Convex discretization of functionals involving the Monge-Ampère operator

Similar documents
Convex discretization of functionals involving the Monge-Ampère operator

Lagrangian discretization of incompressibility, congestion and linear diffusion

Discrete Ricci curvature via convexity of the entropy

Numerical Optimal Transport and Applications

The semi-geostrophic equations - a model for large-scale atmospheric flows

Gradient Flows: Qualitative Properties & Numerical Schemes

Numerical Methods for Optimal Transportation 13frg167

A few words about the MTW tensor

On the regularity of solutions of optimal transportation problems

A Modest Proposal for MFG with Density Constraints

Minimal time mean field games

Moment Measures. Bo az Klartag. Tel Aviv University. Talk at the asymptotic geometric analysis seminar. Tel Aviv, May 2013

Representation of the polar cone of convex functions and applications

CONGESTED AGGREGATION VIA NEWTONIAN INTERACTION

Sobolev regularity for the Monge-Ampère equation, with application to the semigeostrophic equations

Logarithmic Sobolev Inequalities

A VARIATIONAL METHOD FOR THE ANALYSIS OF A MONOTONE SCHEME FOR THE MONGE-AMPÈRE EQUATION 1. INTRODUCTION

C 1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

FULL CHARACTERIZATION OF OPTIMAL TRANSPORT PLANS FOR CONCAVE COSTS

Introduction to Optimal Transport Theory

Free Energy, Fokker-Planck Equations, and Random walks on a Graph with Finite Vertices

Optimal Transportation. Nonlinear Partial Differential Equations

A DIFFUSIVE MODEL FOR MACROSCOPIC CROWD MOTION WITH DENSITY CONSTRAINTS

Introduction to optimal transport

Branched transport limit of the Ginzburg-Landau functional

A description of transport cost for signed measures

Numerical methods for Mean Field Games: additional material

REGULARITY OF MONOTONE TRANSPORT MAPS BETWEEN UNBOUNDED DOMAINS

Moment Measures. D. Cordero-Erausquin 1 and B. Klartag 2

Optimal Transport for Applied Mathematicians

Gradient Flow. Chang Liu. April 24, Tsinghua University. Chang Liu (THU) Gradient Flow April 24, / 91

Displacement convexity of the relative entropy in the discrete h

Tutorial on Optimal Mass Transprot for Computer Vision

UNIQUENESS ISSUES FOR EVOLUTIVE EQUATIONS WITH DENSITY CONSTRAINTS

arxiv: v1 [math.ap] 10 Apr 2013

Optimal Transport: A Crash Course

Curvature and the continuity of optimal transportation maps

Fast convergent finite difference solvers for the elliptic Monge-Ampère equation

Dynamic and Stochastic Brenier Transport via Hopf-Lax formulae on Was

Variational approach to mean field games with density constraints

APPLICATIONS DU TRANSPORT OPTIMAL DANS LES JEUX À POTENTIEL

A variational proof of partial regularity for optimal transportation maps between sets

arxiv:math/ v3 [math.dg] 30 Jul 2007

ESTIMATES FOR THE MONGE-AMPERE EQUATION

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

PATH FUNCTIONALS OVER WASSERSTEIN SPACES. Giuseppe Buttazzo. Dipartimento di Matematica Università di Pisa.

arxiv: v2 [math.na] 7 Mar 2017

On a Class of Multidimensional Optimal Transportation Problems

Optimal Transport for Data Analysis

1. Introduction Boundary estimates for the second derivatives of the solution to the Dirichlet problem for the Monge-Ampere equation

Ricci curvature for metric-measure spaces via optimal transport

Seismic imaging and optimal transport

arxiv: v3 [stat.co] 22 Apr 2016

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION

1 An Elementary Introduction to Monotone Transportation

Optimal Transport for Data Analysis

Uniqueness of the solution to the Vlasov-Poisson system with bounded density

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators

Transport Continuity Property

The optimal partial transport problem

Topology-preserving diffusion equations for divergence-free vector fields

softened probabilistic

Optimal Transportation and Economic Applications

Generative Models and Optimal Transport

Near-Potential Games: Geometry and Dynamics

Local semiconvexity of Kantorovich potentials on non-compact manifolds

arxiv: v2 [math.oc] 25 Sep 2012

Linear Programming Methods

Gradient Flow in the Wasserstein Metric

Jean-David Benamou 1, Guillaume Carlier 2 and Maxime Laborde 3

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio

Martingale optimal transport with Monge s cost function

Mean field games via probability manifold II

Numerical Approximation of L 1 Monge-Kantorovich Problems

From Euler to Monge and vice versa. Y.B. Lecture 2: From Euler to Vlasov through Monge-Ampère and Kantorovich.

