Higgs Pair Production: NLO Matching Uncertainties

Similar documents
Multijet merging at NLO

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

Understanding Parton Showers

update to 29/11/2012

arxiv: v1 [hep-ph] 3 Jul 2010

Recent QCD results from ATLAS

NLO QCD+EW predictions for 2l2ν production

Matching & Merging of Parton Showers and Matrix Elements

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab

Recent developments in the POWHEG BOX

QCD Phenomenology at High Energy

Mauro Moretti Dip. di Fisica, Univ. di Ferrara INFN Sezione di Ferrara ALPGEN. LOOPFESTV, SLAC,19-21 July 2006

QCD resummation for collider observables. Pier F. Monni Rudolf Peierls Centre for Theoretical Physics University of Oxford

Recent Advances in QCD Event Generators

VH production at the LHC: recent theory progress

NNLOPS predictions for Higgs boson production

Automation of NLO computations using the FKS subtraction method

NLO for Higgs signals

A shower algorithm based on the dipole formalism. Stefan Weinzierl

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Predictive Monte Carlo tools for the LHC

Recent developments. Monte-Carlo Event Generators

GoSam: Automated One Loop Calculations within and beyond the SM

NLO QCD corrections to pp W ± Z γ with leptonic decays

NLO merging in t t+jets 1

arxiv: v1 [hep-ph] 18 Dec 2014

Event shapes in hadronic collisions

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

arxiv:hep-ph/ v1 25 Sep 2002

Anomalous gauge couplings in SHERPA

AN INTRODUCTION TO QCD

The Higgs pt distribution

Status of Higgs and jet physics. Andrea Banfi

Vector-Boson-Fusion: Parton-shower and Anomalous-coupling Effects

arxiv: v1 [hep-ex] 15 Jan 2019

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders

Geneva: Event Generation at NLO

Jürgen R. Reuter, DESY. J.R.Reuter QCD NLO/Top Threshold in WHIZARD Radcor/Loopfest 2015, UCLA,

Powheg in Herwig++ for SUSY

Superleading logarithms in QCD

NLO / Loop Induced. check that everything is Compare for your BSM model

VV + JETS AND THE POWHEG BOX

Exclusive Event Generation for the t t Threshold and the Transition to the Continuum

Bound-state effects in ttbar production at the LHC

A color matrix element corrected parton shower and multiplet color bases

Diphoton production at LHC

EW theoretical uncertainties on the W mass measurement

Matching and merging Matrix Elements with Parton Showers II

Higher order QCD corrections to the Drell-Yan process

Jet Matching at Hadron Colliders. Johan Alwall National Taiwan University

Search for tt(h bb) using the ATLAS detector at 8 TeV

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

arxiv: v1 [hep-ph] 12 Dec 2015

Miguel Villaplana Università degli Studi e INFN Milano. on behalf of the ATLAS Collaboration. September 11, 2017

W/Z inclusive measurements in ATLAS

Atlas results on diffraction

Top production measurements using the ATLAS detector at the LHC

Precision Monte Carlo

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Sherpa, Event Generator for the LHC. Stefan Höche Dresden University of Technology

SM/BSM physics with GoSam

On QCD jet mass distributions at LHC

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy

Non-perturbative effects in transverse momentum distribution of electroweak bosons

W/Z production with 2b at NLO

Physics with Four Leptons in the ATLAS experiment

Summary of precision QCD issues at FCC-ee

Multi-differential jet cross sections in CMS

Top-quark mass determination

12 March 2014 Liverpool High Energy Theory Group

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University

General-purpose event generators Issues Survey. Improving precision & modelling Matching ME & PS UE & intrinsic pt PDFs for MC Conclusions?

