Introduction to ROOTPWA

Similar documents
Hadron Spectroscopy at COMPASS

Recent Results on Spectroscopy from COMPASS

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

arxiv: v1 [hep-ex] 31 Dec 2014

Tests of Chiral Perturbation Theory in Primakoff Reactions at COMPASS

Overview of Light-Hadron Spectroscopy and Exotics

Decay. Scalar Meson σ Phase Motion at D + π π + π + 1 Introduction. 2 Extracting f 0 (980) phase motion with the AD method.

The Deck Effect in. πn πππn. Jo Dudek, Jefferson Lab. with Adam Szczepaniak, Indiana U.

Hadron Spectrospopy & Primakoff Reactions at COMPASS

The Search for Exotic Mesons in Photoproduction. Diane Schott

arxiv: v2 [hep-ex] 12 Feb 2014

Physics with Hadron Beams at COMPASS

Jefferson Lab, May 23, 2007

Peng Guo. Physics Department & NTC Indiana University - Bloomington, U.S.A.

Contents. What Are We Looking For? Predicted D

Baryon Spectroscopy in COMPASS p p p f π + π p s p p p f K + K p s. Alex Austregesilo for the COMPASS Collaboration

Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuanquanlu, Shijingshan district, Beijing, , China

Generalized Partial Wave Analysis Software for PANDA

Centrifugal Barrier Effects and Determination of Interaction Radius

Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging

Photoproduction of the f 1 (1285) Meson

Properties of the Λ(1405) Measured at CLAS

Amplitude analyses with charm decays at e + e machines

The D-wave to S-wave amplitude ratio for b 1 (1235) ωπ

Charmonium Spectroscopy at BESIII

CLEO Results From Υ Decays

Exotic hadrons at LHCb

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

Study of the ISR reactions at BaBar!

Hadron Spectroscopy CLAS g12

Overview and Status of Measurements of F 3π at COMPASS

Measurement of Double-Polarization

The Exotic η π Wave in 190 GeV π p η π p at COMPASS

Dalitz Plot Analysis of Heavy Quark Mesons Decays (3).

Partial Wave Analysis of J/ψ Decays into ρρπ

Charm Baryon Studies at BABAR

Bottomonium results. K.Trabelsi kek.jp

Introduction. The Standard Model

A K-Matrix Tutorial. Curtis A. Meyer. October 23, Carnegie Mellon University

OBSERVATION OF THE RARE CHARMED B DECAY, AT THE BABAR EXPERIMENT

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

arxiv:hep-ex/ v2 25 Oct 2005

An Elementary Introduction to Partial-Wave Analyses at BNL Part I

Measurement of Фs, ΔΓs and Lifetime in Bs J/ψ Φ at ATLAS and CMS

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Analysis of diffractive dissociation of exclusive. in the high energetic hadron beam of the COMPASS-experiment

J PC =1 - - states spectroscopy, study of their decays Calculation of hadronic contributions into a µ and α QED (m Z )

Dalitz plot analysis in

Dalitz Plot Analyses of B D + π π, B + π + π π + and D + s π+ π π + at BABAR

Charmonium Radiative Transitions

The Quest for Light Scalar Quarkonia from elsm

A Program of Hadron Spectroscopy

BABAR Results on Hadronic Cross Sections with Initial State Radiation (ISR)

Complex amplitude phase motion in Dalitz plot heavy meson three body decay.

Hadronic decays of the omega meson measured with WASA-at-COSY

D D Shape. Speaker: Yi FANG for BESIII Collaboration. The 7th International Workshop on Charm Physics May 18-22, 2015 Detroit, Michigan

The η-meson Decay Program at WASA-at-COSY

Relative branching ratio measurements of charmless B ± decays to three hadrons

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Recent V ub results from CLEO

Studies of pentaquarks at LHCb

Search for new physics in three-body charmless B mesons decays

Hadron spectroscopy in photo- and hadroproduction at COMPASS p. 1/13

Longitudinal Phasespace Analysis. A technique to apply kinematic cuts to enhance different reaction mechanisms. Derek Glazier University of Glasgow

