Introduction à la mécanique quantique. Emmanuel Fromager

Similar documents
Exercise sheet n Compute the eigenvalues and the eigenvectors of the following matrices. C =

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Introduction to density-functional theory. Emmanuel Fromager

Apprentissage automatique Méthodes à noyaux - motivation

It s a Small World After All Calculus without s and s

Introduction 1. Partie II : Cosmologie

Apprentissage automatique Machine à vecteurs de support - motivation

DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS

CHEM 545 Theory and Practice of Molecular Electronic Structure. Anna I. Krylov. DON T PANIC.

Optimisation par réduction d incertitudes : application à la recherche d idéotypes

Φ B. , into the page. 2π ln(b/a).

Second quantization. Emmanuel Fromager

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure

ANNALES SCIENTIFIQUES L ÉCOLE NORMALE SUPÉRIEURE. Cluster ensembles, quantization and the dilogarithm. Vladimir V. FOCK & Alexander B.

Interactions. - Reif (Berkeley lecture): Statistical and Thermal Physics - Diu, Guthmann, Lederer, Roulet: Physique statistique Phase transition:

Linear response time-dependent density functional theory

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

A Singularity-Free Method for the Time-Dependent Schrödinger Equation for Nonlinear Molecules

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

A MODELING OF MICHELSON -MORLEY INTERFEROMETER IN A PLATONIC FOUR-DIMENSIONAL SPACE

TOLERABLE HAZARD RATE FOR FUNCTION WITH INDEPENDENT SAFETY BARRIER ACTING AS FAILURE DETECTION AND NEGATION MECHANISM

Additional background material on the Nobel Prize in Chemistry 1998

Statistics of extreme values of stochastic processes generated by rotating machines and associated probabilistic reliability model

DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INVESTIGATIONS. INTRODUCTION.

Counterexample to the infinite dimensional Carleson embedding theorem

Apprentissage automatique Classification linéaire - fonction discriminante

arxiv:cs/ v1 [cs.dm] 21 Apr 2005

Uncoupled variational formulation of a vector Poisson problem Jiang Zhu 1, Luigi Quartapelle 2 and Abimael F. D. Loula 1 Abstract { This Note provides

Modélisation & simulation de la génération de champs magnetiques par des écoulements de métaux liquides. Wietze Herreman

The chemistry between Newton and Schrodinger

ON THE EVOLUTION OF COMPACTLY SUPPORTED PLANAR VORTICITY

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

THE RESOLUTION OF SAFFARI S PHASE PROBLEM. Soit K n := { p n : p n (z) = n

Q U A N T U M M E C H A N I C S : L E C T U R E 6

Content. Content. Introduction. T. Chateau. Computer Vision. Introduction. Outil projectif permettant l acquisition d une scène 3D sur un plan 2D

Boutet de Monvel s contributions to the theory of Toeplitz operators

Thèse de Doctorat. Donata Puplinskaitė. Agrégation de processus autorégressifs et de champs aléatoires de variance finie ou infinie

MGDA II: A direct method for calculating a descent direction common to several criteria

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2

Waves and the Schroedinger Equation

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Méthodes d énergie pour le potentiel de double couche: Une inégalité de Poincaré oubliée.

Q U A N T U M M E C H A N I C S : L E C T U R E 5

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

An explicit formula for ndinv, a new statistic for two-shuffle parking functions

Quasi-invariant measures on the path space of a diffusion

Atelier de formation INSERM #209. Avancées statistiques récentes en analyse causale. Recent advances in statistics for causal analysis. Welcome!

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

NORME INTERNATIONALE INTERNATIONAL STANDARD

A generalization of the classical Cesàro Volterra path integral formula

BAVER OKUTMUSTUR. pour l obtention du titre de. Sujet : MÉTHODES DE VOLUMES FINIS POUR LES LOIS DE CONSERVATION HYPERBOLIQUES NON-LINÉAIRES

dt r r r V(x,t) = F(x,t)dx

Observation theory of moving objects

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty.

