Decay Spectroscopy with EURICA in the region of 100 Sn

Similar documents
CROSSING THE DRIP-LINE IN THE VICINITY OF 100Sn

CROSSING THE DRIP-LINE IN THE VICINITY OF 100 Sn

Produc'on cross sec'on measurement and iden'fica'on of new isotopes in the vicinity of 100 Sn

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes

Decay properties of neutron-rich nuclei on the r-process path

Isomer Studies with RI-beam Induced Fusion Reactions and In-Flight Fission Reactions. A. Odahara Department of Physics, Osaka University

EURICA Celebration and Collaboration Meeting

Proposal for Nuclear Physics Experiment at RI Beam Factory

Recent results at RIBF

Nuclear Physics at RIBF

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

discovery of two-proton radioactivity future studies Bertram Blank, CEN Bordeaux-Gradignan Hirschegg, january 2008

New data on β decay of exotic nuclei close to 100 Sn:

Study of Neutron-Proton Correlation & 3N-Force in 12 C

Future RIB facilities

Experimental Study of Stellar Reactions at CNS

New experiments on neutron rich r-process Ge Br isotopes at the NSCL

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

Beta-delayed neutron measurements with the BELEN detector

2. Acceleration Scheme

Charge-state distribution measurements using gas charge stripper toward

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

The origin of heavy elements in the solar system

Advanced Implantation Detector Array (AIDA) HISPEC/DESPEC meeting 1 March 2016

Motivation. 1 GSI, Darmstadt, Germany. 2 The University of Edinburgh, UK. 3 Technische Universität München, Germany

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Investigation of neutron rich Cd isotopes and test of the valence proton symmetry

FAIR. Reiner Krücken for the NUSTAR collaboration

β-strength studies of very neutronrich nuclei at DESPEC Jose L. Tain Instituto de Física Corpuscular, C.S.I.C - Univ. Valencia

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Hiroshi Watanabe. Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET), November 7-11, 2016, CSNSM, Orsay, France

β-delayed neutron emission probability measurements at RIKEN RIBF

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

Present status of RIBF accelerators at RIKEN

First Results from GRIFFIN Half-lives of Neutron Rich Cd and 131 In! Ryan Dunlop Physics Dept. University of Guelph, Canada INPC 2016

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI

PoS(INPC2016)072. Collective And Single-particle Structures In The Neutron-rich Doubly Mid-shell Nucleus 170 Dy

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

New Developments on the Recoil-Distance Doppler-Shift Method

C.J. Lister Argonne National Laboratory

Se rp-process waiting point and the 69

Radioactivity at the limits of nuclear existence

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

High-resolution Study of Gamow-Teller Transitions

Michigan State University, East Lansing MI48824, USA INTRODUCTION

The Super-FRS Project at GSI

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique

Decay spectroscopy for nuclear astrophysics

Sunday Monday Thursday. Friday

ISOMERIC STATES IN THE LIGHT Tc ISOTOPES

RITU and the GREAT Spectrometer

Exotic Nuclei. Ingo Wiedenhöver, National Nuclear Physics Summer School 7/16/2007 Tallahassee, Florida

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

Production and Separation of Radioactive Beams. Mg and 20 Na with MARS

Fission-yield data. Karl-Heinz Schmidt

Development of Ring-Imaging Cherenkov Counter for Heavy Ions

Tracking at the LAND/R B setup on 17

Spectroscopy of Single-Particle States in Oxygen Isotopes via (p, 2p) Reaction

Physics with Exotic Nuclei. Hans-Jürgen Wollersheim

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge

BETA-DECAY STUDIES OF NEUTRON-RICH NUCLIDES AND THE POSSIBILITY OF AN N = 34 SUBSHELL CLOSURE

Nuclear Structure from Decay Spectroscopy

2016 Update of the discoveries of nuclides

Beam optics analysis of large-acceptance superconducting in-flight separator BigRIPS at RIKEN RI Beam Factory (RIBF)

Introduction to REX-ISOLDE concept and overview of (future) European projects

arxiv: v1 [nucl-ex] 24 Apr 2017

Light ion recoil detector

Experimental Programmes and Applications at GSI/FAIR.