Coherent photo-production of ρ 0 mesons in ultra-peripheral Pb-Pb collisions at the LHC measured by ALICE

Recent Results on J/ψ, ψ and ψ Decays from BESII

* ) B s( * ) B s( - 2 -

Charmless hadronic B decays at BABAR

Massimo Venaruzzo for the ALICE Collaboration INFN and University of Trieste

Three-body final state interaction and its applications. Peng Guo. Indiana Univ.-Bloomington & JLab Physics Analysis Center

Amplitude Analysis An Experimentalists View

Bottomonium results at Belle

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

arxiv:hep-ex/ v2 3 Dec 1999

D0 and D+ Hadronic Decays at CLEO

Charm Review (from FOCUS and BaBar)

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

MENU Properties of the Λ(1405) Measured at CLAS. Kei Moriya Reinhard Schumacher

Precision measurement of kaon radiative decays in NA48/2

Hadron Spectroscopy at BESIII

The X(3872) at the Tevatron

Evidence for D 0 - D 0 mixing. Marko Starič. J. Stefan Institute, Ljubljana, Slovenia. March XLII Rencontres de Moriond, La Thuile, Italy

Study of the Electromagnetic Dalitz decay of J/ψ e + e - π 0

Amplitude Analysis An Experimentalists View. K. Peters. Part II. Kinematics and More

Review of Light Hadron Spectra at BESIII

Hadron Spectroscopy, exotics and Bc physics at LHCb. Biplab Dey

D Hadronic Branching Fractions and DD Cross Section at ψ (3770) from CLEO c

Measurement of Observed Cross Sections for e + e hadrons non-d D. Charmonium Group Meeting

New B D Result from. Thomas Kuhr LMU Munich FPCP

Measuring α with B ρρ and ρπ

Neutral meson and direct photon measurement in pp and Pb Pb collisions at midrapidity with the ALICE experiment at the LHC

KLOE results on Scalar Mesons (II)

Status / Hadron Spectroscopy at COMPASS

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

High Energy Cosmic Ray Interactions

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Amplitude Analysis An Experimentalists View. K. Peters. Part V. K-Matrix

Lattice Methods for Hadron Spectroscopy: new problems and challenges

Triangle singularities in light axial vector meson decays

arxiv: v1 [hep-ph] 16 Oct 2016

Transcription:

Introduction to ROOTPWA Sebastian Neubert Physik Department E18 Technische Universität München INT, Seattle November 2009 supported by: Maier-Leibnitz-Labor der TU und LMU München, Cluster of Excellence: Origin and Structure of th e Universe, BMBF, EU Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 1 / 20

Step 1: Partial Wave Decomposition Mass independent fit Probability to find N events in a given bin: L " # NN N e N! {z } Poisson NY» σ(τ n) R σ(τ)η(τ)pqdτ n=0 {z } Normalized XSection Cross section normalization takes finite acceptance η(τ) into account. L N N» Z exp N! N N Y N σ(τ)η(τ)pqdτ n=0 σ(τ n) 2 step procedure 1 Bin data in kinematical variable (e.g. m X ) Mass independent fit V i (m X ) 2 Extract resonance parameters from V i (m X ) Mass dependent fit Extended Log-likelihood NX ln L = ln X n=1 i,j Subtleties omitted from the discussion: Rank Reflectivity basis Positivity constraints V i V j ψ i (τ n)ψ j (τ n) N X i,j V i V j Ψ ij Z Ψ ij = ηψ i ψ j Normalization integral (Phase space Monte Carlo) Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 2 / 20