Déstabilisation par un processus d advection dans un laser: défauts spectro temporels et structures induites par bruit

A new lack-of-fit test for quantile regression models using logistic regression

Statistiques en grande dimension

Best linear unbiased prediction when error vector is correlated with other random vectors in the model

RAIRO MODÉLISATION MATHÉMATIQUE

CSO 202A. Atoms Molecules and Photons

Quantum Mechanics Exercises and solutions

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS

arxiv:cond-mat/ v1 [cond-mat.other] 1 Jun 2004

Vibration damping in polygonal plates using the acoustic black hole effect: model based on the image source method

Wave Phenomena Physics 15c

The Schrödinger Equation

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

Stokes-Darcy coupling for periodically curved interfaces

David J. Starling Penn State Hazleton PHYS 214

Passage to the limit in Proposition I, Book I of Newton s Principia

CURRICULUM VITÆ. Mathematical interests : Number Theory, Logic (Model Theory), Algebraic Geometry, Complex and p-adic Analysis.

Extending Zagier s Theorem on Continued Fractions and Class Numbers

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger

Transfer matrix in one dimensional problems

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

Journal de la Société Française de Statistique Vol. 153 No. 3 (2014) Interval reliability for semi-markov systems in discrete time

Stable bundles on non-algebraic surfaces giving rise to compact moduli spaces

Some consequences of the analytical theory of the ferromagnetic hysteresis

CHE3935. Lecture 2. Introduction to Quantum Mechanics

Mini cours sur les mesures de Gibbs I

Γ -convergence and Sobolev norms

The use of L-moments for regionalizing flow records in the Rio Uruguai basin: a case study

The SCFD task: Performance of a Nb3Sn Superconducting Quadrupole in an External Solenoid Field

CHM320 EXAM #2 USEFUL INFORMATION

présentée en vue d obtention du délivré par l Université Toulouse III - Paul Sabatier Spécialité : Mathématiques Appliquées par Raymond EL HAJJ

C. Chandre 1, A. Kamor 1,2, F. Mauger 3, T. Uzer 2. Centre de Physique Théorique, CNRS, Aix-Marseille Université

A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS (MCA) THAN THAT OF SPECIFIC MCA. Odysseas E. MOSCHIDIS 1

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Interaction of Radiation with Matter. Particles: probes. Two process of interaction. Absorption and scattering. k d 2q. I k i

Ageostrophic instabilities of a front in a stratified rotating fluid

Dynamic response of a beam on a frequencyindependent damped elastic foundation to moving load

( ) 2 ( kg) ( 9.80 m/s 2

Two dimensional oscillator and central forces

Cartesian closed 2-categories and rewriting

5.1 Classical Harmonic Oscillator

THE OLYMPIAD CORNER No. 305

Mesurer des déplacements ET des contraintes par correlation mécanique d images

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

Adsorption of chain molecules with a polar head a scaling description

Transcription:

ECPM, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS http://quantique.u-strasbg.fr/doku.php?id=fr:start ECPM, Strasbourg, France

Chimie... ECPM, Strasbourg, France Page 2

ECPM, Strasbourg, France Page 3... quantique ********************************************************************** C PURPOSE: C calculate the second-order MP-SRDFT correction D^{(2),SRDFT} to the density matrix C from the "long-range" second order contribution D^{(2),LR}, which is C the standard MP2 correction to the density matrix where HF-SRDFT C orbitals and epsilons are used and where 1/r12 is replaced by the C long-range interaction. C D^{(2),SRDFT} = sum^{+infty}_{n=0} F^{n}(D^{(2),LR}). C C The F operator is defined as follows : C C F : DMO (density matrix contribution) ---> F(DMO) (new density matrix contribution) C C i,j -> hole orbitals C r,s -> virtual orbitals C p,q -> hole or virtual orbitals C F(DMO)_{ri}= 2/(epsilon_i-epsilon_r) * C int dx dx' K_{Hxc}^{sr}(x,x')*Omega^{MO}_{ri}(x)*sum_{pq}(DMO)_{pq} * Omega^{MO}_{pq}(x'). C F(DMO)_{ir}=F(DMO)_{ri} C F(DMO)_{ij}=F(DMO)_{rs}=0 C K_{Hxc}^{sr}(x,x') is the second functional derivative of the SR Hxc functional C calculated at the HF-SRDFT density. C C input : DONE C output : DONE = sum^{+infty}_{n=0} F^{n}(DONE) C C********************************************************************** C /* Function getnormf */ FUNCTION GETNORMF(NFROZ,DONE,CMO,ORBEN,WRK,LFRSAV) #include <implicit.h> C DIMENSION DONE(NORBT,NORBT),NFROZ(8),ORBEN(*) DIMENSION CMO(*),WRK(*) C double precision matnormf C PARAMETER ( D1 = 1.0D0, D2 = 2.0D0 ) C DOUBLE PRECISION D2LRNORMF, FOPNORMF0, FOPNORMF1, FOPNORMF DOUBLE PRECISION FOPNORMF2 C