Low-spin structure of 210 Bi

β decay of 102 Y produced in projectile fission of 238 U

Review of ISOL-type Radioactive Beam Facilities

I. 2. Reduction of the Gamow-Teller Matrix Element for the β-decay in 70 Ga- 70 Zn by the 35-MeV (p,n) Reaction on 70 Zn

Neutron-Proton Asymmetry Dependence of Spectroscopic Factors

Study of multinucleon transfer (MNT) reactions of 136 Xe Pt for production of exotic nuclei

Present status of the heaviest elements study using GARIS at RIKEN

* On leave from FLNR / JINR, Dubna

Experiments with rare-isotope beams Ground-state properties. Wednesday. Nuclear masses Ground-state halflives. Friday

Fast-Timing with LaBr 3 :Ce Detectors and the Half-life of the I π = 4 Intruder State in 34 P

Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Gamma-neutron competition above the neutron separation energy in betadelayed

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work

Physics with Exotic Nuclei

Allowed beta decay May 18, 2017

Study of low-lying excitations in 72 Ni

Studies involving discrete spectroscopy. Studies involving total absorption or calorimetry

ACTAR TPC: an active target and time projection chamber for nuclear physics. 17/09/2015 T. Roger COMEX 5 1

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Electron Capture branching ratio measurements at TITAN-TRIUMF

Status & Future for In-Beam Spectrometers for Tagging at JYFL

Capabilities at the National Superconducting Cyclotron Laboratory. Sean Liddick NDNCA workshop, May 26-29, 2015

José Antonio Briz Monago, M. Carmona-Gallardo and. M.J.G. Borge, A. Perea, O. Tengblad, M. Turrión

9. RI Spin Laboratory

Beta Decay Studies in nuclear structure

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

Transcription:

Decay Spectroscopy with EURICA in the region of 100 Sn Daniel Lubos for the EURICA RIBF09 collaboration Technische Universität München Jul 09, 2015 @ Science Day of RA G Excellence Cluster Origin and Structure of the Universe

Contents Introduction Facility & Detectors Lifetimes The β-endpoint-energy Further Nuclei: 94 Ag Discussion Daniel Lubos, TUM 2

Introduction Why we need β-decay spectroscopy The region around 100 Sn β-decay systematics nuclear structure accurate lifetime rp-process proton dripline transition strength B Experiment Lifetime Q β -value A 0 A 0 exp(-λt) t è B GT Source: T. Faestermann et al., Prog. Part. Nucl. Phys. 69 (2013) 85 Daniel Lubos, TUM 3

Shell Model & β-decay Super-allowed β-decay Selection Rules: Fermi Decay è + ΔT = 0, ΔI = 0 Gamow Teller Decay è + ΔT = 0,±1, ΔI = 0,1 Source: A. Stolz, PhD-thesis TUM (2001) Daniel Lubos, TUM 4

Facility & Detectors The BigRIPS Facility @ RIKEN Nishina Center, RIBF Primary Beams @ RIBF Beam Intensity / pna Nucleus achieved expected 2011 48 Ca 230 200 86 Kr 30 30 124,136 Xe 38 (~36) 10 238 U 0.8 5 Source: RIKEN Nishina Center 5

World s first ring cyclotron with superconducting sector magnets Facility & Detectors K-value 2500 MeV, 3.8 T, 235 MJ The BigRIPS Facility @ RIKEN Nishina Center, RIBF 8300 t 3 Modes - Fixed beam energy (350 MeV/u) (RILAC, RRC, frc, IRC, SRC) - Variable beam energy (115 MeV/u) (RILAC, RRC, IRC, SRC) - Polarized Deuteron Beam (880 MeV) (AVF, RRC, SRC) Projectile Fragmentation In-flight fission of U-238 1 st Beam: Dec 28, 2006 1 st RI Beam: Mar 15, 2007 Source: RIKEN Nishina Center 6

Source: RIKEN Nishina Center Facility & Detectors The BigRIPS Facility @ RIKEN Nishina Center, RIBF EURICA Separation: Bρ ΔE Bρ ΔE Bρ Identification: Bρ ΔE TOF Daniel Lubos, TUM 7

Facility & Detectors The EURICA Gamma-ray Detector Cluster EUROBALL as used in RISING @ GSI 12 clusters of 7 HPGe Crystals each 3 clusters with 6 LaBr Crystals each Energy Resolution ~ 2 kev Timing Resolution ~ 25 ns Courtesy by G. Lorusso, S. Nishimura Operated at 4 KV Daniel Lubos, TUM 8

Facility & Detectors The EURICA Gamma-ray Detector Cluster WAS3ABI Detector EURICA Clusters Daniel Lubos, TUM Experimental Area 9

Facility & Detectors The WAS 3 ABI Silicion Detector Array Decay (green) 10 x 1 mm Implantation (red) 3 x 1 mm Area: 60 mm x 40 mm Segmentation: DSSD 60 strips X 40 strips Beam tracking (purple) SSSD 7 strips 1 x 0.3 mm Width: 1 mm (compare: e - mean free path: 1 mm) 3 Double-Sided Silicon Strip Detectors (DSSD) 10 Single-Sided Silicon Strip Detectors (SSSD) TOTAL: 380 Channels Daniel Lubos, TUM 10