Constraints on Higgs-boson width using H*(125) VV events

Higgs + Multi-jets in Gluon Fusion

W + W Production with Many Jets at the LHC

Parton densities with Parton Branching method and applications

Higgs + Jet angular and p T distributions : MSSM versus SM

New results for parton showers

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

arxiv: v1 [hep-ex] 24 Oct 2017

The event Generator. Chris/an Bauer. Lawrence Berkeley Na/onal Laboratory. Theorie Palaver, Mainz April

Hard And Soft QCD Physics In ATLAS

DIS 2004 Theory Highlights

Parton Showers. Stefan Gieseke. Institut für Theoretische Physik KIT. Event Generators and Resummation, 29 May 1 Jun 2012

Jet reconstruction in W + jets events at the LHC

Azimuthal decorrelations between jets in QCD

Matching and Merging

Event Generator Physics 2

Vector boson + jets at NLO vs. LHC data

QCD in gauge-boson production at the LHC "

Precision Physics at the LHC

Towards Jet Cross Sections at NNLO

Study of observables for measurement of MPI using Z+jets process

Comparisons of Predictions from Exact Amplitude-Based Resummation Methods with LHC and Cosmological Data

Overview of PDF-sensitive measurements from Run I in ATLAS

Theoretical Particle Physics in Lund

New physics at colliders A tools vision

Transcription:

Higgs Pair Production: NLO Matching Uncertainties Silvan Kuttimalai in collaboration with Stephen Jones November 7th, 2017 Higgs Couplings Workshop, Heidelberg

Introduction

Motivation: the Higgs Potential V = 2 v 2 H 2 + 3 vh 3 + 4 v 2 H 4 SM 2 = SM 3 = SM 4 = m2 H 2v 2 3 can be measured in Higgs pair production Experimentally challenging (pp! HH) (pp! H) 10 3 Prospects for HL-LHC: around 10 % - 50 % precision on 3 Theoretically also extremely challenging 1

Higgs Pair Production at NLO Born Virtual Real Born and real corrections Automated 1-loop tools: OpenLoops, GoSam, MadLoop, Recola,... Infrared subtraction Born UV finite, use standard techniques: Catani-Seymour, FKS,... Virtual corrections Two-loop integrals, massive propagators, external masses Very hard ) not available until recently 2

Low-Energy Approximation t HEFT m t!1 Higgs E ective Field Theory Take into account only top quark contributions Work in low-energy limit: ŝ mt 2 ) Gives rise to point-like Higgs-gluon interactions ) Reduces complexity immensely ) Validity highly questionable, however: m HH > m t 3

New Level of Precision Borowka et al. JHEP 10 (2016) Two-loop virtuals numerically evaluated Details: Gudrun Heinrich s talk HEFT-based approximations inaccurate NLO corrections large, well outside LO uncertainties 4

Motivation New level of precision NLO corrections Full finite top mass e ects ) Meaningful fixed-order uncertainties Fixed-order NLO not su cient Small p? HH region: spoiled by logs n s log m p? HH/m HH Requires matching to parton shower / resummation ) Need careful re-assessment of PS / matching uncertainties 5

Motivation Heinrich et al.: JHEP 08 (2017) 6

Loop-Induced Processes at NLO in Sherpa Born and real corrections Interfaced from OpenLoops Interface extended for color- and spin-correlated amplitudes Infrared Substraction Use Catani-Seymour method Re-implemented for loop-induced external amplitudes Process handling and interface to parton showers Re-implemented for loop-induced external amplitudes Two parton showers available: CS shower / Dire shower [Schumann, Krauss, JHEP 03 (2008)] [Höche, Prestel, Eur.Phys.J. C75 (2015)] 7

