HYPOCYCLOID ViflTH FOUR CUSf S 11.1

Similar documents
Math 0230 Calculus 2 Lectures

US01CMTH02 UNIT Curvature

Drill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100.

(6.5) Length and area in polar coordinates

ES.182A Topic 32 Notes Jeremy Orloff

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

660 Chapter 10 Conic Sections and Polar Coordinates

Math 211/213 Calculus III-IV. Directions. Kenneth Massey. September 17, 2018

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

5.2 Volumes: Disks and Washers

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Geometric and Mechanical Applications of Integrals

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

P 1 (x 1, y 1 ) is given by,.

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2

Section 14.3 Arc Length and Curvature

Integration Techniques

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

I N A C O M P L E X W O R L D

Partial Differential Equations

Math 231E, Lecture 33. Parametric Calculus

r 0 ( ) cos( ) r( )sin( ). 1. Last time, we calculated that for the cardioid r( ) =1+sin( ),

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

SECTION 9-4 Translation of Axes

Chapter 9. Arc Length and Surface Area

Level I MAML Olympiad 2001 Page 1 of 6 (A) 90 (B) 92 (C) 94 (D) 96 (E) 98 (A) 48 (B) 54 (C) 60 (D) 66 (E) 72 (A) 9 (B) 13 (C) 17 (D) 25 (E) 38

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

Mathematics of Motion II Projectiles

opposite hypotenuse adjacent hypotenuse opposite adjacent adjacent opposite hypotenuse hypotenuse opposite

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

TImath.com Algebra 2. Constructing an Ellipse

I. Equations of a Circle a. At the origin center= r= b. Standard from: center= r=

Math 0230 Calculus 2 Lectures

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

Year 12 Trial Examination Mathematics Extension 1. Question One 12 marks (Start on a new page) Marks

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

Conducting Ellipsoid and Circular Disk

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Electromagnetism Answers to Problem Set 10 Spring 2006

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Math 113 Exam 1-Review

CONIC SECTIONS. Chapter 11

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m.

Indefinite Integral. Chapter Integration - reverse of differentiation

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

Math 20C Multivariable Calculus Lecture 5 1. Lines and planes. Equations of lines (Vector, parametric, and symmetric eqs.). Equations of lines

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

Lecture 0. MATH REVIEW for ECE : LINEAR CIRCUIT ANALYSIS II

Not for reproduction

GEOMETRICAL PROPERTIES OF ANGLES AND CIRCLES, ANGLES PROPERTIES OF TRIANGLES, QUADRILATERALS AND POLYGONS:

Mathematics. Area under Curve.

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Inspiration and formalism

10.5. ; 43. The points of intersection of the cardioid r 1 sin and. ; Graph the curve and find its length. CONIC SECTIONS

The Form of Hanging Slinky

Math Fall 2006 Sample problems for the final exam: Solutions

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

Parabola Exercise 1 2,6 Q.1 (A) S(0, 1) directric x + 2y = 0 PS = PM. x y x y 2y 1 x 2y Q.2 (D) y 2 = 18 x. 2 = 3t. 2 t 3 Q.

Math 100 Review Sheet

r = cos θ + 1. dt ) dt. (1)

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

FP3 past questions - conics

Lecture 3: Curves in Calculus. Table of contents

Section 13.1 Right Triangles

Pre-Calculus TMTA Test 2018

Total Score Maximum

Math 142: Final Exam Formulas to Know

MATH 115: Review for Chapter 7

Numerical Linear Algebra Assignment 008

Thomas Whitham Sixth Form

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

REVIEW SHEET FOR PRE-CALCULUS MIDTERM

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Prerequisite Knowledge Required from O Level Add Math. d n a = c and b = d

PARABOLA EXERCISE 3(B)

C10.4 Notes and Formulas. (a) (b) (c) Figure 2 (a) A graph is symmetric with respect to the line θ =

Final Review, Math 1860 Thomas Calculus Early Transcendentals, 12 ed

Lesson-5 ELLIPSE 2 1 = 0

Executive Committee and Officers ( )

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

A quick overview of the four conic sections in rectangular coordinates is presented below.

