..... 184 3.3 The Holomorphic Chern Simons Action Functional.... 187 3.4 A Reminder on Linking Numbers.................... 189 3.5 The Abelian Chern Simons Path Integral and Linking Numbers...192 3.6 Bibliographical Notes.............................. 196 4 Polar Homology......................................... 197 4.1 Introduction to Polar Homology..................... 197 4.2 Polar Homology of Projective Varieties............... 202 4.3 Polar Intersections and Linkings..................... 206 4.4 Polar Homology for Affine Curves................... 209 4.5 Bibliographical Notes.............................. 211 Appendices...213 A.1 RootSystems...213 1.1 FiniteRootSystems...213 1.2 Semisimple Complex Lie Algebras................... 215 1.3 Affine and Elliptic Root Systems.................... 216 1.4 Root Systems and Calogero Moser Hamiltonians...... 218 A.2 Compact Lie Groups..................................... 221 2.1 The Structure of Compact Groups................... 221 2.2 A Cohomology Generator for a Simple Compact Group 224 A.3 Krichever NovikovAlgebras...225 3.1 Holomorphic Vector Fields on C and the Virasoro Algebra...225 3.2 Definition of the Krichever Novikov Algebras and Almost Grading............................... 226 3.3 CentralExtensions...228 3.4 Affine Krichever Novikov Algebras, Coadjoint Orbits, and Holomorphic Bundles.......................... 231 A.4 Kähler Structures on the Virasoro and Loop Group Coadjoint Orbits...234

XII 4.1 The Kähler Geometry of the Homogeneous Space Diff(S 1 )/S 1...234 4.2 The Action of Diff(S 1 ) and Kähler Geometry onthebasedloopspaces...237 A.5 Diffeomorphism Groups and Optimal Mass Transport........ 240 5.1 The Inviscid Burgers Equation as a Geodesic Equation on the Diffeomorphism Group....................... 240 5.2 Metric on the Space of Densities and the Otto Calculus 244 5.3 The Hamiltonian Framework of the Riemannian Submersion....................................... 247 A.6 Metrics and Diameters of the Group of Hamiltonian Diffeomorphisms........................................ 250 6.1 The Hofer Metric and Bi-invariant Pseudometrics on the Group of Hamiltonian Diffeomorphisms........ 250 6.2 The Infinite L 2 -Diameter of the Group of Hamiltonian Diffeomorphisms.................................. 252 A.7 Semidirect Extensions of the Diffeomorphism Group and Gas Dynamics................................ 256 A.8 The Drinfeld Sokolov Reduction.......................... 260 8.1 The Drinfeld Sokolov Construction.................. 260 8.2 The Kupershmidt Wilson Theorem and the Proofs.... 263 A.9 The Lie Algebra gl...267 9.1 The Lie Algebra gl and Its Subalgebras............. 267 9.2 The Central Extension of gl...268 9.3 q-difference Operators and gl...269 A.10 Torus Actions on the Moduli Space of Flat Connections...... 272 10.1 Commuting Functions on the Moduli Space........... 272 10.2 The Case of SU(2)................................. 274 10.3 SL(n, C) and the Rational Ruijsenaars Schneider System...277 References...281 Index...301

http://www.springer.com/978-3-540-85205-6