Unfoldings of Networks of Timed Automata

Similar documents
Laboratory for Foundations of Computer Science. An Unfolding Approach. University of Edinburgh. Model Checking. Javier Esparza

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

Abstraction of Nondeterministic Automata Rong Su

Deterministic Finite Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata

Chapter 4 State-Space Planning

Bisimulation, Games & Hennessy Milner logic

Behavior Composition in the Presence of Failure

Alpha Algorithm: Limitations

CS 573 Automata Theory and Formal Languages

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Nondeterministic Automata vs Deterministic Automata

Formal Methods in Software Engineering

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Regular languages refresher

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Theory of Computation Regular Languages

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

2.4 Theoretical Foundations

Lecture 6: Coding theory

Finite State Automata and Determinisation

Behavior Composition in the Presence of Failure

Learning Partially Observable Markov Models from First Passage Times

1 Nondeterministic Finite Automata

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

CSC2542 State-Space Planning

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Let's start with an example:

Lecture 08: Feb. 08, 2019

Automata and Regular Languages

Lecture 9: LTL and Büchi Automata

Non-Deterministic Finite Automata

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

NON-DETERMINISTIC FSA

Formal Languages and Automata

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

Non-deterministic Finite Automata

Fundamentals of Computer Science

Unit 4. Combinational Circuits

CS 491G Combinatorial Optimization Lecture Notes

Synchronizing Automata with Random Inputs

Non-deterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Test Generation from Timed Input Output Automata

Concepts of Concurrent Computation Spring 2015 Lecture 9: Petri Nets

Playing Games with Timed Games,

Chapter 2 Finite Automata

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

A Primer on Continuous-time Economic Dynamics

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

A Disambiguation Algorithm for Finite Automata and Functional Transducers

CMSC 330: Organization of Programming Languages

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Supervisory Control under Partial Observation

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

TIME AND STATE IN DISTRIBUTED SYSTEMS

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Java II Finite Automata I

CHAPTER 1 Regular Languages. Contents

Subsequence Automata with Default Transitions

Minimal DFA. minimal DFA for L starting from any other

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Génération aléatoire uniforme pour les réseaux d automates

On the Maximally-Permissive Range Control Problem in Partially-Observed Discrete Event Systems

Learning Moore Machines from Input-Output Traces

Convert the NFA into DFA

A Symbolic Approach to Control via Approximate Bisimulations

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

Generalization of 2-Corner Frequency Source Models Used in SMSIM

CISC 4090 Theory of Computation

SEMANTIC ANALYSIS PRINCIPLES OF PROGRAMMING LANGUAGES. Norbert Zeh Winter Dalhousie University 1/28

Alpha Algorithm: A Process Discovery Algorithm

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

State Minimization for DFAs

Lecture Notes No. 10

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

Logic, Set Theory and Computability [M. Coppenbarger]

Regular expressions, Finite Automata, transition graphs are all the same!!

More on automata. Michael George. March 24 April 7, 2014

Good-for-Games Automata versus Deterministic Automata.

I 3 2 = I I 4 = 2A

Worked out examples Finite Automata

Exam Review. John Knight Electronics Department, Carleton University March 2, 2009 ELEC 2607 A MIDTERM

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

A Process-Algebraic Semantics for Generalised Nonblocking

Transcription:

Unfolings of Networks of Time Automt Frnk Cssez Thoms Chtin Clue Jr Ptrii Bouyer Serge H Pierre-Alin Reynier Rennes, Deemer 3, 2008

Unfolings [MMilln 93] First efine for Petri nets Then extene to other true onurreny moels [Esprz, Römer 99] Compt representtion of the exeutions Expliit representtion of onurreny Avoi omputtion of interlevings Moel-heking, ignosis, synhronous iruits Optimiztion: equte orers [Esprz, Römer, Vogler 02]

Time Automt [Alur, Dill 94] L, l 0, Σ, X, T, Inv Trnsitions t = ef l, g,, R, l, with ef soure: l = α(t) L trget: l = ef β(t) L ef gur: g = γ(t) ef lel: = λ(t) Σ ef resette loks: R = ρ(t) X

Time Automt: Semntis Stte l, or,θ lotion: l L urrent te: θ R te of ltest reset for every lok: x X or(x) θ The trnsition t n our t te θ θ from stte l, or,θ, if: the invrint of l is stisfie until te θ : θ or = Inv(l) l = α(t) the gur of t is stisfie t te θ : θ or = γ(t)

Exmple of Time Automton te: θ = 0 or(x) = 0

Exmple of Time Automton te: θ = 0.7 or(x) = 0 (, 0.7)

Exmple of Time Automton te: θ = 3 or(x) = 0 (, 0.7), (, 3)

Exmple of Time Automton te: θ = 3.5 or(x) = 0 (, 0.7), (, 3), (, 3.5)

Exmple of Time Automton te: θ = 4 or(x) = 4 (, 0.7), (, 3), (, 3.5), (, 4)

Exmple of Time Automton te: θ = 5 or(x) = 4 (, 0.7), (, 3), (, 3.5), (, 4), (, 5)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 0 or(x) = 0 or(y) = 0 l 4 y 2

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 0.7 or(x) = 0 or(y) = 0 l 4 y 2 (, 0.7)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 3 or(x) = 0 or(y) = 0 l 4 y 2 (, 0.7), (, 3)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 4 or(x) = 0 or(y) = 4 l 4 y 2 (, 0.7), (, 3), (, 4)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 4 or(x) = 4 or(y) = 4 l 4 y 2 (, 0.7), (, 3), (, 4), (, 4)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 5 or(x) = 4 or(y) = 4 l 4 y 2 (, 0.7), (, 3), (, 4), (, 4), (, 5)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 6 or(x) = 6 or(y) = 6 l 4 y 2 (, 0.7), (, 3), (, 4), (, 4), (, 5), (, 6)