Parton Shower E ects at LO

ds/dp? HH [pb/gev] 10 10 10 11 Ratio 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 1.6 0.8 SHERPA HEFT pp! HH + j pp! HH +CSshower pp! HH +CSshower,µ PS = p s LO+PS Results p s = 14 TeV HEFT 10 1 10 2 10 3 p HH? [GeV] P M 2 1 M 2 P: process independent parton shower kernels 8

ds/dp? HH [pb/gev] 10 10 10 11 Ratio 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 1.6 0.8 SHERPA HEFT pp! HH + j pp! HH +CSshower pp! HH +CSshower,µ PS = p s LO+PS Results p s = 14 TeV HEFT P M 2 M 2 10 1 10 2 10 3 p HH? [GeV] Uncertainty bands on LO+PS: 1 µ PS 2{ m HH 4, m HH 2, m HH 1 } µ PS implements phase space restriction: t( 1 ) <µ 2 PS µ PS = p s power shower, full phase space open 8

LO+PS Results ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 SHERPA HEFT pp! HH + j pp! HH +CSshower pp! HH +CSshower,µ PS = p s p s = 14 TeV HEFT ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 SHERPA Full SM pp! HH + j pp! HH +CSshower pp! HH +CSshower,µ PS = p s p s = 14 TeV Full SM Ratio 1.6 0.8 Ratio 1.6 0.8 10 1 10 2 10 3 p HH? [GeV] Qualitative di erences between HEFT and full SM HEFT: PS approximation underestimates fixed-order Full SM: PS approximation overestimates fixed-order Sharply falling spectrum above m t in full SM 10 1 10 2 10 3 p HH? [GeV] Parton shower kernels don t know hard process 8

Parton Shower E ects at NLO

NLO Parton Shower Matching: S-MC@NLO NLO = Z apple Z B( B )+V( B )+ B( B )P( 1 ) (µ 2 PS t)d 1 d B Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R Modified subtraction Use parton shower splitting kernels P for subtraction Restrict subtraction terms to parton shower phase space 9

NLO Parton Shower Matching: S-MC@NLO NLO = Z apple Z B( B )+V( B )+ B( B )P( 1 ) (µ 2 PS t)d 1 d B Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R Modified subtraction Use parton shower splitting kernels P for subtraction Restrict subtraction terms to parton shower phase space 9

NLO Parton Shower Matching: S-MC@NLO NLO = Z apple Z B( B )+V( B )+ B( B )P( 1 ) (µ 2 PS t)d 1 d B Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R Modified subtraction Use parton shower splitting kernels P for subtraction Restrict subtraction terms to parton shower phase space 9

NLO Parton Shower Matching: S-MC@NLO NLO = Z B( B )d B S-events M 2 Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R H-events M 2 Interplay between parton shower and fixed order 10

NLO Parton Shower Matching: S-MC@NLO MC@NLO = Z apple B( B ) Z (µ 2 PS, t 0 )+ Sudakov factor: no-emission probability between µ 2 PS and t 0 (µ 2 PS, t)p( 1 ) (µ 2 PS t)d 1 d B Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R P: splittingkernel Interplay between parton shower and fixed order 11

NLO Parton Shower Matching: S-MC@NLO MC@NLO = Z apple B( B ) Z (µ 2 PS, t 0 )+ (µ 2 PS, t)p( 1 ) (µ 2 PS t)d 1 d B Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R Interplay between parton shower and fixed order Consider observable insensitive to born kinematics (p HH? ) 11

NLO Parton Shower Matching: S-MC@NLO MC@NLO = Z B( B ) (µ 2 PS, t)p( 1 ) (µ 2 PS t)d 1 d B + S-events Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R H-events Interplay between parton shower and fixed order Consider observable insensitive to born kinematics (p HH? ) 11

NLO Parton Shower Matching: S-MC@NLO MC@NLO = Z B( B ) (µ 2 PS, t)p( 1 ) (µ 2 PS t)d 1 d B + S-events Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R H-events Interplay between parton shower and fixed order Consider observable insensitive to born kinematics (p HH? ) Focus on soft region: t µ 2 PS ) recover LO+PS with local K-factor 11