Bodies of constant width in arbitrary dimension

Minimizing within convex bodies using a convex hull method

Numerical Schemes for Calculating the Discrete Wasserstein Distance

From Knothe s transport to Brenier s map and a continuation method for optimal transport

arxiv: v1 [math.cv] 30 Jun 2008

12. Interior-point methods

Spaces with Ricci curvature bounded from below

A Dirichlet problem in the strip

5 Handling Constraints

Computing regularization paths for learning multiple kernels

arxiv: v1 [math.ca] 20 Sep 2010

c 2017 Michael J. Lindsey and Yanir A. Rubinstein

The structure of cities

Generalized Ricci Bounds and Convergence of Metric Measure Spaces

A STRATEGY FOR NON-STRICTLY CONVEX TRANSPORT COSTS AND THE EXAMPLE OF x y p IN R 2

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth

REGULARITY OF POTENTIAL FUNCTIONS IN OPTIMAL TRANSPORTATION. Centre for Mathematics and Its Applications The Australian National University

Convergence to equilibrium of Markov processes (eventually piecewise deterministic)

Optimal transport for Seismic Imaging

GRADIENT FLOWS FOR NON-SMOOTH INTERACTION POTENTIALS

Characterization of Self-Polar Convex Functions

SMOOTH OPTIMAL TRANSPORTATION ON HYPERBOLIC SPACE

Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation

The quasi-periodic Frenkel-Kontorova model

Transcription:

Convex discretization of functionals involving the Monge-Ampère operator Quentin Mérigot CNRS / Université Paris-Dauphine Joint work with J.D. Benamou, G. Carlier and É. Oudet GeMeCod Conference October 26-30, 2015, Marne-la-Vallée 1

2 1. Discretization of the space of convex functions

Motivation: variational problems over convex functions Principal-agent problem in economy min φ K,φ 0 [1,2] 2 1 2 ( φ(x) x 2 φ(x)) d x K := {φ convex } [Rochet-Choné 98] φ # Leb [1,2] 2 3

Motivation: variational problems over convex functions Principal-agent problem in economy min φ K,φ 0 [1,2] 2 1 2 ( φ(x) x 2 φ(x)) d x K := {φ convex } [Rochet-Choné 98] φ # Leb [1,2] 2 Gradient flows in Wasserstein space [Otto] [Jordan-Kinderlehrer-Otto 98] min φ KX 1 2τ W2 2(ρ, φ # ρ) + E( φ # ρ) K X := {φ convex ; φ X} 3

Motivation: variational problems over convex functions Principal-agent problem in economy min φ K,φ 0 [1,2] 2 1 2 ( φ(x) x 2 φ(x)) d x K := {φ convex } [Rochet-Choné 98] φ # Leb [1,2] 2 Gradient flows in Wasserstein space [Otto] [Jordan-Kinderlehrer-Otto 98] min φ KX 1 2τ W2 2(ρ, φ # ρ) + E( φ # ρ) K X := {φ convex ; φ X} Numerical exploration of conjectures in convex geometry, e.g. Meissner. K := { support function of convex bodies } 3

Motivation: variational problems over convex functions Principal-agent problem in economy min φ K,φ 0 [1,2] 2 1 2 ( φ(x) x 2 φ(x)) d x K := {φ convex } [Rochet-Choné 98] φ # Leb [1,2] 2 Gradient flows in Wasserstein space [Otto] [Jordan-Kinderlehrer-Otto 98] min φ KX 1 2τ W2 2(ρ, φ # ρ) + E( φ # ρ) K X := {φ convex ; φ X} Numerical exploration of conjectures in convex geometry, e.g. Meissner. K := { support function of convex bodies } 3

Prior work: Discretizing the Space of Convex Functions Finite elements: piecewise-linear convex functions over a fixed mesh non-density result [Choné-Le Meur 99] h standard grid 4

Prior work: Discretizing the Space of Convex Functions Finite elements: piecewise-linear convex functions over a fixed mesh non-density result [Choné-Le Meur 99] h standard grid Convex interpolates: [Carlier-Lachand-Robert-Maury 01] [Ekeland Moreno-Bromberg 10] Def: Given a finite subset P R d, K(P ) := { restriction of convex functions to P } P R d 4

Prior work: Discretizing the Space of Convex Functions Finite elements: piecewise-linear convex functions over a fixed mesh non-density result [Choné-Le Meur 99] h standard grid Convex interpolates: [Carlier-Lachand-Robert-Maury 01] [Ekeland Moreno-Bromberg 10] Def: Given a finite subset P R d, K(P ) := { restriction of convex functions to P } good convergence properties under convergence of P P R d 4

Prior work: Discretizing the Space of Convex Functions Finite elements: piecewise-linear convex functions over a fixed mesh non-density result [Choné-Le Meur 99] h standard grid Convex interpolates: [Carlier-Lachand-Robert-Maury 01] [Ekeland Moreno-Bromberg 10] Def: Given a finite subset P R d, K(P ) := { restriction of convex functions to P } good convergence properties under convergence of P K(P ) is a finite-dimensional convex polytope defined by Card(P ) 2 linear inequalities P R d adaptive method exterior parameterization [Oberman 14] [Mirebeau 14] [Oudet-M. 14] 4