ECPM, Strasbourg, France Page 4

ECPM, Strasbourg, France Page 5

The Nobel Prize in Chemistry 1998 Walter Kohn John A. Pople Prize share: 1/2 Prize share: 1/2 Development of computational methods in chemistry awarded Researchers have long sought methods for understanding how bonds between the atoms in molecules function. With such methods it would be possible to calculate the properties of molecules and the interplay between them. The growth of quantum mechanics in physics at the beginning of the 1900s opened new possibilities, but applications within chemistry were long in coming. It was not practically possible to handle the complicated mathematical relations of quantum mechanics for such complex systems as molecules. Things began to move at the beginning of the 1960s when computers came into use for solving these equations and quantum chemistry (the application of quantum mechanics to chemical problems) emerged as a new branch of chemistry. As we approach the end of the 1990s we are seeing the result of an enormous theoretical and computational development, and the consequences are revolutionising the whole of chemistry. Walter Kohn and John Pople are the two most prominent figures in this process. W.Kohn's theoretical work has formed the basis for simplifying the mathematics in descriptions of the bonding of atoms, a prerequisite for many of today's calculations. J. Pople developed the entire quantum-chemical methodology now used in various branches of chemistry. ECPM, Strasbourg, France Page 6

The NobelShare Prize in Chemistry 2013 More The Nobel Prize in Chemistry 2013 More Share Martin Michael Levitt, Arieh Warshel The Nobel Prize Karplus, in Chemistry 2013 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/... Press Release Martin Karplus, Michael Levitt, Arieh Warshel 9 October 2013 Share Share More868 Share Share this: Share Share Share More868 Share Share this: Share Photo: A. Mahmoud Photo: A. Mahmoud The Nobel Prize in Chemistry 2013 Prize Chemistry share: 1/3 Prize share: 1/3 The Nobel Prize in 2013 Martin Karplus The Royal Swedish Academy of Sciences has decided award the Nobel Prize in Chemistry for 2013 to Martin to Karplus Michael Levitt Université de Strasbourg, France and Harvard University, Cambridge, MA, USA Michael Levitt Stanford University School of Medicine, Stanford, CA, USA and Arieh Warshel University of Southern California, Los Angeles, CA, USA for the Photo: development of multiscale models for complex chemical systems A. Mahmoud Martin Karplus Photo: A. Mahmoud Photo: A. Mahmoud Prize share: 1/3 Martin Karplus Michael Levitt Prize share: 1/3 Prize share: 1/3 1 Photo: of 2 A. Mahmoud Arieh Warshel The computer your Virgil in the world of atoms Chemists used to create models of molecules using plastic balls and sticks. Today, the modelling is carried out in computers. In the 1970s, Martin Karplus, Michael Levitt and Arieh Warshel laid the foundation for molecules. Itsinweakness, offered norelease way to simulate chemical reactions. For that purpose, chemists instead had to use The Nobel Prize Chemistry it2013 - Press http://www.nobelprize.org/nobel_prizes/chemistry/laureates/... the powerful programs that are used to understand and predict chemical processes. Computer models quantum physics. But such calculations required enormous computing power and could therefore only be carried out mirroring real life have become crucial for most advances made in chemistry today. for small molecules. Chemical reactions occur at lightning speed. In a fraction of a millisecond, electrons jump from one atomic to the other. This year s Nobel Laureates in chemistry took the best from both worlds and devised methods that use both classical Classical chemistry has a hard time keeping up; it is virtually impossible to experimentally map every little step in a and quantum physics. For instance, in simulations of how a drug couples to its target protein in the body, the computer chemical process. Aided by the methods now awarded with the Nobel Prize in Chemistry, scientists let computers unveil performs quantum theoretical calculations on those atoms in the target protein that interact with the drug. The rest of chemical processes, such as a catalyst s purification of exhaust fumes or the photosynthesis in green leaves. the large protein is simulated using less demanding classical physics. Photo: A. Mahmoud The work of Karplus, Levitt and Warshel is ground-breaking in that they managed to make Newton s classical physics Michael Levitt 1Photo: of 4 A. Mahmoud 12:22 Photo: A. Mahmoud Today the computer is just as important a tool1 for as the test tube. Simulations are so realistic that 30/09/14 they of 2chemists work side-by-side with the fundamentally different quantum physics. Previously, chemists had to choose to use either Prize share: 1/3 Arieh Warshel Michael Levitt predict the outcome of traditional experiments. or. The strength of classical physics was that calculations were simple and could be used to model really large Prize share: 1/3 30/09/1 Read more about this year's prize Popular Information Pdf 1 MB ECPM, Strasbourg, France Page 7