NLO Parton Shower Matching: S-MC@NLO MC@NLO = Z B( B ) (µ 2 PS, t)p( 1 ) (µ 2 PS t)d 1 d B + S-events Z h i + R( R ) B( B )P( 1 ) (µ 2 PS t) d R H-events Interplay between parton shower and fixed order Consider observable insensitive to born kinematics (p HH? ) Focus on soft region: t µ 2 PS ) recover LO+PS with local K-factor Focus on hard region: t µ 2 PS ) recover fixed order, assuming B B 11

NLO Results ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 SHERPA Fixed-Order MC@NLO, CS shower pp! HH p s = 14 TeV HEFT HEFT approximation µ PS cancellation between S- and H-events PS uncertainties reduced Recover fixed-order in tail Ratio to FO Ratio to MC@NLO 1.6 0.8 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV] B( B ) (µ 2 PS, t)p( 1) (µ 2 PS t)d B d 1 S-events h i R( R ) B( B )P( 1) (µ 2 PS t) d R H-events 12

NLO Results ds/dp? HH [pb/gev] Ratio to FO Ratio to MC@NLO 10 2 10 3 10 4 10 5 10 6 10 7 1.6 0.8 1.5 0.0 SHERPA Fixed-Order MC@NLO, CS shower S-events H-events pp! HH p s = 14 TeV HEFT 10 1 10 2 10 3 p HH? [GeV] HEFT approximation µ PS cancellation between S- and H-events PS uncertainties reduced Recover fixed-order in tail B( B ) (µ 2 PS, t)p( 1) (µ 2 PS t)d B d 1 S-events h i R( R ) B( B )P( 1) (µ 2 PS t) d R H-events ( B B) P R 12

NLO Results ds/dp? HH [pb/gev] Ratio to FO Ratio to MC@NLO 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 1.6 0.8 1.5 0.0 SHERPA Fixed-Order MC@NLO, CS shower S-events H-events pp! HH p s = 14 TeV Full SM 10 1 10 2 10 3 p HH? [GeV] Full SM much larger uncertainties PS e ects extend into tail large µ PS ) don t recover fixed order B( B ) (µ 2 PS, t)p( 1) (µ 2 PS t)d B d 1 S-events h i R( R ) B( B )P( 1) (µ 2 PS t) d R H-events ( B B) P R 13

NLO Results ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 Ratio to FO Ratio to MC@NLO 1.6 0.8 1.5 pp! HH p s = 14 TeV Full SM SHERPA Fixed-Order MC@NLO, CS Dire shower S-events H-events 0.0 10 1 10 2 10 3 p? HH Full SM much larger uncertainties PS e ects extend into tail large µ PS ) don t recover fixed order B( B ) (µ 2 PS, t)p( 1) (µ 2 PS t)d B d 1 S-events h i R( R ) B( B )P( 1) (µ 2 PS t) d R H-events ( B B) P R 13

Comparison to Literature: NLO+PS ds/dp? HH [fb/gev] 0.5 0.4 0.3 0.2 Sherpa, Dire Shower Sherpa, CS Shower MadGraph5 + Pythia Powheg-Box + Pythia Heinrich et al.: JHEP 08 (2017) Larger di erences in peak region due to di erences in algorithms beyond choice of µ PS : 15 % 10 20 30 40 50 60 70 80 2.5 Ratio to fixed-order 2.0 1.5 1.0 MC@NLO results within uncertainties in tail MadGraph uncertainties larger 2.5 2.0 1.5 1.0 0 200 400 600 800 1000 Ratio to fixed-order 0 200 400 600 800 1000 p HH? [GeV] POWHEG: flat excess in tail known feature of matching method somewhat suppressed through damping factor h damp = 250 GeV 14

Comparison to Literature: Analytic Resummation ds/dp? HH [fb/gev] 0.4 0.3 0.2 SHERPA pp! HH p s = 14 TeV Full SM Ferrera, Pires: JHEP 02 (2017) Next-to-leading log (NLL) parametrically equivalent to parton shower Ratio to NLO+NLL 0.1 0.0 1.3 1.1 0.9 0.7 NLO+NLL [Ferrera, Pires, 2017] MC@NLO, Dire shower MC@NLO, CS shower 10 1 10 2 p HH? [GeV] Uncertainties on NLO+NLL: 3% near p? HH 20GeV 10 % near p? HH 100GeV Good agreement within uncertainties 15

