Masaki Mori. Institute for Cosmic Ray Research, University of Tokyo

Similar documents
TeV Gamma Rays from Synchrotron X-ray X

GLAST and beyond GLAST: TeV Astrophysics

Gamma-ray Astrophysics

Recent Observations of Supernova Remnants

TeV γ-ray observations with VERITAS and the prospects of the TeV/radio connection

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Observing Galactic Sources at GeV & TeV Energies (A Short Summary)

Recent highlights from VERITAS

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

CANGAROO Status of CANGAROO project

Status of the MAGIC telescopes

SuperCANGAROO. Symposium on Future Projects in Cosmic Ray Physics, June 26-28, 28, Masaki Mori

Potential Neutrino Signals from Galactic γ-ray Sources

VERITAS: exploring the high energy Universe

Remnants and Pulsar Wind

Extreme high-energy variability of Markarian 421

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

Fermi: Highlights of GeV Gamma-ray Astronomy

VERY HIGH-ENERGY GAMMA-RAY ASTRONOMY

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Very High Energy (VHE) γ-ray Astronomy: Status & Future

Particle Acceleration in the Universe

VERITAS. Tel 3. Tel 4. Tel 1. Tel 2

TeV Astrophysics in the extp era

VERITAS Observations of Supernova Remnants

TeV Galactic Source Physics with CTA

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants

Special Topics in Nuclear and Particle Physics

Non-thermal emission from pulsars experimental status and prospects

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

TeV Future: APS White Paper

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Very High-Energy Gamma- Ray Astrophysics

Status of CANGAROO-III

Galactic sources in GeV/TeV Astronomy and the new HESS Results

VERITAS Observations of Relativistic Jets

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Cosmic Ray Electrons and GC Observations with H.E.S.S.

Extragalactic Science with the CTA. A. Zech, LUTH

Sources of GeV Photons and the Fermi Results

H.E.S.S. High Energy Stereoscopic System

Are supernova remnants PeV accelerators? The contribution of HESS observations

Very High Energy Gamma-ray: the MAGIC telescopes and the CTA project

Gamma rays from star- forming regions. Jürgen Knödlseder (IRAP, Toulouse) 1

TEV GAMMA RAY ASTRONOMY WITH VERITAS

The Milky Way in VHE γ-rays. Christopher van Eldik Max-Planck-Institut für Kernphysik Heidelberg

Selecting Interesting Unidentified Sources

Galactic Accelerators : PWNe, SNRs and SBs

VHE γ-ray emitting pulsar wind nebulae discovered by H.E.S.S.

The γ-ray sky after two years of the Fermi satellite Jean Ballet (AIM, CEA/DSM/IRFU/SAp) on behalf of the Fermi LAT Collaboration

THE MAGIC TELESCOPES. Major Atmospheric Gamma Imaging Cherenkov Telescopes

Very-High-Energy Gamma-Ray Astronomy with VERITAS. Martin Schroedter Iowa State University

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Future Gamma-Ray Observations of Pulsars and their Environments

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Gamma-ray Astrophysics and High Density e+ e- Plasma - A new application of Free Electron Laser? -

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

Recent Results from CANGAROO

Supernova Remnants and Pulsar Wind Nebulae observed in TeV γ rays

Recent Results from VERITAS

OBSERVATIONS OF VERY HIGH ENERGY GAMMA RAYS FROM M87 BY VERITAS

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

HEGRA Observations of Galactic Sources

PoS(Extremesky 2011)036

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

The Fermi Gamma-ray Space Telescope

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Diffuse TeV emission from the Cygnus region

What can Simbol-X do for gamma-ray binaries?

CTA / ALMA synergies. C. Boisson. Zech

AGIS (Advanced Gamma-ray Imaging System)

The VERITAS Survey of the Cygnus Region of the Galaxy

arxiv:astro-ph/ v1 20 Sep 2006

Radio Observations of TeV and GeV emitting Supernova Remnants

GAMMA-RAYS FROM MASSIVE BINARIES

Particle acceleration and pulsars

SIMILARITY AND DIVERSITY OF BLACK HOLE SYSTEMS View from the Very High Energies

Integral flux (cm -2 s -1 )

CTB 37A & CTB 37B - The fake twins SNRs

The origin of NORMAL cosmic rays First results from H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg

A pulsar wind nebula associated with PSR J as the powering source of TeV J

HESS J : A new gamma-ray binary?