Prior work: Discretizing the Space of Convex Functions Finite elements: piecewise-linear convex functions over a fixed mesh non-density result [Choné-Le Meur 99] h standard grid Convex interpolates: [Carlier-Lachand-Robert-Maury 01] [Ekeland Moreno-Bromberg 10] Def: Given a finite subset P R d, K(P ) := { restriction of convex functions to P } good convergence properties under convergence of P K(P ) is a finite-dimensional convex polytope defined by Card(P ) 2 linear inequalities P R d adaptive method exterior parameterization [Oberman 14] [Mirebeau 14] [Oudet-M. 14] This talk: Using the Monge-Ampère operator to describe K(P ) more conveniently. 4

5 2. Space-discretization of Wasserstein gradient flows

Background: Optimal transport P 2 (R d ) = prob. measures with finite second moment P 2 ac(r d ) = P 2 (R d ) L 1 (R d ) ν R d p 2 π Wasserstein distance between µ, ν P 2 (R d ), Γ(µ, ν) := {π P(R d R d ); p 1# π = µ, p 2# π = ν} Definition: W 2 2(µ, ν) := min π Γ(µ,ν) x y 2 d π(x, y). µ p 1 R d 6

Background: Optimal transport P 2 (R d ) = prob. measures with finite second moment P 2 ac(r d ) = P 2 (R d ) L 1 (R d ) ν R d p 2 π Wasserstein distance between µ, ν P 2 (R d ), Γ(µ, ν) := {π P(R d R d ); p 1# π = µ, p 2# π = ν} Definition: W 2 2(µ, ν) := min π Γ(µ,ν) x y 2 d π(x, y). µ p 1 R d Relation to convex functions: Def: K := convex functions on R d 6

Background: Optimal transport P 2 (R d ) = prob. measures with finite second moment P 2 ac(r d ) = P 2 (R d ) L 1 (R d ) ν R d p 2 π Wasserstein distance between µ, ν P 2 (R d ), Γ(µ, ν) := {π P(R d R d ); p 1# π = µ, p 2# π = ν} Definition: W 2 2(µ, ν) := min π Γ(µ,ν) x y 2 d π(x, y). µ p 1 R d Relation to convex functions: Def: K := convex functions on R d Theorem (Brenier): Given µ P 2 ac(r d ) the map φ K φ # µ P 2 (R d ) is surjective and moreover, W 2 2(µ, φ # µ) = R d x φ(x) 2 d µ(x) [Brenier 91] 6

Background: Optimal transport P 2 (R d ) = prob. measures with finite second moment P 2 ac(r d ) = P 2 (R d ) L 1 (R d ) ν R d p 2 π Wasserstein distance between µ, ν P 2 (R d ), Γ(µ, ν) := {π P(R d R d ); p 1# π = µ, p 2# π = ν} Definition: W 2 2(µ, ν) := min π Γ(µ,ν) x y 2 d π(x, y). µ p 1 R d Relation to convex functions: Def: K := convex functions on R d Theorem (Brenier): Given µ P 2 ac(r d ) the map φ K φ # µ P 2 (R d ) is surjective and moreover, W 2 2(µ, φ # µ) = R d x φ(x) 2 d µ(x) [Brenier 91] Lagrangian parameterization of P 2 (R d ), as seen from µ P ac 2 (R d ). 6

Motivation 1: Crowd Motion Under Congestion JKO scheme for crowd motion with hard congestion: [Maury-Roudneff-Chupin-Santambrogio 10] ρ τ k+1 = min σ P 2 (X) 1 2τ W2 2(ρ τ k, σ) + E(σ) + U(σ) ( ) where X R d is convex and bounded, and U(ν) := 0 if ν P ac and d ν d x <= 1 E(ν) := V (x) d ν(x) R d + if not congestion potential energy 7

Motivation 1: Crowd Motion Under Congestion JKO scheme for crowd motion with hard congestion: [Maury-Roudneff-Chupin-Santambrogio 10] ρ τ k+1 = min σ P 2 (X) 1 2τ W2 2(ρ τ k, σ) + E(σ) + U(σ) ( ) where X R d is convex and bounded, and U(ν) := 0 if ν P ac and d ν d x <= 1 E(ν) := V (x) d ν(x) R d + if not congestion potential energy Assuming σ = φ # ρ τ k with φ convex, the Wasserstein term becomes explicit: ( ) min φ 1 2τ R d x φ(x) 2 ρ τ k (x) d x + E( φ #ρ τ k ) + U( φ #ρ τ k ) On the other hand, the constraint becomes strongly nonlinear: U( φ # ρ τ k ) < + det D2 φ(x) ρ k (x) 7

Motivation 2: Nonlinear Diffusion ( ) ρ t = div [ρ (U (ρ) + V + W ρ)] ρ(0,.) = ρ 0 ρ(t,.) P ac (R d ) 8

Motivation 2: Nonlinear Diffusion ( ) ρ t = div [ρ (U (ρ) + V + W ρ)] ρ(0,.) = ρ 0 ρ(t,.) P ac (R d ) Formally, ( ) can be interpreted as the W 2 -gradient flow of U + E, with U(ν) := U( d ν R d x ) d x if ν P2 ac(r d ) d + if not internal energy, ex: U(r) = r log r = entropy E(ν) := R d V (x) d ν(x) + R d W (x y) d[ν ν](x, y) potential energy interaction energy 8