Exploring parametric representation with the TI-84 Plus CE graphing calculator

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Unit 10 Parametric and Polar Equations - Classwork

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

Chapter 1: Fundamentals

dt. However, we might also be curious about dy


Mathematics Extension 2

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

Review: Velocity: v( t) r '( t) speed = v( t) Initial speed v, initial height h, launching angle : 1 Projectile motion: r( ) j v r

Transcription:

Y 11.1 E i p q c n o uo l o ta r r i d o i nn, j, r = c 2 2 2 0 s 1 E 1 i r q. cn e u 2 o c o t t r i d n - o i x g n ( + y = C S - y* G s ) ( )! & 2,, 1 A b1 An o A e. B x g r t = 3 4n lx B w 5 d e i e s e n A l B, / 1 A o 1 o l r = & f. n o e 4 e o 2 p F 1 i 1 g- C Y C l O 11.5 E i p q f n u o r r ty m m i : e o t n [ C= CE L - ( s + + i ) n 1 y = - C ( O 1 S # ) 1 A o 1 o r = 3 f. n r e = 6 e c h 2 1 A l 1 o o r e. = 8f n c r n 7 e c g h t h T i c dh s bu pei F o y r c os o r n v i i c f e r nr d c t i i l b u r x o l xl o li n is g n. F 1 g i 1 g - HYPOCYCLOID ViflTH FOUR CUSf S 1 E 1 i r q. cn e u 8 o c o t t r i d n o i g n % + y 2 Z Z / Z 2 f 3 Z l 3 3 1 E 1 i p q. f n u 9 o r r t m m i : e o t n x y = = C O S 3 9 s 0 i n z 11.10 A b b r c o = & y e u u r n 2 v d e e d 11.11 A l o e r ec f = n6 c nu t gr i tv r h e e T i c dh s bu pei P o y r c os o r n v i i c f e r nr d c t i l b u F 1 i 1 g - u i r o / t s i t o o n c4 h no rl f i e sf l r. i s d c d i l e u e s 40

. SPECIAL PLANE CURVES 41 CARDIOID 11.12 Eqution: r = (1 + COS 0) 11.13 Are bounded by curve = $XL~ 11.14 Arc length of curve = 8 This is the curve described by point P of circle of rdius s it rolls on the outside of fixed circle of rdius. The curve is lso specil cse of the limcon of Pscl [sec 11.321. Fig. 11-4 CATEIVARY 11.15 Eqution: Y z : (&/ + e-x/) = coshs This is the eurve in which hevy uniform chm would hng if suspended verticlly from fixed points A nd. B. Fig. 11-5 THREEdEAVED ROSE 11.16 Eqution: r = COS 39 Y The eqution T = sin 3e is similr curve obtined by rotting the curve of Fig. 11-6 counterclockwise through 30 or ~-16 rdins. X, In generl v = cs ne or r = sinne hs n leves if / n is odd.,/ / +, Fig. 11-6 FOUR-LEAVED ROSE 11.17 Eqution: r = COS 20 The eqution r = sin 26 is similr curve obtined by rotting the curve of Fig. 11-7 counterclockwise through 45O or 7714 rdins. In generl n is even. y = COS ne or r = sin ne hs 2n leves if Fig. 11-7

42 SPECIAL PLANE CURVES 11.18 Prmetric equtions: X = ( + b) COS e - b COS Y = ( + b) sine - b sin This is the curve described by point P on circle of rdius b s it rolls on the outside of circle of rdius. The crdioid [Fig. 11-41 is specil cse of n epicycloid. Fig. 11-8 GENERA& HYPOCYCLOID 11.19 Prmetric equtions: z = ( - b) COS @ + b COS Il = (- b) sin + - b sin This is the curve described by point P on circle of rdius b s it rolls on the inside of circle of rdius. If b = /4, the curve is tht of Fig. 11-3. Fig. 11-9 TROCHU#D 11.20 Prmetric equtions: x = @ - 1 sin 4 v = -bcos+ This is the curve described by point P t distnce b from the tenter of circle of rdius s the circle rolls on the z xis. If 1 <, the curve is s shown in Fig. 11-10 nd is clled cz&te c~czos. If b >, the curve is s shown in Fig. ll-ll nd is clled prozte c&oti. If 1 =, the curve is the cycloid of Fig. 11-2. Fig. 11-10 Fig. ll-ll