Step 1: Partial Wave Decomposition Mass independent fit Probability to find N events in a given bin: " # NN NY» N σ(τ L 3π e invariant n) R Mass 2 step procedure N! n=0 σ(τ)η(τ)pqdτ {z } {z } 1 Bin data in kinematical variable 3 Poisson Normalized 10 XSection (e.g. m X ) 3.5 a Cross section normalization takes finite acceptance 2 (1320) COMPASS 2004 Mass independent fit V i (m X ) η(τ) into account. 3 2 - π - Pb Extract π π - π + Pbresonance parameters 2 2 0.1 < t < from 1.0 GeVV /c i (m X ) L N N» Z 2.5 a 1 (1260) Y N Mass dependent fit exp σ(τ)η(τ)pqdτ σ(τ N! N N 2 n) π 2 (1670) n=0 1.5 Extended Log-likelihood1 Subtleties omitted from the discussion: Rank Reflectivity basis Positivity constraints ) 2 Events / (5 MeV/c preliminary 0.5 NX ln L = ln X V i Vj ψ i (τ n)ψ j (τ n) N X 0 V i Vj Ψ 0 0.5 1 1.5 2 2.5 3 ij n=1 i,j i,j 2 Mass of π - π - π + System (GeV/c ) Z Ψ ij = ηψ i ψ j Normalization integral (Phase space Monte Carlo) Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 2 / 20

Setp 2: Extracting Resonance Parameters The mass dependent PWA fit Spin density matrix given in mass bins (from step 1) 2 step procedure ρ ij (m X ) = N η V i (m X )V j (m X ) Ψ ij (m x ) Contains intensities ρ ii interference terms ρ ij i j 1 Bin data in kinematical variable (e.g. m X ) Mass independent fit V i (m X ) 2 Extract resonance parameters from V i (m X ) Mass dependent fit Breit-Wigner parameterization of spin density matrix ρ ij (m X ) = X k C ɛ ir BW k (m X )!! X Cjl ɛ BW l (m X ) l Coherent background added to some waves Fit results (red graphs in following plots): Intensities Phase motion from interference terms Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 3 / 20

PWA Results 2 ++ 1 + ρπd ) 2 Intensity / (40 MeV/c 10 12 ++ + 2 1 ρπ D 10 8 6 4 2 3 preliminary COMPASS 2004 - π - Pb π π - π + Pb 2 2 0.1 < t < 1.0 GeV /c 0 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2 Mass of π - π - π + System (GeV/c ) Phase (degrees) 0-50 -100-150 -200 - π - Pb π π - π + Pb 2 2 0.1 < t < 1.0 GeV /c COMPASS 2004 preliminary -250 ++ + ++ + φ (2 1 ρπ D - 1 0 ρπ S) -300 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2 Mass of π - π - π + System (GeV/c ) Two Breit-Wigners needed to describe 2 ++ 1 + ρπd phase motion: BW1 for a 2 (1320) + BW2 for a 2 (1700) M = (1.321 ± 0.001 +0.000 +0.002 0.007 ) GeV, Γ = (0.110 ± 0.002 0.015 ) GeV a 2 (1700) parameters fixed to PDG values: M = 1.732 GeV, Γ = 0.194 GeV Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 4 / 20

Mass Independent Partial Wave Fit What do we need? Components of the LogLikelihood function: Production amplitudes Spin density matrix: ρ ɛ ij = X r T ɛ ir T ɛ jr Normalized decay amplitudes: ψ i ɛ (τ) = ψi ɛ q (τ) R ψ ɛ i (τ ) 2 dτ Phase space integrals (with acceptance): Z IA ɛ ij = ψ i ɛ (τn) ψ j ɛ (τn) Acc(τ)dτ j 0 Acc(τ) = 1 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 5 / 20

Mass Independent Partial Wave Fit What do we need? Components of the LogLikelihood function: Decay amplitudes Kinematics Production amplitudes Spin density matrix: ρ ɛ ij = X r T ɛ ir T ɛ jr Normalized decay amplitudes: ψ i ɛ (τ) = ψi ɛ q (τ) R ψ ɛ i (τ ) 2 dτ Phase space integrals (with acceptance): Z IA ɛ ij = ψ i ɛ (τn) ψ j ɛ (τn) Acc(τ)dτ j 0 Acc(τ) = 1 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 5 / 20