Networks of Time Automt synhroniztion y shre lels lol loks te: θ = 7 or(x) = 6 or(y) = 6 l 4 y 2 (, 0.7), (, 3), (, 4), (, 4), (, 5), (, 6), (, 7)

Proesses of Networks of Untime Automt l 1 l 1 l 4

Proesses of Networks of Untime Automt l 1 l 1 l 4

Proesses of Networks of Untime Automt l 1 l 1 l 4 l 4,

Proesses of Networks of Untime Automt l 1 l 1 l 4 l 4 l 1 l 4,,

Proesses of Networks of Untime Automt l 1 l 1 l 4 l 4 l 1 l 4,,,

Proesses of Networks of Untime Automt l 1 l 1 l 4 l 4

Unfolings of Networks of Untime Automt l 1 l 1 l 4 l 4 l 1 l 4

Proesses of NTA l 1 (, 0.7), (, 4), (, 4), (, 5) (0.7) (4) l 4 (4) l 4 y 2 l 1 l 4 (5)

Proesses of NTA l 1 (, 0.7), (, 4), (, 4), (, 5) (0.7) (4) l 4 (4) l 4 y 2 l 1 l 4 (5) Other tes re possile with the sme struture

Symoli Proesses of NTA l 1 (,θ 1 ), (,θ 2 ), (,θ 3 ), (,θ 4 ) (θ 1 ) (θ 2 ) l 4 (θ 3 ) l 4 y 2 l 1 l 4 (θ 4 ) Other tes re possile with the sme struture prmeters

Symoli Proesses of NTA: Symoli onstrints inue y gurs invrints uslity onvex union of zones [Ben Slh, Bozg, Mler, 06] nlog of [Aur, Lilius, 00] for NTA (θ 1 ) l 1 (θ 3 ) (θ 2 ) l 4 θ 1 1 θ 3 θ 2 2 θ 4 θ 3 1 θ 1 θ 3 θ 2 θ 3 θ 3 θ 4 θ 4 θ 3 2 (θ 4 ) l 1 l 4

Diffiulties with Time in Unfolings In untime nets, fesility of n event is lol property. In NTA, it epens on the ontext. In simple se (no invrints), it is still lol property. l 4 y 2 (0.7) (3) l 1 l 4

Conurrent Opertionl Semntis for NTA How to simulte NTA without using loks, ut with s muh onurreny s possile? Look for lol onitions to ply trnsition. Exeutions must respet the usul semntis. Notion of prtil stte L: for eh utomton, either l i, or i,θ i or. or(x) =? or(y) = 0 l 4 y 2

Conurrent Opertionl Semntis for NTA How to simulte NTA without using loks, ut with s muh onurreny s possile? Look for lol onitions to ply trnsition. Exeutions must respet the usul semntis. Notion of prtil stte L: for eh utomton, either l i, or i,θ i or. or(x) = 0 or(y) =? l 4 y 2

Conurrent Opertionl Semntis for NTA How to simulte NTA without using loks, ut with s muh onurreny s possile? Look for lol onitions to ply trnsition. Exeutions must respet the usul semntis. Notion of prtil stte L: for eh utomton, either l i, or i,θ i or. or(x) = 0 or(y) =? l 4 y 2

Conurrent Opertionl Semntis for NTA How to simulte NTA without using loks, ut with s muh onurreny s possile? Look for lol onitions to ply trnsition. Exeutions must respet the usul semntis. Notion of prtil stte L: for eh utomton, either l i, or i,θ i or. or(x) = 0 or(y) = 0 l 4 y 2

Lol Conitions to Tke Trnsitions To tke t t θ from L, we wnt: for ll ontext S of L, t n our t θ from L S. We hve: t n our t θ from L S if { the utomt onerne y t gree no invrint in L S expires efore θ l 4 y 2

Lol Conitions to Tke Trnsitions To tke t t θ from L, we wnt: for ll ontext S of L, t n our t θ from L S. We hve: t n our t θ from L S if { the utomt onerne y t gree L is stle in S until θ l 4 y 2

Lol Stility Conition Intuition LSC(L,θ) = for ll ontext S of L, L is stle in S until θ. Completeness Glol sttes re stle until the te where one of their invrints expires.

Lol Stility Conition Severl hoies to efine LSC(L,θ): trivil hoie: L is glol stte. BHR: L involves ll the utomt tht hve invrints. more generi: L ontins enough informtion to hek tht no utomton of L my e fore to synhronize erlier thn θ with nother utomton.

A proposition for LSC(L, θ) Definition: LSC(L, θ) hols iff L ontins enough informtion to hek tht no utomton of L my e fore to synhronize erlier thn θ with nother utomton: i J L θ or i = Inv i (l i ) t Syn I t J L i I I t J L = t J L l i α i (t i ) i I t J L θ or i = γ i (t i ) i I t \ J L Inv(α i (t i )) true where I t is the set of utomt involve in trnsition t; J L is the set of utomt whose stte is efine in the prtil stte L.

Symoli Unfolings of NTA In symoli unfolings: keep trk of ll the prtil stte L (not only the prt tht prtiiptes in t) use re rs. Any onfigurtion (proess) of the unfoling mps (y removing the re rs) to pre-proess (i.e. prefix of proess) of the NTA. Use only miniml sets L to inrese onurreny. l 1 l 4 l 1 l 4

Conlusion onurrent opertionl semntis for NTA prmeterize lol stility onition solve onstrints on the tes of the events stuy of the form of the onstrints finite omplete prefix of the unfoling if there is no urgeny, the unfoling is simply the superimposition of the proesses