Motivation 2: Nonlinear Diffusion ( ) ρ t = div [ρ (U (ρ) + V + W ρ)] ρ(0,.) = ρ 0 ρ(t,.) P ac (R d ) Formally, ( ) can be interpreted as the W 2 -gradient flow of U + E, with U(ν) := U( d ν R d x ) d x if ν P2 ac(r d ) d + if not internal energy, ex: U(r) = r log r = entropy E(ν) := R d V (x) d ν(x) + R d W (x y) d[ν ν](x, y) potential energy interaction energy JKO time discrete scheme: for τ > 0, [Jordan-Kinderlehrer-Otto 98] ρ τ k+1 = arg min σ P(R d ) 1 2τ W 2(ρ τ k, σ)2 + U(σ) + E(σ) 8

Motivation 2: Nonlinear Diffusion ( ) ρ t = div [ρ (U (ρ) + V + W ρ)] ρ(0,.) = ρ 0 ρ(t,.) P ac (R d ) Formally, ( ) can be interpreted as the W 2 -gradient flow of U + E, with U(ν) := U( d ν R d x ) d x if ν P2 ac(r d ) d + if not internal energy, ex: U(r) = r log r = entropy E(ν) := R d V (x) d ν(x) + R d W (x y) d[ν ν](x, y) potential energy interaction energy JKO time discrete scheme: for τ > 0, [Jordan-Kinderlehrer-Otto 98] ρ τ k+1 = arg min σ P(R d ) 1 2τ W 2(ρ τ k, σ)2 + U(σ) + E(σ) 8 Many applications: porous medium equation, cell movement via chemotaxis, generalization to higher order PDEs, etc.

Displacement Convex Setting min σ P(R d ) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) min φ K 1 2τ W2 2(µ, φ # µ) + U( φ # µ) + E( φ # µ) 9

Displacement Convex Setting min σ P(R d ) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) min φ K 1 2τ W2 2(µ, φ # µ) + U( φ # µ) + E( φ # µ) When is this minimization problem convex in φ? 9

Displacement Convex Setting min σ P(R d ) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) min φ K 1 2τ W2 2(µ, φ # µ) + U( φ # µ) + E( φ # µ) When is this minimization problem convex in φ? Formally, the pushforward σ = φ # µ satisfies the Monge-Ampère equation σ( φ(x))ma[φ](x) = µ(x) MA[φ](x) := det(d 2 φ(x)) 9

Displacement Convex Setting min σ P(R d ) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) min φ K 1 2τ W2 2(µ, φ # µ) + U( φ # µ) + E( φ # µ) When is this minimization problem convex in φ? Formally, the pushforward σ = φ # µ satisfies the Monge-Ampère equation σ( φ(x))ma[φ](x) = µ(x) MA[φ](x) := det(d 2 φ(x)) With a change-of-variable formula, U( φ # µ) = R d U(σ(x)) d x = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x 9

Displacement Convex Setting min σ P(R d ) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) min φ K 1 2τ W2 2(µ, φ # µ) + U( φ # µ) + E( φ # µ) When is this minimization problem convex in φ? Formally, the pushforward σ = φ # µ satisfies the Monge-Ampère equation σ( φ(x))ma[φ](x) = µ(x) MA[φ](x) := det(d 2 φ(x)) With a change-of-variable formula, U( φ # µ) = R d U(σ(x)) d x = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x Using concavity of det 1/d over SDP, this gives: Theorem: Given µ P 2 ac(r 2 ), for the functional φ K U( φ #µ ) to be convex, it suffices that r > 0 r d U(r d ) is convex non-increasing and U(0) = 0. [McCann 94] 9

Discretizing the Space of Convex Functions We replace K with K X := {φ convex ; φ X} Definition: Given a finite subset P X, let K X (P ) := {ψ P ; ψ K X } R P 10

Discretizing the Space of Convex Functions We replace K with K X := {φ convex ; φ X} Definition: Given a finite subset P X, let K X (P ) := {ψ P ; ψ K X } R P = φ : P R P X 10

Discretizing the Space of Convex Functions We replace K with K X := {φ convex ; φ X} Definition: Given a finite subset P X, let K X (P ) := {ψ P ; ψ K X } R P K X envelope of a function φ on P : φ : P R ˆφ : R d R ˆφ = φ : P R ˆφ := max{ψ; ψ K X and ψ P φ} K X P X 10

Discretizing the Space of Convex Functions We replace K with K X := {φ convex ; φ X} Definition: Given a finite subset P X, let K X (P ) := {ψ P ; ψ K X } R P K X envelope of a function φ on P : φ : P R ˆφ : R d R ˆφ = φ : P R ˆφ := max{ψ; ψ K X and ψ P φ} K X P X Given µ = p P µ pδ p on P and φ K X (P ) we need to define φ # µ. 10