Mass Independent Partial Wave Fit What do we need? Components of the LogLikelihood function: Decay amplitudes Kinematics Spin density matrix (fit parameters) Production amplitudes Spin density matrix: ρ ɛ ij = X r T ɛ ir T ɛ jr Normalized decay amplitudes: ψ i ɛ (τ) = ψi ɛ q (τ) R ψ ɛ i (τ ) 2 dτ Phase space integrals (with acceptance): Z IA ɛ ij = ψ i ɛ (τn) ψ j ɛ (τn) Acc(τ)dτ j 0 Acc(τ) = 1 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 5 / 20

Mass Independent Partial Wave Fit What do we need? Components of the LogLikelihood function: Decay amplitudes Kinematics Spin density matrix (fit parameters) Coherent sum over waves Production amplitudes Spin density matrix: ρ ɛ ij = X r T ɛ ir T ɛ jr Normalized decay amplitudes: ψ i ɛ (τ) = ψi ɛ q (τ) R ψ ɛ i (τ ) 2 dτ Phase space integrals (with acceptance): Z IA ɛ ij = ψ i ɛ (τn) ψ j ɛ (τn) Acc(τ)dτ j 0 Acc(τ) = 1 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 5 / 20

Mass Independent Partial Wave Fit What do we need? Components of the LogLikelihood function: Decay amplitudes Kinematics Spin density matrix (fit parameters) Coherent sum over waves Incoherent sum over reflectivities Production amplitudes Spin density matrix: ρ ɛ ij = X r T ɛ ir T ɛ jr Normalized decay amplitudes: ψ i ɛ (τ) = ψi ɛ q (τ) R ψ ɛ i (τ ) 2 dτ Phase space integrals (with acceptance): Z IA ɛ ij = ψ i ɛ (τn) ψ j ɛ (τn) Acc(τ)dτ j 0 Acc(τ) = 1 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 5 / 20

Mass Independent Partial Wave Fit What do we need? Components of the LogLikelihood function: Decay amplitudes Kinematics Acceptance corrected Phase space integral Spin density matrix (fit parameters) Coherent sum over waves Incoherent sum over reflectivities Production amplitudes Spin density matrix: ρ ɛ ij = X r T ɛ ir T ɛ jr Normalized decay amplitudes: ψ i ɛ (τ) = ψi ɛ q (τ) R ψ ɛ i (τ ) 2 dτ Phase space integrals (with acceptance): Z IA ɛ ij = ψ i ɛ (τn) ψ j ɛ (τn) Acc(τ)dτ j 0 Acc(τ) = 1 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 5 / 20

ROOTPWA Organization of the Toolbox An Overview Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 6 / 20

Mass Independent Fitting Workflow A more detailed Overview Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 7 / 20

Partial Wave Amplitudes Specification, Calculation, Integration Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 8 / 20

Amplitude Generation Tools and Workflow Workflow: 1 Generate Amplitude Specification with keygen & makekey.c 2 Put keyfiles into a waveset directory (see trunk/keyfiles 3 Setup directory structure for mass-bins and provide input events 4 Use scripts trunk/scripts/buildbincluster etc to calculate amplitudes and integrals for the mass-bins (in parallel) Here BNL gamp and int is used. Time consuming for complex final states! Use cluster use directory structures! Small tools: trunk/scripts/checkbins: check status of production trunk/scripts/checkset: check if all waves from a given set have been produced trunk/scripts/checkwaves: compare contents of two amplitude directories Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 9 / 20

Amplitude Calculations with makekey and gamp Amplitude building, reflectivity basis and symmetrization keygen and makekey.c provide tools for Comfortable Wave specification Automatic gamp keyfile generation (with wave name conventions) Only multi-pion final states supported (for now!) Automatic transformation to reflectivity basis Automatic bose symmetrization Reflectivity basis A is basic amplitude calculated by gamp in standard basis (m [ l.. + l]). A(l, m) refl (l, m, ɛ) = θ [A(l, m) r A(l, m)] r = ɛ P( ) J m ( 1 : m = 0 θ = 2 1 : else 2 Bose Symmetrization Pion permutations: P(π+) = {(12), (21)} P(π ) = {(123), (132), (213), (231), (312), (321)} The final amplitude thus consists of twelve terms: A final (J, P, C, s, l, m, ɛ) = 1 2 X P(π+) 1 6 X P(π ) A P (l, m, ɛ) Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 10 / 20