Facility & Detectors New Isotope Search - Finalized Proton Number Z 89,90 Pd 98 Sn 96 In 94 Cd 92 Ag 99 Sn Smallest log(ft) value in the nuclear chart log(ft) = 2.62 +0.11-0.13 B GT = 9.1 +2.6-3.0 100 Sn 2525 After decay correlations 98 Sn 0 cts 96 In 1 cts 94 Cd 3 cts 92 Ag 1 cts 90 Pd 1 cts 89 Pd 0 cts Mass A / Charge Q Daniel Lubos, TUM 11

Results Lifetime of 100 Sn Counts 80 t 1/2, This Exp. = 1.17 +0.14-0.11 s 100 Sn 70 t 1/2, Hinke = 1.16 ± 0.20 s 60 50 40 Total Spectrum Parent Daughter Background 30 20 10 This Exp. C. Hinke (2012)[6] 6 10 0 100 200 300 400 500 600 700 800 900 1000 Time after implantation / 10 ns Daniel Lubos, TUM 12

Results Background reduction by event selection Time spectrum of 100 Sn β-decay/ 10 ns Here: Event selection by gate on γ-emission in daughter nucleus 98 In 1s 259 cts vs. 1889 implantations Daniel Lubos, TUM

Results β-endpoint-energy Second part regarding the determination of B GT Distinguish Implantation events Decay events Light particle events è Event tracker to judge each event (spatial correlation, time correlation, energy discrimination, pattern analysis) MAX empty MULT Gap è Clean (background reduced) spectrum in order to determine Q β -value Daniel Lubos, TUM 14 T

Results Particle Discrimination Event Tracker Decay Event Beam direction Z Light Particle Event Noise 10 9 8 SSD Stack 7 6 5 SSSD: beta index 3, histcnt 2 1400 1200 1000 800 Yà Zà (27,17) (26,17) 4 3 2 1 0 0 1 2 3 4 5 6 7 2 DSSD 3, beta_index 2, histcnt 152580368 40 35 30 DSSD C 25 20 15 10 5 0 0 10 20 30 40 50 60 1 DSSD 3, beta_index 2, histcnt 1024 40 35 30 DSSD B 25 20 15 10 5 0 0 10 20 30 40 50 60 0 DSSD 3, beta_index 2, histcnt 152580368 40 35 30 DSSD A 25 20 15 10 5 Zà Yà 600 400 200 0 1400 1200 1000 800 600 400 200 0 1400 1200 1000 800 600 400 200 0 1400 1200 1000 800 600 400 200 Xà 0 Xà 0 10 20 30 40 50 60 0 Daniel Lubos, TUM 15

Results First β-endpoint-energy Spectrum Number of Events 22 20 18 16 14 12 10 8 6 4 2 0 Integral: 412 Cts Entries 412 à C. Hinke (2012) [6] ~ 80 Cts Q β = 3.29 ± 0.20 MeV 500 1000 1500 2000 2500 3000 3500 4000 4500 Summed Electron Energy Deposit / kev Daniel Lubos, TUM 16

Results First β-endpoint-energy Spectrum Number of Events 22 20 18 16 14 12 10 8 6 4 2 0 Integral: 412 Cts Entries 412 SSD Stack DSSD C DSSD B 500 1000 1500 2000 2500 3000 3500 4000 4500 Summed Electron Energy Deposit / kev Daniel Lubos, TUM 17

Results Beyond the N = Z line Lifetimes of N = Z 1 nuclei using MLH method Counts / 5 ms 8 7 6 Total Spectrum Parent Daughter Background 99 Sn 5 4 3 2 1 0 10 0 5 10 15 20 25 30 35 40 45 50 Daniel Lubos, TUM Time after implantation [10 ns] 6

Results Beyond the N = Z line Lifetimes of N = Z 1 nuclei using MLH method Counts / 5 ms 8 7 6 Total Spectrum Parent Daughter Background 99 Sn 5 4 3 2 1 0 10 0 5 10 15 20 25 30 35 40 45 50 Daniel Lubos, TUM Time after implantation [10 ns] 6

Further Nuclei: 94 Ag Study of Decay Channels 2p p β βp Occupation Scheme 3ћω π ν 1g 9/2 (10) 2p 1/2 (2) 1f 5/2 (6) 2p 3/2 (4) Decay channels of 94 Ag Level Scheme 6670 kev 0 kev 21 + 0.4 s, ε95.4%, εp 27%, p4.1%, 2p0.5% 0 + 26 ms, ε100%, εp? è no γs 7 + 0.55 s, ε100%, εp 20% 0.0 + X kev 94 Ag 21 + show 2p decay to 92 Rh Highest known spin-isomer [1] I. Mukha et al., Nature 439 (2006) 298 92 Rh

Further Nuclei: 94 Ag Half-life, two parent components 400 350 300 250 f 1/2 s T T 1/2 Time after implantation / 10 ns = 26 ms = 0.5 s T f 1/2 = 26 ms T s 1/2 = 0.51 s 200 150 100 50 0 10 0 50 100 150 200 250 300 6