Conclusions Recent advances at fixed-order ) reduced uncertainties Studied uncertainties introduced though parton shower matching Found good agreement with analytic resummation Matching to fixed-order at large p HH? requires judicious choice of µ PS µ PS variations may exceed FO uncertainties ) Is µ PS source of uncertainty or tuning parameter? 16

Backup

E ects on Fixed-Order Uncertainties ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 SHERPA µ f /r variations Fixed-Order MC@NLO, Dire shower pp! HH p s = 14 TeV Full SM Full SM At small p? HH : NLO uncertainties seed cross section ( B) moreinclusive At large p HH? : LO uncertainties seed cross section (R) 1-jet exclusive Ratio to FO Ratio to MC@NLO 1.6 0.8 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV] B( B ) (µ 2 PS, t)p( 1) (µ 2 PS t)d B d 1 S-events h i R( R ) B( B )P( 1) (µ 2 PS t) d R H-events

NLO+PS: Alternative Comparison Plot ds/dp? HH [fb/gev] 0.5 0.4 0.3 0.2 Sherpa, Dire Shower Sherpa, CS Shower MadGraph5 + Pythia Powheg-Box + Pythia 0.1 0.0 2.5 2.0 1.5 1.0 2.5 2.0 1.5 1.0 0 50 100 150 200 250 300 Ratio to fixed-order 0 200 400 600 800 1000 Ratio to fixed-order 0 200 400 600 800 1000 p HH? [GeV]

Replacing B by B ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 SHERPA Fixed-Order MC@NLO, Dire shower ( B! B) pp! HH p s = 14 TeV Full SM Ratio to FO Ratio to MC@NLO 1.6 0.8 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV] B( B ) (µ 2 PS, t)p( 1) (µ 2 PS t)d B d 1 S-events h i R( R ) B( B )P( 1) (µ 2 PS t) d R H-events

LO+PS Results: CS Shower ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 SHERPA HEFT pp! HH + j pp! HH +CSshower pp! HH +CSshower,µ PS = p s p s = 14 TeV HEFT ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 SHERPA Full SM pp! HH + j pp! HH +CSshower pp! HH +CSshower,µ PS = p s p s = 14 TeV Full SM Ratio 1.6 0.8 Ratio 1.6 0.8 10 1 10 2 10 3 p HH? [GeV] 10 1 10 2 10 3 p HH? [GeV] Uncertainty bands on LO+PS: µ CS PS 2{m HH 4, m HH 2, m HH 1 } µ Dire PS 2{m HH 8, m HH 4, m HH 2 } µ CS PS = p s power shower µ Dire PS = m HH 2 power shower

LO+PS Results: Dire Shower ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 SHERPA HEFT pp! HH + j pp! HH +Direshower p s = 14 TeV HEFT ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 SHERPA Full SM pp! HH + j pp! HH +Direshower p s = 14 TeV Full SM Ratio 1.6 0.8 Ratio 1.6 0.8 10 1 10 2 10 3 p HH? [GeV] 10 1 10 2 10 3 p HH? [GeV] Uncertainty bands on LO+PS: µ CS PS 2{m HH 4, m HH 2, m HH 1 } µ Dire PS 2{m HH 8, m HH 4, m HH 2 } µ CS PS = p s power shower µ Dire PS = m HH 2 power shower

CS shower vs Dire: HEFT ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 SHERPA Fixed-Order MC@NLO, CS shower pp! HH p s = 14 TeV HEFT ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 SHERPA Fixed-Order MC@NLO, Dire shower pp! HH p s = 14 TeV HEFT 10 7 10 7 Ratio to FO 1.6 0.8 Ratio to FO 1.6 0.8 Ratio to MC@NLO 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV] Ratio to MC@NLO 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV]

