Nanoscale interfacial heat transfer: insights from molecular dynamics

Similar documents
Transport de chaleur. Samy Merabia ILM CNRS and Université Lyon 1. Ecole d'été «GDR Modmat» July 20-24th, Istres

K. Termentzidis 1, S. Merabia 2, and P. Chantrenne 1. Konstantinos TERMENTZIDIS

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract

Complex superlattice unit cell designs for reduced thermal conductivity

Thermal Conductivity in Superlattices

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics

Minimum superlattice thermal conductivity from molecular dynamics

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

Olivier Bourgeois Institut Néel

Understanding Phonon Dynamics via 1D Atomic Chains

Phonon Transport Theories and Simulation

Quantitatively Analyzing Phonon Spectral Contribution of Thermal. Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation

Modeling thermal conductivity: a Green-Kubo approach

Introduction to phonon transport

IMECE MOLECULAR DYNAMICS PREDICTION OF THE THERMAL RESISTANCE OF SOLID-SOLID INTERFACES IN SUPERLATTICES

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

GeSi Quantum Dot Superlattices

Phonon Coherent Resonance and Its Effect on Thermal Transport In. Core-Shell Nanowires

Thermal characterization of Au-Si multilayer using 3- omega method

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires

MedeA : Atomistic Simulations for Designing and Testing Materials for Micro/Nano Electronics Systems

Heat Conduction by Molecular Dynamics Technique

Cooling dynamics of glass-embedded metal nanoparticles

Carnegie Mellon University Carnegie Institute of Technology

Phonon Transport across Dissimilar Material Interfaces and in Nanostructured Materials

Thermoelectrics: A theoretical approach to the search for better materials

Nanoscale Heat Transfer and Information Technology

Title: Modal analysis of heat transfer across crystalline Si and amorphous SiO2 interface

Fatemeh Jabbari 1, Ali Rajabpour 2,*, Seyfollah Saedodin 1, and Somchai Wongwises 3

arxiv: v1 [cond-mat.mes-hall] 16 Sep 2012

Semiclassical Phonon Transport in the Presence of Rough Boundaries

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Thermal conductivity and thermal boundary resistance of nanostructures

An introduction to vibrational properties of glass models

Lecture 6: Spin Dynamics

Research Article Effect of Strain on Thermal Conductivity of Si Thin Films

Characterize Individual Phonon Mode Contribution Directly from. Non-equilibrium Molecular Dynamics Simulation

Supporting Information: Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY

Interface Resistance and Thermal Transport in Nano-Confined Liquids

Electronic thermal transport in nanoscale metal layers

Molecular views on thermo-osmotic flows

Scaling analysis of negative differential thermal resistance

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Morphological evolution of single-crystal ultrathin solid films

Violation of Fourier s law and anomalous heat diffusion in silicon nanowires

Carbon Nanocone: A Promising Thermal Rectifier

Thermal transport at a nanoparticle-water interface: A molecular. dynamics and continuum modeling study

Ultralow thermal conductivity and the thermal conductance of interfaces

Size-dependent model for thin film and nanowire thermal conductivity

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998.

Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition

Predicting Thermoelectric Properties From First Principles

Supplementary Materials

New thermal mechanisms in sub-10nm structures

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites

Chapter 5 Phonons II Thermal Properties

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

Sound Attenuation at High Temperatures in Pt

Self-assembled SiGe single hole transistors

Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri

ScienceDirect. Duality of the interfacial thermal conductance in graphene-based nanocomposites. Author's personal copy

Computational study of nano- and meso-scale size effects on thermal transport

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects

EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON THERMAL TRANSPORT IN NANOMATERIALS

Thermal and electronic analysis of GaInAs/AlInAs mid-ir

Physics and methods of altering thermal conductivity in nanostructures

Supporting Materials

The Phonon Monte Carlo Simulation. Seung Kyung Yoo. A Thesis Presented in Partial Fulfilment of the Requirements for the Degree Master of Science

Neutral Electronic Excitations:

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

Mechanical Properties of Silica Aerogel A Molecular Dynamics Study

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6

PHONON TRANSPORT IN AMORPHOUS SILICON NANOWIRES. D.V. Crismari

Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions

Resolving the Vibrational and Electronic Contributions to Thermal Conductivity of Silicon Near the Solid-Liquid Transition: Molecular Dynamics Study

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Functional properties

Perspectives with Hot Carrier solar cell

Lecture 11 - Phonons II - Thermal Prop. Continued

Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal

19 Thermal Transport in Nanostructured Materials

International Journal of Heat and Mass Transfer

Atomistic Green s Function Method: Density of States and Multi-dimensionality

Supporting Information

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

Effects of temperature and disorder on thermal boundary conductance at solid solid interfaces: Nonequilibrium molecular dynamics simulations

III.H Zeroth Order Hydrodynamics

of Long-Term Transport

Heat/phonons Transport in Nanostructures and Phononics

Supporting information for: Anomalous Stability of Two-Dimensional Ice. Confined in Hydrophobic Nanopore