ECPM, Strasbourg, France Page 8 Oscillateur harmonique (ressort) unidimensionnel en mécanique classique On désigne par x = 0 la position de l extrémité M de masse m du ressort au repos Équations de Newton : m dv dt = F La force s exerçant sur M est une force de rappel F = k x e x et le mouvement s effectue suivant l axe des x soit v = dx dt e x La position de M à n importe quel instant t est déterminée par sa position dx dt à l instant initial t = 0 : 0 x(0) et sa vitesse x(t) = x(0) cos(ωt) + 1 dx ω dt sin(ωt) 0 k où ω = m.

ECPM, Strasbourg, France Page 9 Énergie en mécanique classique du point On dit qu une force F dérive d une énergie potentielle d interaction V (r) lorsque [ V F = V = x e x + V y e y + V ] z e z oscillateur harmonique : F = k x e x V (x) = 1 2 k x2 atome d hydrogène : la force d attraction exercée par le noyau (situé en r = 0) sur l électron à la position r s écrit F = e2 r 4πε 0 r 3 V (r) = e2 4πε 0 r Conservation de l énergie : d dt [ ] 1 2 mv2 + V (r) = 0 E(t) = 1 2 mv2 (t) + V (r(t)) = E(0) L énergie est donc une fonction de la position et de la vitesse initiales. Toutes les valeurs possibles de l énergie forment un continuum.

ECPM, Strasbourg, France Page 10 Dualité onde-corpuscule http://fr.wikipedia.org/wiki/fentes_de_young

ECPM, Strasbourg, France Page 11 Onde plane Une onde périodique dans le temps et l espace est décrite en mathématiques par la fonction d onde ( ) Ψ(r, t) = Ψ 0 e i k.r ωt où ω est la pulsation et k est le vecteur d onde de norme k = k. période temporelle T : Ψ (r, t + T ) = Ψ (r, t) T = 2π ω période spatiale λ (longueur d onde) : Ψ (r + λ k ) k, t = Ψ(r, t) λ = 2π k ( célérité (vitesse) de l onde : Ψ(r, t) = Ψ r + ωkdt ) k 2, t + dt v ϕ = ω k 2 k v ϕ = v ϕ = ω k

ECPM, Strasbourg, France Page 12 Notion d interférence Soient deux ondes spatiales périodiques Ψ 1 (x) = Ψ 0 e ikx et Ψ 2 (x) = Ψ 0 e ikx+iϕ où k > 0 et ϕ > 0. ( Notons que Ψ 1 (x) = Ψ 2 x ϕ ) ( = Ψ 2 x ϕ λ k 2π ondes Onde totale Ψ(x) = Ψ 1 (x) + Ψ 2 (x) partie réelle ) ϕ décrit le déphasage entre les deux Ψ Ψ 1 0 Ψ 2 x

ECPM, Strasbourg, France Page 13 ) Interférence constructive ( ϕ = 2πn avec n = 0, 1, 2,... partie réelle Ψ Ψ 2 1 0 x

ECPM, Strasbourg, France Page 14 ) Interférence destructive ( ϕ = (2n + 1)π avec n = 0, 1, 2,... partie réelle Ψ 1 0 Ψ x Ψ 2

ECPM, Strasbourg, France Page 15 Interprétation de l expérience des fentes de Young On suppose que l écran est à l infini (très éloigné des fentes) et θ est "petit" (sin θ θ). d Les deux ondes sont déphasées de ϕ 2π d λ θ Ψ(θ) 2 4Ψ 2 0 cos 2 ( π d λ θ )

Intensité lumineuse dans la direction θ Ψ(θ) 2 3λ 2d λ 2d 0 λ 2d 3λ 2d θ ECPM, Strasbourg, France Page 16

ECPM, Strasbourg, France Page 17 Intensité lumineuse dans la direction θ pour d = 0.01λ Ψ(θ) 2 0 θ

ECPM, Strasbourg, France Page 18 Intensité lumineuse dans la direction θ pour d = 5λ Ψ(θ) 2 0 θ

ECPM, Strasbourg, France Page 19 Intensité lumineuse dans la direction θ pour d = 20λ Ψ(θ) 2 0 θ