Further Nuclei: 94 Ag Study of Decay Channels β-region Strip Energies / kev 2p-peak p-region Daniel Lubos, TUM

Further Nuclei: 94 Ag Coincident γ-lines, fast component t < 0.06 s Si-Energy / kev γ-energy / kev

counts Further Nuclei: 94 Ag Coincident γ-lines, slow component 0.1 s < t <1.2 s γ-energy / kev Si-Energy / kev 0.1 s < t <1.2 s Si-Energy / kev γ-energy / kev

Further Nuclei: 94 Ag C oincident γ-lines, slow component 0.1 s < t <1.2 s Si-Energy / kev T 1/2 = 0.57(10)(x) s Time / 10 ns γ-energy / kev

Further Nuclei: 94 Ag Hint for 2p-decay Event-by-event analysis Single γ-energies / kev Hint for 2p decay, consistent with [1] Addback γ-energies / kev [1] Phys. Rev. C 76, 011304(R) (2007)

Further Nuclei 94 Ag Hint for 2p-decay 2p decay: event-by-event analysis Pixel energy / kev time / ms γ-energies crystal / kev 1845 392 98, 365, 599, 313, 601, 173 1885 984 787 787 1885 673 104, 147 104, 147 γ energies cluster addback / kev 98, 964, 313, 601, 173 1845 666 274, 349, 740 274, 349, 740 1865 591 283, 813 1096 1855 538 166, 349 515 1895 213 79, 184 79, 184 1845 483 ---- ---- 1835 810 ---- ----

Further Nuclei: 94 Ag Hint for 2p-decay Study of 2p-decay channels Scenarios of coincident 833 kev and 565 kev lines [1] O. L. Pechenaya, Phys. Rev. C76, 011304(R) (2007) Each ruled out by a confidence level of at least 96% This experiment: concerning 94 Ag statistics are too less for new conclusions. Another dedicated campeign is necessary.

Summary Status of Analysis & Outlook About finalizing 100 Sn analysis (half-lives, Qβ Determined lifetimes of N = Z 1 nuclei Obtained much better statistics Much information about neighboring nuclei and its structure Collaborators @ TRIUMF, Canada are working on the γ-spectroscopy of measured nuclei Great region to study the shell model and dig into β-delayed γ- spectroscopy Daniel Lubos, TUM 29

Collaboration I appreciate work with and support from the EURICA RIBF09 collaboration, the RIKEN Nishina Center, the RIKEN IPA Program and the DFG Excellence Cluster Origin and Structure of the Universe. Collaborators M. Lewitowicz, R. Gernhäuser, R. Krücken, S. Nishimura, H. Sakurai, H. Baba, B. Blank, A. Blazhev, P. Boutachkov, F. Browne, I. Celikovic, P. Doornenbal, T. Faestermann, Y. Fang, G. de France, N. Goel, M. Gorska, S. Ilieva, T. Isobe, A. Jungclaus, G. D. Kim, Y.-K. Kim, I. Kojouharov, M. Kowalska, D. Lubos, N. Kurz, Z. Li, G. Lorusso, K. Moschner, I. Nishizuka, J. Park, Z. Patel, M. M. Rajabali, S. Rice, H. Schaffner, L. Sinclair, P.-A. Söderström, K. Steiger, T. Sumikama, H. Watanabe, Z. Wang, J. Wu, and Z. Y. Xu Institutions Physik Department E12, Technische Universität München; RIKEN Nishina Center; TRIUMF; GANIL; Department of Physics, University of Tokyo; CENBG, Institut für Kernphysik; Universität zu Köln; GSI Darmstadt; School of Comp., Eng. and Maths., Brighton University; Department of Physics, Osaka University; Institut für Kernphysik; TU Darmstadt; IES CSIS; Institute for Basic Science; CERN, School of Physics, Peking University; Department of Physics, Tohoku University; Department of Physics, Surrey University; Department of Physics, University of York; Department of Physics, Beihang University Daniel Lubos, TUM 30

Thank you for listening! References [1] H. Suzuki et al. Nucl. Inst. and Meth. in Physics B 317 (2013) 756 768 [2] I. Celikovic PhD thesis, Université de Caen Basse-Normandie (2014) [3] K. Straub PhD thesis, Technische Universität München (2011) [4] A. Blazhev et al., Phys. Rec. C 69, 064304 (2004) [5] A. Blazhev et al., JoP: Conf. Series 205 (2010) 012035 [6] C. Hinke, Nature 486 (2012) 341 [7] T. Faestermann et al., Prog. Part. Nucl. Phys. 69 (2013) 85 [8] A. Stolz, PhD-thesis TUM (2001) Daniel Lubos, TUM 31