Ab initio phonon calculations in mixed systems

Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2

Transcription:

Nanoscale interfacial heat transfer: insights from molecular dynamics S. Merabia, A. Alkurdi, T. Albaret ILM CNRS and Université Lyon 1, France K.Termentzidis, D. Lacroix LEMTA, Université Lorraine, France H. Han, F. Müller-Plathe Technische Universität Darmstadt, Germany CECAM LAMMPS workshop June 26th, 2018 Lyon

Nanoscale heat transfer Nanostructured materials T J = λ Diffusive regime Balistic regime Si @300 K : Λ>300 nm Fourier

Thermal conductivity 3

Thermal conductivity Essentially, two methods : 1. the «direct» method Apply a temperature gradient or energy flux and calculate the conductivity with Fourier law 2. equilibrium method Probe the fluctuations around equilibrium of the energy flux vector

Thermal conductivity : the direct method Steady state temperature profile Heat source Example Si/Ge LAMMPS command= Fix temp/rescale L Heat sink Fourier law : J = λ ΔT L

Thermal conductivity : the direct method Finite size effect analysis «Bulk» thermal conductivity

Thermal conductivity : direct method Advantages : - relatively easy to implement using open sources codes (LAMMPS) -may be used also to compute the thermal boundary resistance Inconvenients : -need to check if we are in the linear regime => analyze different heat fluxes -severe finite size effects! => analyze different system sizes to properly extrapolate a «bulk» conductivity

Thermal conductivity : Green-Kubo equilibrium simulations Green-Kubo formula : + 1 λ α,β= J α (t )J β (0) dt 2 0 V kbt Heat flux vector : J = d ( i E i r i ) dt J = E i v i + 1 F ij ( v i + v j ) i 2 i j In practice, run in NVE ensemble LAMMPS command = compute heat/flux

Thermal conductivity : Green-Kubo equilibrium simulations Green-Kubo formula : + 1 λ α,β= J α (t)j β (0) dt 2 0 V kbt Example amorphous Si 300 K t 1 λ xx (t )= J x (t ')J x (0) dt ' 2 0 V kbt Jx (t) Jx (0)

Thermal conductivity : Green-Kubo equilibrium simulations Green-Kubo formula : Example amorphous Si 300 K + 1 λ α,β= J α (t)j β (0) dt 2 0 V kbt t 1 λ xx (t )= J x (t ')J x (0) dt ' 2 0 V kbt t 1 λ yy (t)= J y (t ')J y (0) dt ' 2 0 V kb T Where is the plateau?

Optical modes J = E i v i + 1 F ij ( v i + v j ) i 2 i j Replaced by : J = E 0i v i + 1 F ij0 ( v i + v j ) i 2 i j Equilibrium positions λ (ω)= 1 2 0 J (t) J (0) exp(i ωt) dt V kb T Termentzidis, SM, Chantrenne IJHMT 2011 Not implemented in LAMMPS

Thermal conductivity : Green-Kubo equilibrium simulations Advantages : - less severe finite size effects - access to the full thermal conductivity tensor in a single simulation (anisotropic materials, superlattices) Inconvenients : -need to run several independent simulations (usually 10 to 20) -the plateau is sometimes difficult to identity (in principle, in a finite system the Green-Kubo formula should give a vanishing conductivity...)

Thermal anisotropy A.F. Lannord, SM, T. Albaret, D. Lacroix, K. Termentzidis, 2014

Thermal boundary resistance 14

Heat Transfer at the nanoscale Superlattices Dresselhaus, Chen, Science 2012 -Deviations from Fourier's law -Thermal boundary resistance Nanocomposites-nanowires Poulikakos, NanoLetters 2011 (dimensions < phonon mean free path)

Thermal boundary (Kapitza) resistance Molecular dynamics Si/Ge G=1/ R= C v (ω) v g (ω) t 12 (ω) d ω McGaughey, PRB 2009 Energy transmission coefficient G 1 1000 MW /m2 / K

Non-equilibrium simulations Amorphous Si/ Crystalline Si A. France Lanord et al., J. Phys. Cond. Mat. 2014 Fourier law : J = λ T z Thermal boundary resistance : R=Δ T / J

Equilibrium simulations Puech' s formula + 1 G= q(t) q(0) dt 2 0 A kbt A interfacial area Analogous to the Green-Kubo formula for the thermal conductivity Interfacial heat flux : q= i 1, j 2 F ij ( v i + v j) 2 Not computed in LAMMPS! Postprocessing! Barrat and Chiaruttini, Mol. Phys. 2003 SM and Termentzidis, PRB 2012

«Approach to equilibrium» or «Thermal relaxation» Temperature relaxation Δ T (t) exp( t / τ) G=C v /( A τ) Well adapted to imperfect interfaces! E. Lampin et al., APL 2012 S. Merabia, Termentzidis 2014 Easy to implement in LAMMPS!