ECPM, Strasbourg, France Page 20 Mécanique ondulatoire Par analogie avec le champ électromagnétique dans le vide (qui est donc "libre"), on décrira en mécanique ondulatoire une particule libre de masse m et de vecteur vitesse v à l aide d une onde plane. La fonction d onde correspondante s écrit ( ) Ψ(r, t) = Ψ 0 e i k.r ωt Relations de Louis de Broglie : ω = E, k = p p est la quantité de mouvement de la particule : p = mv E est l énergie (ici cinétique) de la particule : E = 1 2 mv2 = p2 2m

ECPM, Strasbourg, France Page 21 Équation de Schrödinger pour la particule libre La fonction d onde associée à la particule libre s écrit finalement Ψ(r, t) = Ψ 0 e i (p.r p2 2m t ) Ψ(r, t) Elle vérifie donc i t = p2 2 Ψ(r, t) = 2m 2m [ p2 x 2 p2 y 2 p2 ] z 2 Ψ(r, t) }{{} 2 Ψ(r, t) x 2 + 2 Ψ(r, t) y 2 + 2 Ψ(r, t) z 2 = 2 Ψ(r, t) soit 2 Ψ(r, t) 2m 2 Ψ(r, t) = i t équation de Schrödinger pour la particule libre

ECPM, Strasbourg, France Page 22 Équations de Schrödinger dépendante et indépendante du temps Généralisation à une particule pour laquelle l énergie potentielle d interaction V (r) est non nulle (postulat) 2 Ψ(r, t) 2m 2 Ψ(r, t) + V (r) Ψ(r, t) = i t équation de Schrödinger dépendante du temps (ESDT) Séparation des variables d espace et du temps (solution stationnaire) : Ψ(r, t) = ϕ(r)e i E t E : énergie en mécanique ondulatoire Ψ(r, t) Comme i t = Eϕ(r)e i E t, il vient de l ESDT 2 2m 2 ϕ(r) + V (r) ϕ(r) = Eϕ(r) équation de Schrödinger indépendante du temps

ECPM, Strasbourg, France Page 23 Équation de Schrödinger indépendante du temps : exemples Il est important de réaliser qu il y a deux inconnues dans l équation de Schrödinger indépendante du temps : la fonction d onde spatiale ϕ(r) mais également l énergie associée E. Dès lors que la particule est confinée dans l espace (comme les électrons le sont dans les molécules du fait de l attraction nucléaire), l énergie E prend des valeurs discrètes. L énergie est alors quantifiée. Oscillateur harmonique quantique unidimensionnel : 2 2m d 2 ϕ(x) dx 2 + 1 2 kx2 ϕ(x) = Eϕ(x), E E n = (n + 1 ) ω où ω = 2 k m et n = 0, 1, 2,... Atome d hydrogène : 2 2m 2 ϕ(r) e2 4πε 0 ϕ(r) x 2 + y 2 + z 2 = Eϕ(r), E E n = E I n 2 où E I = me 4 2(4πε 0 ) 2 13.6 ev 2 et n = 1, 2, 3,...

ECPM, Strasbourg, France Page 24 Interprétation probabiliste de la fonction d onde On note dr = dx dy dz le volume infinitésimal d espace positionné en r Par analogie avec l onde lumineuse, la probabilité de présence de la particule à la position r s exprime comme suit dp(r) = ϕ(r) 2 dr = n(r)dr La quantité n(r) = ϕ(r) 2 = ϕ (r)ϕ(r) est la densité de probabilité de présence Condition de normalisation : R 3 dp(r) = 1 = R 3 ϕ(r) 2 dr où R 3 dr + dx + dy + dz

ECPM, Strasbourg, France Page 25 Interprétation probabiliste de la fonction d onde La position moyenne de la particule est définie comme suit : x = x dp(r) = x ϕ(r) 2 dr R 3 R 3 y = y dp(r) = y ϕ(r) 2 dr R 3 R 3 z = z dp(r) = z ϕ(r) 2 dr R 3 R 3 L impulsion moyenne est définie comme suit : p x = i ϕ (r) ϕ(r) R 3 x dr p y = i ϕ (r) ϕ(r) R 3 y dr p z = i ϕ (r) ϕ(r) R 3 z dr

ECPM, Strasbourg, France Page 26 Références Mécanique Quantique, Tomes I et II, C. Cohen-Tannoudji, B. Diu, et F. Laloë, Hermann (1973). Physique Statistique, B. Diu, C. Guthmann, D. Lederer, et B. Roulet, Hermann (1989).