SPECIAL PLANE CURVES 43 TRACTRIX 11.21 Prmetric equtions: x = u(ln cet +$ - COS #) y = sin+ This is the curve described by endpoint P of tut string PQ of length s the other end Q is moved long the x xis. Fig. 11-12 WITCH OF AGNES1 11.22 Eqution in rectngulr coordintes: u = 8~x3 x2 + 42 11.23 Prmetric equtions: x = 2 cet e y = (1 - cos2e) Andy In Fig. 11-13 the vrible line OA intersects y = 2 nd the circle of rdius with center (0,~) t A respectively. Any point P on the witch is locted oy constructing lines prllel to the x nd y xes through B nd A respectively nd determining the point P of intersection. -q-+jqx l Fig. 11-13 FOLIUM OF DESCARTRS 11.24 Eqution in rectngulr coordintes: Y x3 + y3 = 3xy 11.25 Prmetric equtions: 1 x=m 3t 3t2 y = l+@ 1 11.26 11.27 Are of loop = $2 Eqution of symptote: x+y+u Z 0 Fig. 11-14 INVOLUTE OF A CIRCLE il.28 Prmetric equtions: x = ~(COS + + @ sin $J) I y = (sin + - + cs +) This is the curve described by the endpoint P of string s it unwinds from circle of rdius while held tut. jy!/--+$$x. I Fig. Il-15

44 S P P C L E U A C R N I V E A EVOWTE OF Aff ELLIPSE 11.29 E i r q cn e u o c o t t r i d n o i g (xy 3 + (bvp3 = tu3 - by3 11.30 P e q r u m t e i t o c = ( - b COS3 z 8 C s z G ) b = ( - b y 2 2 ) 1 s 6 i n s T c i t he u s o ht i n r tf the s eov v o he lre e e lml i o ppi x + y = 1 e s z d / i hlf 1 n bo i 1s 2 s wg -h n. 1e 6d F 1 i 1 g - O OF CASSINI V A L S 1 1 P e 1 of + q4. - 2 l~ i 2 u3 = b O e 4 W r S t i o T i t c hd _--- s h ub pie P e s y r t s ost p u v ho icih dr c e f nrte ti o h f t rp t is ws d i o b [ 2 d i c p i b s o 2 s n. r t s t t ] n c n T c i ih Fu 1 s s o n Fe i r1 1 r i g v1 -b < c og. 1 e > s - 1 rc r. 1 7 eo 8 sr I b = u t cf i, Zh u s [ e1e r F m1 v i -k e g 1c. 1 ++Y!--- P X F 1 i 1 g -. 1 F 17 i 1 g -. LIMACON OF PASCAL 11.32 P e or = qb l u+ r tc i o o s L O b l ej Q e o i 0 t ot rp n Q io n c io e o d n y i g i p f ii t r in 0 Tn h c nt s. mhg r t c i t hl u o s ph oe P rsf 1t oe Pc = vub 1 h i Q u. e c n s h t t s T c i ih F u 1 s os n Fe i 1r 1 r i g 1v -b > c og. b s < -e 1 rc r. 2 I9 eo1 = t 0 f sr, h c i c u [ s 1 r F r 1 v id - e i g 4 o. 1 i. d - F 1 i 1 g -. 1 F 1 9 i 1 g-

SPECIAL PLANE CURVES 45 C OF L l BS IS OO C 11.33 Eqution in rectngulr coordintes: x 3 y ZZZ 2 2 - x 11.34 Prmetric equtions: i x = 2 sinz t 2 sin3 e?4 =- COS e This is the curve described by point P such tht the distnce OP = distnce RS. It is used in the problem of duplicution of cube, i.e. finding the side of cube which hs twice the volume of given cube. Fig. 11-21 SPfRAL OF ARCHIMEDES 11.35 Polr eqution: Y = 6 Y Fig. 11-22