Discretizing the Space of Convex Functions We replace K with K X := {φ convex ; φ X} Definition: Given a finite subset P X, let K X (P ) := {ψ P ; ψ K X } R P K X envelope of a function φ on P : φ : P R ˆφ : R d R ˆφ = φ : P R ˆφ := max{ψ; ψ K X and ψ P φ} K X V p P X Given µ = p P µ pδ p on P and φ K X (P ) we need to define φ # µ. Definition: For φ K X (P ), let V p := ˆφ(p) and V p p X 10

Discretizing the Space of Convex Functions We replace K with K X := {φ convex ; φ X} Definition: Given a finite subset P X, let K X (P ) := {ψ P ; ψ K X } R P K X envelope of a function φ on P : φ : P R ˆφ : R d R ˆφ = φ : P R ˆφ := max{ψ; ψ K X and ψ P φ} K X V p P X Given µ = p P µ pδ p on P and φ K X (P ) we need to define φ # µ. Definition: For φ K X (P ), let V p := ˆφ(p) and V p p X Gφ # µ := p P µ p Leb(V p ) Leb V p P ac (X) 10

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p 11

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p Internal energy of the push-forward Gφ # µ = p P (µ p/ma[φ](p)) Leb ˆφ(p) : U(Gφ # µ) = U(Gφ # µ(x)) d x, = p P ˆφ(p) U (µ p/ma[φ](p))) d x 11

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p Internal energy of the push-forward Gφ # µ = p P (µ p/ma[φ](p)) Leb ˆφ(p) : U(Gφ # µ) = U(Gφ # µ(x)) d x, = p P ˆφ(p) U (µ p/ma[φ](p))) d x = p P U (µ p/ma[φ](p)) MA[φ](p) (Compare to the continuous formula: U( φ # µ) = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x) 11

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p Internal energy of the push-forward Gφ # µ = p P (µ p/ma[φ](p)) Leb ˆφ(p) : U(Gφ # µ) = U(Gφ # µ(x)) d x, = p P ˆφ(p) U (µ p/ma[φ](p))) d x = p P U (µ p/ma[φ](p)) MA[φ](p) (Compare to the continuous formula: U( φ # µ) = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x) Concavity of discrete MA operator: φ K(P ) MA[φ](p) 1/d is concave 11

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p Internal energy of the push-forward Gφ # µ = p P (µ p/ma[φ](p)) Leb ˆφ(p) : U(Gφ # µ) = U(Gφ # µ(x)) d x, = p P ˆφ(p) U (µ p/ma[φ](p))) d x = p P U (µ p/ma[φ](p)) MA[φ](p) (Compare to the continuous formula: U( φ # µ) = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x) Concavity of discrete MA operator: φ K(P ) MA[φ](p) 1/d is concave Leb( ˆφ t ) 1/d Leb((1 t) ˆφ 0 (p) t ˆφ 1 (p)) 1/d. 11

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p Internal energy of the push-forward Gφ # µ = p P (µ p/ma[φ](p)) Leb ˆφ(p) : U(Gφ # µ) = U(Gφ # µ(x)) d x, = p P ˆφ(p) U (µ p/ma[φ](p))) d x = p P U (µ p/ma[φ](p)) MA[φ](p) (Compare to the continuous formula: U( φ # µ) = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x) Concavity of discrete MA operator: φ K(P ) MA[φ](p) 1/d is concave Brunn-Minkowski Leb( ˆφ t ) 1/d Leb((1 t) ˆφ 0 (p) t ˆφ 1 (p)) 1/d. (1 t)leb( ˆφ 0 (p)) 1/d + tleb( ˆφ 1 (p)) 1/d. 11

Internal Energy and Discrete Monge-Ampère Operator Discrete Monge-Ampère operator: MA[φ](p) := Leb( ˆφ(p)). 11 Related to Alexandrov s Monge-Ampère measure of ˆφ, i.e. p P MA[φ](p)δ p Internal energy of the push-forward Gφ # µ = p P (µ p/ma[φ](p)) Leb ˆφ(p) : U(Gφ # µ) = U(Gφ # µ(x)) d x, = p P ˆφ(p) U (µ p/ma[φ](p))) d x = p P U (µ p/ma[φ](p)) MA[φ](p) (Compare to the continuous formula: U( φ # µ) = R d U ( ) µ(x) MA[φ](x) MA[φ](x) d x) Concavity of discrete MA operator: φ K(P ) MA[φ](p) 1/d is concave Brunn-Minkowski Leb( ˆφ t ) 1/d Leb((1 t) ˆφ 0 (p) t ˆφ 1 (p)) 1/d. (1 t)leb( ˆφ 0 (p)) 1/d + tleb( ˆφ 1 (p)) 1/d. Proposition: Under McCann s assumption, φ K X (P ) U(Gφ # µ P ) is convex.