Sample keyfile generation with makekey.c Example wave Decay: h i J PC (1 ++ )M ɛ (0 + ) ρ 0 l=0 π s=1 h i ρ 0 (1 ) π 1 π 0 + Example wave spec with makekey3.c: groot >ProcessLine ( ".L keygen.c+" ) ; partkey p1 ( "pi-" ) ; partkey p2 ( "pi-" ) ; partkey p3 ( "pi+" ) ; / / name iso1 iso2 l partkey rho1 ( "rho(770)",&p1,&p3, 1 ) ; i n t l =0; i n t s =1; i n t j =1; i n t m=0; i n t eps =1; / / r e f l e c t i v i t y i n t p=1; partkey X( "X",& rho1,&p2, l, s ) ; wavekey mykey ( j, p,m, eps,&x ) ; / / w r i t e a k e y f i l e with a p p r o p r i a t e name mykey. w r i t e ( ) ; 1-1++0+rho770_01_pi-.key :... 1.000 ( 0.7071 ( 0.5000 ( J = 2 P = 1 M = 0 { rho (770){ } pi [2] l =0 s=2 } + J = 2 P = 1 M = 0 {.......... } ) + 0.5000 ( J = 2 P = 1 M = 0 { rho (770){ } pi [1] l =0 s=2 } + J = 2 P = 1 M = 0 {.......... } +..... pi [1] p i + [ 1 ] l =2 pi [2] p i + [ 1 ] l =2 Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 11 / 20

makekey.c script for 5π wave: groot >ProcessLine ( ".L keygen.c+" ) ; partkey p1 ( "pi+" ) ; partkey p2 ( "pi-" ) ; partkey p3 ( "pi+" ) ; partkey p4 ( "pi-" ) ; partkey p5 ( "pi-" ) ; / / name iso1 iso2 l partkey sigma1 ( "sigma",&p1,&p2, 0 ) ; partkey rho1 ( "rho(770)",&p3,&p4, 1 ) ; partkey pi13 ( "pi(1300)",&p5,& rho1, 1 ) ; i n t l =2; i n t s =0; i n t j =2; i n t m=0; i n t eps =1; / / r e f l e c t i v i t y i n t p= 1; partkey X( "X",&sigma1,& pi13, l, s ) ; wavekey mykey ( j, p,m, eps,&x ) ; Running gamp with keyfile over event data produces amplitude file: 1-2-+0+sigma 20 pi1300=pi- 1 rho770.amp (0.113597,0.181187) ( 0.0167798, 0.274103) (0.0328174,0.301535) (0.0213293,0.0563232) (0.132119,0.314778) ( 0.314582,0.127712) ( 0.0411693, 0.114433) ( 0.088028,0.104986) (0.0582313,0.301016) (0.138467,0.254906) (0.182473,0.224451) (0.152914,0.322746) ( 0.0215327, 0.0734574) ( 0.0711122, 0.164464) ( 0.0391303,0.110012)......... / / w r i t e the key f i l e : mykey. w r i t e ( ) ; keyfile: 1-2-+0+sigma 20 pi1300=pi- 1 rho770.key Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 12 / 20

Data Organization One directory per Mass-Bin (Folder-Name=Mass in MeV/c 2 Contains data, mc and amplitudes (amps are only calculated once!) Fitting results are written to separate directory structure! Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 13 / 20