Acoustic description of interfacial heat transfer Acoustic model Ar h-ar G= C v (ω)v g (ω) t 12 (cosθ1, cos θ2 ) d cos θ1 d ω 4 Z 1 Z 2 cos θ1 cos θ2 t 12 = (Z 1 cos θ1 + Z 2 cos θ2 )2 Acoustic impedances : Z i =ρm, i c i SM and K. Termentzidis, PRB 2012 24

Challenges 25

Interatomic force constants Stillinger-Weber potential Landry, phd thesis 2009 MD : G 320 MW /m2 / K Exp. : G 200 MW /m2 / K Landry, McGaughey PRB2009 26

Ab-initio Interatomic force constants Dispersion curves of Si and Ge calculated using LD with ab initio IFC up to 4th unit cell. Si Ge Necessity of going up to 4th unit cell (8th neighbour) to have a good agreement. Ab initio interatomic force constants from M. Aouissi et al Phys. Rev. B 74, 054302 (2006) 27

Theoretical Models: Ab Initio Lattice Dynamics In bulk : D α,β ( k ) e β ( k )=ω2 ( k ) e α ( k ) Zhao, H., and J. B. Freund. J. Appl. Phys. 97, 024903 (2005). D.A. Young and H.J. Maris, Phys. Rev. B 40 3685 (1989) from ab initio Medium1 Medium2 n atom / unit cell leads to: 3n equations in medium 1 3n equations in medium 2 2 x 3 x n equations at the interface in 3 dimensions. Ab initio interatomic force constants are from: 28 M. Aouissi et al Phys. Rev. B 74, 054302 (2006)

Theoretical Models: Ab Initio Lattice Dynamics from ab initio calculations At interface : L L C C R R m j u ( r j )= i Φ (r ij ) u ( r ij ) l Φ (r lj ) u ( r lj ) k Φ (r kj ) u ( r kj ) u ( r )= k A( k ) e ( k )exp(i k. r ) ω( k inc )=ω( k tra )=ω( k ref ) x x x k inc =k tra =k ref, y y y k inc =k tra =k ref C R 2 [ D ( k )+ D ( k )+ D ( k )] e ( k )=ω ( k ) e ( k ) L n atom / unit cell leads to: 3n equations in medium 1 3n equations in medium 2 2 x 3 x n equations at the interface in 3 dimensions. 29 Ab initio interatomic force constants are from: M. Aouissi et al. Phys. Rev. B 74, 054302 (2006) Zhao, H., and J. B. Freund. J. Appl. Phys. 97, 024903 (2005). D.A. Young and H.J. Maris, Phys. Rev. B 40 3685 (1989)

Phonon transmission coefficient Si/Ge interface extinction 2 MD : G 320 MW /m / K Exp. : G 200 MW /m / K transmission Critical angle 2 Heat flux Si/Ge Alkurdi, Pailhès, Merabia APL 2017

Phonon transmission coefficient Si/Ge interface extinction Difference between calculations and experiments : 2 MD : G 320 MW /m / K Exp. : G 200 MW /m2 / K -Anharmonic effects Critical angle 1 H 0= α,β Φ ij ui, α u j, β i, j, α,β 2 H '= 1 α,β, γ Χ u i, α u j,β u k, γ ijk i, j, k, α,β, γ 6 Si/Ge -Need to couple of MD Alkurdi, Pailhès, Merabia APL 2017

Challenge in LAMMPS : -build interatomic potentials deriving from ab-initio calculations -accurate description of interfacial heat transfer -thermal transmission 32

Electron-phonon couplings Two temperature model + boundary conditions h Effective conductance : 1/σ eff =1/Gh+1/(σ e +σ p ) J. Lombard, F. Detcheverry and SM, J. Phys. Cond. Mat., 2015 33

Challenge in LAMMPS : -couple MD with two-temperature model -including the cross interaction at the interface 34

Applications : How to tune interfacial heat transfer? 35

Role of the pressure Molecular dynamics simulations (OPLS force field) Temperature profile gold perfluorohexane gold conductance G=J / Δ T 39

Enhanced conductance Gold sound velocities 110 : v L (110)=3400 m / s v T (110)=1500 m /s 111 : v L (111)=3900 m / s v T (111)=1400 m/ s Three-four fold increase of the conductance with pressure H. Han, S. Merabia, F. Müller-Plathe, J. Phys. Chem. Lett., 2017 40

Vibrational analysis Vibrational DOS + D (ω) 0 C vv (t ) exp(i ω t ) d ω No participation In heat transfer C vv (t )= v i (t ) v i (0) Pressure induced DOS broadening 44

Enhanced conductance gold perfluorohexane Thermal heat flux : 45

Spectral heat flux Frequency dependent heat flux : Pure ethanol Partially wetting surface ϵnp subs =0.2 kcal mol 1 Wetting surface ϵ np subs =1.0 kcal mol 1 ω(thz) 52

Boiling simulations Significant shift of the boiling temperature due to the presence of the nanoparticles 53

Conclusion -Implement interfacial heat flux calculations -Use potentials derived from ab-initio calculations -Extend two temperature models Interfacial electron-phonon couplings 54

H. Han F. Müller-Plathe A. Alkurdi K. Termentzidis T. Albaret Thank your for your attention! 55