Convex Space-Discretization of One Gradient Step Theorem: Under McCann s hypotheses the discrete problem min φ KX (P ) 1 2τ W2 2(µ, Hφ # µ) + E(Hφ # µ) + U(Gφ # µ) is convex, and the minimum is unique if r d U(r d ) is strictly convex. [Benamou, Carlier, M., Oudet 14] 12

Convex Space-Discretization of One Gradient Step Theorem: Under McCann s hypotheses the discrete problem min φ KX (P ) 1 2τ W2 2(µ, Hφ # µ) + E(Hφ # µ) + U(Gφ # µ) is convex, and the minimum is unique if r d U(r d ) is strictly convex. [Benamou, Carlier, M., Oudet 14] Unfortunately, two different definitions of push-forward seem necessary to get a convex discretisation (i.e. φ E(Gφ # µ) is non-convex). 12

Convex Space-Discretization of One Gradient Step Theorem: Under McCann s hypotheses the discrete problem min φ KX (P ) 1 2τ W2 2(µ, Hφ # µ) + E(Hφ # µ) + U(Gφ # µ) is convex, and the minimum is unique if r d U(r d ) is strictly convex. [Benamou, Carlier, M., Oudet 14] Unfortunately, two different definitions of push-forward seem necessary to get a convex discretisation (i.e. φ E(Gφ # µ) is non-convex). If lim r U(r)/r = +, the internal energy U is a barrier for convexity, i.e. U(Gφ # µ P ) < + = p P, MA[φ](p) = Leb( ˆφ(p)) > 0 = φ is in the interior of K X (P ). NB: P non-linear constraints vs P 2 linear constraints 12

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) 13

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) (C1) E continuous, U l.s.c on (P(X), W 2 ) 13

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) (C1) E continuous, U l.s.c on (P(X), W 2 ) (C2) U(ρ) = U(ρ(x)) d x, where U is convex with superlinear growth. 13

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) (C1) E continuous, U l.s.c on (P(X), W 2 ) (C2) U(ρ) = U(ρ(x)) d x, where U is convex with superlinear growth. McCann s condition for displacement-convexity 13

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) (C1) E continuous, U l.s.c on (P(X), W 2 ) (C2) U(ρ) = U(ρ(x)) d x, where U is convex with superlinear growth. McCann s condition for displacement-convexity Theorem: Let P n X finite, µ n P(P n ) with lim W 2 (µ n, µ) = 0, and: min φ KX (P n ) 1 2τ W 2(µ n, Hφ # µ n ) + E(Hφ # µ n ) + U(Gφ # µ n ) ( ) n If φ n minimizes ( ) n, then (Gφ n #µ n ) is a minimizing sequence for ( ). [Benamou, Carlier, M., Oudet 14] 13

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) (C1) E continuous, U l.s.c on (P(X), W 2 ) (C2) U(ρ) = U(ρ(x)) d x, where U is convex with superlinear growth. McCann s condition for displacement-convexity Theorem: Let P n X finite, µ n P(P n ) with lim W 2 (µ n, µ) = 0, and: min φ KX (P n ) 1 2τ W 2(µ n, Hφ # µ n ) + E(Hφ # µ n ) + U(Gφ # µ n ) ( ) n If φ n minimizes ( ) n, then (Gφ n #µ n ) is a minimizing sequence for ( ). Proof relies on Caffarelli s regularity theorem. [Benamou, Carlier, M., Oudet 14] 13

Convergence of the Space-Discretization Setting: X bounded and convex, µ P ac (X) with density c 1 ρ c min σ P(X) 1 2τ W2 2(µ, σ) + E(σ) + U(σ) ( ) (C1) E continuous, U l.s.c on (P(X), W 2 ) (C2) U(ρ) = U(ρ(x)) d x, where U is convex with superlinear growth. McCann s condition for displacement-convexity Theorem: Let P n X finite, µ n P(P n ) with lim W 2 (µ n, µ) = 0, and: min φ KX (P n ) 1 2τ W 2(µ n, Hφ # µ n ) + E(Hφ # µ n ) + U(Gφ # µ n ) ( ) n If φ n minimizes ( ) n, then (Gφ n #µ n ) is a minimizing sequence for ( ). Proof relies on Caffarelli s regularity theorem. [Benamou, Carlier, M., Oudet 14] When P n is a regular grid, there is an alternative (and quantitative) argument 13

14 3. Numerical results

Monge-Ampère operator and Computational Geometry U(Gφ # µ P ) = p P U (µ p/ma[φ](p)) MA[φ](p) with MA[φ](p) := Leb( ˆφ(p)). Goal: fast computation of MA[φ] and its 1st/2nd derivatives w.r.t φ 15

Monge-Ampère operator and Computational Geometry U(Gφ # µ P ) = p P U (µ p/ma[φ](p)) MA[φ](p) with MA[φ](p) := Leb( ˆφ(p)). Goal: fast computation of MA[φ] and its 1st/2nd derivatives w.r.t φ We rely on the notion of Laguerre diagram in computational geometry Definition: Given a function φ : P R, Lag φ P (p) := {y Rd ; q P, φ(q) φ(p) + q p y } Lag φ P (p) X p 15