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Fermi Source Analyses and Identifying VERITAS Candidates

Recent results in very high energy gamma ray astronomy

Supernova Remnants and GLAST

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

HESS Highlights and Status

Transcription:

Masaki Mori Institute for Cosmic Ray Research, University of Tokyo International Workshop on Advances in Cosmic Ray Science March 17-19, 2008, Waseda University, Shinjuku, Tokyo, Japan

> TeV gamma-rays ~1 m 2 ~ sr A ~10 4 m 2 ~10-2 sr 2

Cherenkov light from gamma-ray showers Lateral distribution & Timing distribution 3

Shower profile Focal plane image Gamma Proton Gamma Proton Regular Irregular Sharp Diffuse Differentiation of gamma-rays from charged cosmic rays (image orientation angle) 4

Angular resolution 0.25deg 0.1 deg Energy resolution 30% 15% Better S/N (no local muons) ~10km S.Funk, 2005 5

Base Satellite Ground Ground Gamma-ray detection Direct (pair creation) Indirect (atmospheric Indirect (shower array) Cherenkov) Energy < 30 GeV >100 GeV >3 TeV ( 100 GeV) ( 50 GeV) ( 1 TeV) Pros High S/N Large area 24hr operation Large FOV Good Large FOV Cons Small area High cost Low S/N (CR bkgd.) (but imaging overcomes this!) Small FOV Low S/N (CR bkgd.) Moderate 6

Rene Ong, ICRC2005 OG2 rapporteur talk (updated) 2007 VERITAS 7

TeV skymap 8

TeV skymap 9

TeV skymap 10

TeV skymap 11

TeV skymap 12

Jim Hinton, rapporteur talk, ICRC 2007 Kifune plot (Pulsar Wind Nebulae) (Subernova remnants) (Active Galactic Nuclei) (Unidentified sources) 13

SNRS SNR PWN BIN GC RIDGE YSC UID HBL LBL RGL FSRQ Classified by M. Mori RGL FSRQ LBL SNRS SNRS SNR 18 16 HBL SNR PWN BIN 14 12 GC 10 PWN RIDGE 8 UID BIN YSC UID 6 4 HBL 2 LBL 0 YSC GC RGL RIDGE FSRQ * Borders for SNR/PWN/UnID are vague 14

Jim Hinton, rapporteur talk, ICRC 2007 16

Jim Hinton, rapporteur talk, ICRC 2007 17

Long considered to be primary source for Galactic cosmic rays Pros: Energetic enough (10% of SN explosion energy) Size of object is large enough (R >> r g ) Many SNRs are bright radio sources: at least electrons are accelerated! Cons: Magnetic fields too low to go beyond 10 14 ev Additional problem: adiabatic losses Cas A by Chandra 18

F. Ahanorian et al., arxiv: 0803.0682/0702 Jim Hinton, rapporteur talk, ICRC 2007 CTA 37B CTA 37A Comparable to PSF (0.09 ) J. Albert et al., A&A 474, 934 (2007) Good kev-tev Correlation! T.Tanaka, PhD thesis, 2007 19

p/e ratio problem A.Bamba TeV Proton Π 0 decay Flat spectrum above 100MeV Electron Synchrotron X-rays Inverse Compton gamma-rays 20

Hard power-law + cutoff (?): ~E -2 exp(-e/e max ) RX J1713.7-3946 Electron model Proton model Synchroton Pion decay Inverse Compton Aharonian et al. 2006 Berezhko & Voelk 2007 RX J0842.0-4622 Synchroton Brems. Inverse Compton Pion decay NO definitive answer for accelerated particles! Enomoto et al. 2006 21

D. Ellison et al., ApJ 661 (2007) 879 Difficult in the GeV-TeV region if magnetic field is strong! 22

J. Vink, astro-ph/0601131 Y. Uchiyama et al., Nature 449, 576 (2007) 249-299 G RX J1713.7-3946 by Chandra 113-165 G 30-39 G 97-113 G 14-24 G Variation in ~1yr time scale Need > 1mG! (locally) Protons produce TeV gamma-rays!? Counter arguments: Y.Butt et al., arxiv:0801.4954 23

IC443 W28 12 CO X-ray 20cm 90cm 12 CO X [MAGIC, Albert et al., ApJ 664, L87,2007] [H.E.S.S., Aharonian et al., A&A, in press] Evidence of proton acceleration? 24

W. Hofmann, TAUP 2007, Sendai, September 2007 Major group in Galactic TeV sources 18/71 by Hinton (2007ICRC) Associated with relatively young (<10 5 years) and large spin-down pulsars Extended O(10pc), displaced from pulsars Gamma-rays via inverse Compton by electrons? LS5039 27