Plotting Results with rootpwa using ROOT Example ROOT-commands: / / pwa i s a tree of TFitBin objects pwa >Draw ( "intens():_mass" ) / / Sums over a l l waves pwa >Draw ( "intens(1):_mass" ) / / Single Wave i n t e n s i t y pwa >Draw ( "intens(\"1++\"):_mass" ) / / 1++ Spin t o t a l pwa >Draw ( "intens(\"1++\"):err(\"1++\"):_mass", "", "goff" ) TGraphErrors g=new TGraphErrors ( pwa >GetSelectedRows ( ), pwa >GetV3 ( ), / / mass pwa >GetV1 ( ), / / i n t e n s i t y 0,pwa >GetV2 ( ) ) ; / / e r r o r Plotting scripts in src/rootscripts All ROOT facilities can be used! Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 14 / 20

Open Source Project Status https://rootpwa.svn.sourceforge.net/svnroot/rootpwa/trunk/rootpwa Open / Ongoing Subprojects Partial wave event generator Relativistic amplitudes GPU support Unitarity corrections Waveset genetics Markov Chain Likelihood sampler Mass dependent fit Kinematics plotter Predict Licence & Reference ROOTPWA is distributed under the GPL For the moment: reference the repository homepage Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 15 / 20

Biggest Systematics: The Problem of the Waveset Selection Description of possible Decay Amplitudes J PC M ɛ L Isobar π Thresh. [GeV] 0 + 0 + S f 0 π 1.40 0 + 0 + S (ππ) sπ - 0 + 0 + P ρπ - 1 + 1 + P ρπ - 1 ++ 0 + S ρπ - 1 ++ 0 + P f 2 π 1.20 1 ++ 0 + P (ππ) sπ 0.84 1 ++ 0 + D ρπ 1.30 1 ++ 1 + S ρπ - 1 ++ 1 + P f 2 π 1.40 1 ++ 1 + P (ππ) sπ 1.40 1 ++ 1 + D ρπ 1.40 2 + 0 + S f 2 π 1.20 2 + 0 + P ρπ 0.80 2 + 0 + D f 2 π 1.50 2 + 0 + D (ππ) sπ 0.80 2 + 0 + F ρπ 1.20 2 + 1 + S f 2 π 1.20 2 + 1 + P ρπ 0.80 2 + 1 + D f 2 π 1.50 2 + 1 + D (ππ) sπ 1.20 2 + 1 + F ρπ 1.20 J PC M ɛ L Isobar π Thresh. [GeV] 2 ++ 1 + P f 2 π 1.50 2 ++ 1 + D ρπ - 3 ++ 0 + S ρ 3 π 1.50 3 ++ 0 + P f 2 π 1.20 3 ++ 0 + D ρπ 1.50 3 ++ 1 + S ρ 3 π 1.50 3 ++ 1 + P f 2 π 1.20 3 ++ 1 + D ρπ 1.50 4 + 0 + F ρπ 1.20 4 + 1 + F ρπ 1.20 4 ++ 1 + F f 2 π 1.60 4 ++ 1 + G ρπ 1.64 1 + 0 P ρπ - 1 + 1 P ρπ - 1 ++ 1 S ρπ - 2 + 1 S f 2 π 1.20 2 ++ 0 P f 2 π 1.30 2 ++ 0 D ρπ - 2 ++ 1 P f 2 π 1.30 FLAT Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 16 / 20