Monge-Ampère operator and Computational Geometry U(Gφ # µ P ) = p P U (µ p/ma[φ](p)) MA[φ](p) with MA[φ](p) := Leb( ˆφ(p)). Goal: fast computation of MA[φ] and its 1st/2nd derivatives w.r.t φ We rely on the notion of Laguerre diagram in computational geometry Definition: Given a function φ : P R, Lag φ P (p) := {y Rd ; q P, φ(q) φ(p) + q p y } Lag φ P (p) X For φ K X (P ), ˆφ(p) = Lag φ P (p) X. p 15

Monge-Ampère operator and Computational Geometry U(Gφ # µ P ) = p P U (µ p/ma[φ](p)) MA[φ](p) with MA[φ](p) := Leb( ˆφ(p)). Goal: fast computation of MA[φ] and its 1st/2nd derivatives w.r.t φ We rely on the notion of Laguerre diagram in computational geometry Definition: Given a function φ : P R, Lag φ P (p) := {y Rd ; q P, φ(q) φ(p) + q p y } Lag φ P (p) X For φ K X (P ), ˆφ(p) = Lag φ P (p) X. p For φ(p) = p 2 /2, one gets the Voronoi cell: Lag φ P (p) := {y; q P, q y 2 p y 2 } 15

Monge-Ampère operator and Computational Geometry U(Gφ # µ P ) = p P U (µ p/ma[φ](p)) MA[φ](p) with MA[φ](p) := Leb( ˆφ(p)). Goal: fast computation of MA[φ] and its 1st/2nd derivatives w.r.t φ We rely on the notion of Laguerre diagram in computational geometry Definition: Given a function φ : P R, Lag φ P (p) := {y Rd ; q P, φ(q) φ(p) + q p y } Lag φ P (p) X For φ K X (P ), ˆφ(p) = Lag φ P (p) X. p For φ(p) = p 2 /2, one gets the Voronoi cell: Lag φ P (p) := {y; q P, q y 2 p y 2 } Computation in time O( P log P ) in 2D 15

Example: semi-lagrangian scheme for crowd motion Gradient flow model of crowd motion with congestion, with a JKO scheme: [Maury-Roudneff-Chupin-Santambrogio 10] µ k+1 = min ν P(X) 1 2τ W2 2(µ k, ν) + E(ν) + U(ν) E(ν) := V (x) d ν(x) X { 0 if d ν/ d x 1, U(ν) := + if not 16

Example: semi-lagrangian scheme for crowd motion Gradient flow model of crowd motion with congestion, with a JKO scheme: [Maury-Roudneff-Chupin-Santambrogio 10] µ k+1 = min ν P(X) 1 2τ W2 2(µ k, ν) + E(ν) + U(ν) E(ν) := V (x) d ν(x) X { 0 if d ν/ d x 1, U(ν) := + if not Convex optimization problem if V is λ-convex (V + λ. 2 convex) and τ λ/2. We solve this problem with a relaxed hard congestion term: 6 r r α log(1 r 1/d ) U α (ρ) := ρ(x) α log(1 ρ(x) 1/d ) d x 4 2 α=1 α=5 α=10 16 r = 0 r = 1

Example: semi-lagrangian scheme for crowd motion Initial density on X = [ 2, 2] 2 Potential 0 1 (2, 2) ( 2, 2) P = 200 200 regular grid. V (x) = x (2, 0) 2 + 5 exp( 5 x 2 /2) Algorithm: Input: µ 0 P(P ), τ > 0, α > 0, β 1. For k {0,..., T } φ arg min φ K G X (P k ) 1 2τ W2 2(µ k, Hφ # µ k ) + E(Hφ # µ k ) + αu β (Gφ # µ k ) ν G φ# µ k ; µ k+1 projection of ν [ 2,2) [ 2,2] on P. 17

4. Application to Geometry? Ongoing work with J.M. Mirebeau 18

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. 19

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. interior point method for shape optimization problem: Minkowski, Meissner, etc. 19

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. Definition: Given a convex body K, h K : u S d 1 max p K u p. 19

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. Definition: Given a convex body K, h K : u S d 1 max p K u p. K (P ) := {h K P ; K bounded convex body } n 1 n 2 n 5 n 3 n 4 P = {n 1,..., n N } S d 1 R d 19

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. Definition: Given a convex body K, h K : u S d 1 max p K u p. K (P ) := {h K P ; K bounded convex body } K(h) n 1 n 2 h 1 h 2 n 5 n 3 h 5 h 3 h 4 n 4 P = {n 1,..., n N } S d 1 R d K(h) := N i=1 {x; x n i h i } 19

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. Definition: Given a convex body K, h K : u S d 1 max p K u p. K (P ) := {h K P ; K bounded convex body } K(h) n 1 n 2 h 1 h 2 n 5 n 3 h 5 h 3 h 4 n 4 P = {n 1,..., n N } S d 1 R d K(h) := N i=1 {x; x n i h i } Prop: Φ(h) := N i=1 log(hd 1 (ith face of K(h))) is a convex barrier for K (P ). 19