S. Funk et al., ICRC 2007 Shrinks! 28

HESS J1833-105 HESS J1846-029 HESS J1912+012 Djannati-Atai et al., ICRC2007 Hoppe et al., ICRC2007 HESS J1718-385 HESS J1809-193 HESS J1837-069 70.5ms PSR (ATel1392 Carrigan et al., ICRC2007 Komin et al., ICRC2007 Aharonian et al. ApJ 777 (2007) 30

S. Funk, paper 390, 30th ICRC (Merida), 2007 31

LSI +61 303 (VERITAS/MAGIC) P orb ~26.5day MAGIC LS 5039 (H.E.S.S.) P orb ~3.9day VERTAS J. Albert et al., Science 312, 1771 (2006) V.A. Acciari et al., arxiv:0802.2363 F. Aharonian et al., A&A 460 (2006) 743 32

J. Albert et al., ApJ 665, L51 (2007) Black hole binary: M BH ~21M, M ~30M Relativistic jet v>0.6c: microquasar MAGIC 40hr obs. 4.9 seen in one 79 min. time slice Estimated significance: 4.1 after correction for statistical trials 33

Jim Hinton, rapporteur talk, ICRC 2007 34

Aharonian et al., A&A 467, 1075 (2007) Young open stellar cluster Dozen O-stars Two Wolf-Rayet stars (~80M each)! Extended gamma-ray emission covering (but offset from) Westerlund 2 by HESS Due to collective effects of stellar winds in the cluster? A new source class? Churchwell 2004 35

Van Eldik et al., ICRC 2007 Energy spectrum is not consistent with dark matter annihilation signal! L. Bergström, CTA meeting, Jan. 2008 36

F. Aharonian et al., Nature 439, 695 (2006) Raw CS Simple diffusion D=1.3 kpc 2 Myr -1 After subtraction Spectrum is harder than CR spectrum! Diffusion model by Busching et al. ApJ 656, 841 (2007) 37

F. Aharonian et al., A&A 477, 353 (2008) HESS J1303-631 Two types: 1) No compelling counterparts 2) Dark in other wavelengths F. Aharonian et al., A&A 442, 1 (2005) 38

Funk et al., arxiv:0710.1584v1 Coincident sources 39

Jim Hinton, rapporteur talk, ICRC 2007 40

FSRQ Target photon p-synch cascade -synch cascade BL Lac 0 cascade Synchrotron peak Inverse Compton peak cascade Electron model Fossati et al. 1998 Proton model Muecke et al. APh 18, 2003 41

H.E.S.S. arxiv:0706.0797 W. Hofmann, TAUP 2007 Suzaku correl. PKS 2155 304 z = 0.116 July 28, 2006 Peak flux ~15 x Crab ~50 x average Luminosity ~10 12 x Crab Doubling times 67, 116, 173, 178 ±50 s R BH /c ~ 1...2. 10 4 s MAGIC preliminary M. Hayashida, ICRC 2007 Fast variation Acceleration site & mechanism 42

Observed spectrum is affected by integalactic absorption! TeV + IR e + + e - Mean free path for e + e - pair production Jim Hinton, rapporteur talk, ICRC 2007 Protheroe & Meyer, Phys.Lett. B493 (2000) 1 We cannot discriminate source spectrum and intergalactic absorption! 43

H.E.S.S.: Aharonian et al., Nature 440, 1018 (2006) X X X Assume not harder than E -1.5 X Some models can be rejected 44

Raue, ICRC 2007 Upper limits: fluctuation/direct measurements Lower limits: source counts 45

MAGIC: M. Teshima, ICRC 2007 46

C. Dermer, GLAST LAT AGN Science Group meeting, March 4, 2006 47

10 TeV AGN More AGNs as energy threshold goes lower! 48

H.E.S.S.: Domainko et al., ICRC2007 A496 A3667 Perseus Coma A4038 A2029 Whipple: Perkins et al., ApJ 644, 148 (2006) 49 CANGAROO-III: Kiuchi et al., ICRC2007

W. Hofmann / M. Teshima, SLAC Workshop, Nov. 2007 H.E.S.S. II MAGIC II 28m 50

CTA (Cherenkov Telescope Array): EU++ AGIS (Advanced Gamma-ray Imaging System): USA++ CTA 51

N S -2/3 2 (North/South) 1000 TeV sources if mcrab! Data: H.E.S.S. catalog 52

High energy window of the Universe is now open! Additional 2-3 decades of the photon spectrum Wider variety of sources than expected Cosmic accelerators are ubiquitous! Much work left to understand their physics Also: cosmology, fundamental physics Hoping to detect other class of sources Pulsars Star-forming galaxies, mergers Dwarf galaxies and dark matter Ultraluminous IR galaxies Clusters of galaxies Gamma-ray bursts 53