Biggest Systematics: The Problem of the Waveset Selection Description of possible Decay Amplitudes J PC M ɛ L Isobar π Thresh. [GeV] 0 + 0 + S f 0 π 1.40 0 + 0 + S (ππ) sπ - 0 + 0 + P ρπ - 1 + 1 + P ρπ - 1 ++ 0 + S ρπ - 1 ++ 0 + P f 2 π 1.20 1 ++ 0 + P (ππ) sπ 0.84 1 ++ 0 + D ρπ 1.30 1 ++ 1 + S ρπ - 1 ++ 1 + P f 2 π 1.40 1 ++ 1 + P (ππ) When sπ to stop? 1.40 1 ++ 1 + D ρπ 1.40 2 + 0 + S f 2 π 1.20 2 + 0 + P ρπ 0.80 2 + 0 + D f 2 π 1.50 2 + 0 + D (ππ) sπ 0.80 2 + 0 + F ρπ 1.20 2 + 1 + S f 2 π 1.20 2 + 1 + P ρπ 0.80 2 + 1 + D f 2 π 1.50 2 + 1 + D (ππ) sπ 1.20 2 + 1 + F ρπ 1.20 How to choose this? 3π system is actually well studied J PC M ɛ L Isobar π Thresh. [GeV] 2 ++ 1 + P f 2 π 1.50 2 ++ 1 + D ρπ - 3 ++ 0 + S ρ 3 π 1.50 3 ++ 0 + P f 2 π 1.20 3 ++ 0 + D ρπ 1.50 3 ++ 1 + S ρ 3 π 1.50 3 ++ 1 + P f 2 π 1.20 3 ++ 1 + D ρπ 1.50 4 + 0 + F ρπ 1.20 4 + 1 + F ρπ 1.20 4 ++ 1 + F f 2 π 1.60 4 ++ 1 + G ρπ 1.64 What about new final states (multiparticle final states) Which waves should contribute? Adding more waves I can fit everything 1 + 0 P ρπ - 1 + 1 P ρπ - 1 ++ 1 S ρπ - 2 + 1 S f 2 π 1.20 2 ++ 0 P f 2 π 1.30 2 ++ 0 D ρπ - 2 ++ 1 P f 2 π 1.30 FLAT Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 16 / 20

Outlook: Waveset Genetics Available, needs Testing! Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 17 / 20

How to Evaluate the Goodness of a Fit? Problem: Model Complexity More waves (= model components, fit parameters) generally lead to better likelihood Danger of Overfitting Bayes theorem for the model probability: P(M k Data) = P(Data M k )P(M k ) Pr P(Data Mr )P(Mr ) (1) The evidence is an integral over the parameter space: Z P(Data M k ) = P(Data A k, M k ) P(A k M k )da k {z } (2) =L MacKay s Occam factor method: Approximate the integral by Laplace s method: q P(Data M k ) P(Data A k ML, M k ) P(A k M k ) (2π) d C A D {z } Occam factor For a constant prior: q q (2π) d C A D P(A M k ) (2π) d C A D = = V A D V V A (3) Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 18 / 20

Unitary Analytic Isobar Model a la Aitchison / Brehm Could rescattering effects fake a signal? 3π-system: σρ recoupling in J PC = 1 +. Simplified parameterization! Brehm Phys. Rev. D25(1982)3069 Effect seems to be important down in the a 1 region for ɛρ and ɛɛ rescattering. How about the 1 wave? we/you(?) just have to try it! Couple the additional Isobars (f 2, ρ 3, f 0 (980)) Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 19 / 20

Unitary Analytic Isobar Model a la Aitchison / Brehm Could rescattering effects fake a signal? 3π-system: σρ recoupling in J PC = 1 +. Simplified parameterization! Decay Amplitude ψ(τ) X λ D J mλ (Φ, Θ, 0)Ds λ0 (φ, θ, 0)f aλ(ω) Unitarity Corrections: f aλ (ω) Q isobar ls (ω) g a {z } known g a = g a(ω, m X ) Brehm Phys. Rev. D25(1982)3069 Effect seems to be important down in the a 1 region for ɛρ and ɛɛ rescattering. How about the 1 wave? we/you(?) just have to try it! Couple the additional Isobars (f 2, ρ 3, f 0 (980)) Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 19 / 20

Summary ROOTPWA available from sourceforge.net https://sourceforge.net/projects/rootpwa/develop C++ code + bash-shell + ROOT scripts Mass independent fitting Flexible partial wave specification in the Isobar model BNL code: t- and s-channel Extensible parameterizations of isobars All final states possible (including Baryons) Multi-pion FS: quick specification with ROOT-script Further amplitude calculators can easily be incorporated ROOT used for Fitting engine (different Minimizers) Plotting and result analysis Interesting projects waiting for collaborators! Sebastian Neubert (TUM E18) ROOTPWA Nov 2009 20 / 20