Support Functions of Convex Bodies Objective: Logarithmic barrier for the space of support functions of convex bodies. Definition: Given a convex body K, h K : u S d 1 max p K u p. K (P ) := {h K P ; K bounded convex body } K(h) n 1 n 2 h 1 h 2 n 5 n 3 h 5 h 3 h 4 n 4 P = {n 1,..., n N } S d 1 R d K(h) := N i=1 {x; x n i h i } Prop: Φ(h) := N i=1 log(hd 1 (ith face of K(h))) is a convex barrier for K (P ). Extension to other spaces, such as c-convex functions in optimal transport. 19

Application: convex bodies with constant-width Definition: The width of K in direction u is w K (u) = h K (u) + h K ( u). K has constant width α if w K (u) = α. 20

Application: convex bodies with constant-width α Definition: The width of K in direction u is w K (u) = h K (u) + h K ( u). K has constant width α if w K (u) = α. Example: Reuleaux triangle in R 2 20

Application: convex bodies with constant-width α Definition: The width of K in direction u is w K (u) = h K (u) + h K ( u). K has constant width α if w K (u) = α. Example: Reuleaux triangle in R 2 Theorem: Reuleaux triangles minimize the area over convex sets of the plane with constant width α. [Blaschke-Lebesgue] 20

Application: convex bodies with constant-width Definition: The width of K in direction u is α w K (u) = h K (u) + h K ( u). K has constant width α if w K (u) = α. Example: Reuleaux triangle in R 2 Theorem: Reuleaux triangles minimize the area over convex sets of the plane with constant width α. [Blaschke-Lebesgue] Bonnensen-Fenchel conjecture in R 3 : Meissner s body minimize the volume among convex sets with fixed constant width. 20

Application: convex bodies with constant-width Definition: The width of K in direction u is α w K (u) = h K (u) + h K ( u). K has constant width α if w K (u) = α. Example: Reuleaux triangle in R 2 Theorem: Reuleaux triangles minimize the area over convex sets of the plane with constant width α. [Blaschke-Lebesgue] Bonnensen-Fenchel conjecture in R 3 : Meissner s body minimize the volume among convex sets with fixed constant width. few theoretical results, but no proof of first-order optimality. a role to be played by numerical experimentation? [Lachand-Robert, Oudet] 20

Application: convex bodies with constant-width Definition: The width of K in direction u is α w K (u) = h K (u) + h K ( u). K has constant width α if w K (u) = α. Example: Reuleaux triangle in R 2 Theorem: Reuleaux triangles minimize the area over convex sets of the plane with constant width α. [Blaschke-Lebesgue] Bonnensen-Fenchel conjecture in R 3 : Meissner s body minimize the volume among convex sets with fixed constant width. few theoretical results, but no proof of first-order optimality. a role to be played by numerical experimentation? [Lachand-Robert, Oudet] 20

21 Appendix

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) Cost function: c : X Y R 22

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) K c (P ) := {φ P ; φ : X R is c-concave } Cost function: c : X Y R 22

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) K c (P ) := {φ P ; φ : X R is c-concave } Cost function: c : X Y R Characterization of the costs functions such that the space K c is convex Application: generalized principal-agent problem [Figalli, Kim, McCann 10] 22

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) K c (P ) := {φ P ; φ : X R is c-concave } Cost function: c : X Y R Characterization of the costs functions such that the space K c is convex Application: generalized principal-agent problem [Figalli, Kim, McCann 10] Under the same hypotheses, there exists a convex logarithmic barrier for K c (P ): 22

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) K c (P ) := {φ P ; φ : X R is c-concave } Cost function: c : X Y R Characterization of the costs functions such that the space K c is convex Application: generalized principal-agent problem [Figalli, Kim, McCann 10] Under the same hypotheses, there exists a convex logarithmic barrier for K c (P ): c-laguerre diagram: Lag ψ c (p) = {x X; q P, c(x, p) + ψ(p) c(x, q) + ψ(q)} Lag ψ c (p) X 22

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) K c (P ) := {φ P ; φ : X R is c-concave } Cost function: c : X Y R Characterization of the costs functions such that the space K c is convex Application: generalized principal-agent problem [Figalli, Kim, McCann 10] Under the same hypotheses, there exists a convex logarithmic barrier for K c (P ): c-laguerre diagram: Lag ψ c (p) = {x X; q P, c(x, p) + ψ(p) c(x, q) + ψ(q)} exp 1 p (Lag ψ c (p)) R d is convex exp p := [ c(., p)] 1 Lag ψ c (p) X 22

c-concave Functions Definition: φ : X R is c-concave if ψ : Y R s.t. φ = min y c(x, y) + ψ(y) K c (P ) := {φ P ; φ : X R is c-concave } Cost function: c : X Y R Characterization of the costs functions such that the space K c is convex Application: generalized principal-agent problem [Figalli, Kim, McCann 10] Under the same hypotheses, there exists a convex logarithmic barrier for K c (P ): c-laguerre diagram: Lag ψ c (p) = {x X; q P, c(x, p) + ψ(p) c(x, q) + ψ(q)} exp 1 p (Lag ψ c (p)) R d is convex exp p := [ c(., p)] 1 Lag ψ c (p) X Prop: Φ(h) := N p P log(hd (exp 1 p (Lag ψ c (p))) is a convex barrier for K c (P ). 22