CS shower vs Dire: Full SM ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 SHERPA Fixed-Order MC@NLO, CS shower pp! HH p s = 14 TeV Full SM ds/dp? HH [pb/gev] 10 2 10 3 10 4 10 5 10 6 10 7 10 8 SHERPA Fixed-Order MC@NLO, Dire shower pp! HH p s = 14 TeV Full SM 10 9 10 9 Ratio to FO 1.6 0.8 Ratio to FO 1.6 0.8 Ratio to MC@NLO 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV] Ratio to MC@NLO 1.5 0.0 S-events H-events 10 1 10 2 10 3 p HH? [GeV]

Other Observables ds/dp j? [pb/gev] 10 3 10 4 10 5 10 6 10 7 10 8 SHERPA Fixed-Order MC@NLO, Dire shower MC@NLO, CS shower pp! HH p s = 14 TeV Full SM ds/dht 10 4 10 5 10 6 10 7 SHERPA Fixed-Order MC@NLO, Dire shower MC@NLO, CS shower pp! HH p s = 14 TeV Full SM Ratio to FO 10 9 1.6 1.2 0.8 Ratio to Dire 10 8 1.25 1.00 10 2 10 3 p j? [GeV] 10 2 10 3 HT [GeV]

Other Observables ds/d HH [pb/gev] 10 1 10 2 10 3 SHERPA Fixed-Order MC@NLO, Dire shower MC@NLO, CS shower pp! HH p s = 14 TeV Full SM Ratio to FO 1.5 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 HH

Single Higgs ds/dp H? [pb/gev] 1 10 1 10 2 10 3 10 4 10 5 2 1.5 Higgs boson transverse momentum Fixed-order HEFT Fixed-order LO+PS µ PS = Ratio 1 0.5 0 10 1 10 2 10 3 p H? [GeV]

p a p b Parton shower kinematics Q p j H H ˆt =(p a p j ) 2 û =(p b p j ) 2 ŝ =(p a + p b ) 2 v = p ap j p a p b = ˆt ŝ 0 w = p bp j p a p b = û ŝ 0 ŝ + ˆt +û = Q 2 ) v + w =(1 Q 2 ŝ ) < 1 ) vw < 1 4 t Dire Q 2 = (p ap j )(p b p j ) (p a p b ) 2 = vw t Dire < Q2 4 t CSS Q 2 = vw 1 (v + w).

Parton Shower Simulations 1 M 2 P M 2 + P M 2 1 Soft and Collinear Limit Hardness parameter / evolution variable t( 1 )! 0 Matrix elements factorize Derive process independent splitting kernels P Generate soft/collinear emissions probabilistically according to P Parton shower scale implements phase space restriction: t( 1 ) <µ 2 PS

Parton Shower Simulations M 2 P 1 M 2 + P M 2 1 Sudakov form factor " Z # t1 (t 1, t 0 )=exp P( 1 )d 1 t 0 No-emission probability between scales t 0 and t 1 Parton shower scale implements phase space restriction: t( 1 ) <µ 2 PS

Parton Shower Simulations M 2 P 1 M 2 + P M 2 1 Leading order plus parton shower cross section LO+PS = Z apple B( B ) Z µ 2 (µ 2 PS PS, t 0 )+ (µ 2 PS, t( 1 ))P( 1 ) d 1 d B t 0 no emission hardest emission at t( 1 ) Parton shower scale implements phase space restriction: t( 1 ) <µ 2 PS

POWHEG NLO = Z apple Z B( B )+V( B )+ R( B, 1)d 1 d B + Z R( R ) R( R ) d R P = R B

POWHEG NLO = Z apple Z B( B )+V( B )+ + Z " R( R ) h 2 damp h 2 damp p? 2 + R( R ) h2 damp p? 2 + R( B, 1)d 1 d B h2 damp # d R P = h damp 2 p? 2 R +h2 damp B