PO with Modified Surface-normal Vectors for RCS calculation of Scatterers with Edges and Wedges

Similar documents
Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

CS348B Lecture 10 Pat Hanrahan, Spring 2004

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15,

Phong Model. Reflection Models

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

24-2: Electric Potential Energy. 24-1: What is physics

Exact Simplification of Support Vector Solutions

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Rotating Disk Electrode -a hydrodynamic method

Impact of Polarimetric Dimensionality of Forest Parameter Estimation by Means of Polarimetric SAR interferometry

UNIVERSITÀ DI PISA. Math thbackground

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

Physics 202, Lecture 2. Announcements

Physics Exam 3

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Chapter Fifiteen. Surfaces Revisited

8 Baire Category Theorem and Uniform Boundedness

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

2 dependence in the electrostatic force means that it is also

3.1 Electrostatic Potential Energy and Potential Difference

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Chapter 3 Vector Integral Calculus

Isotope Effect in Nuclear Magnetic Resonance Spectra of Germanium Single Crystals.

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation

PHYS 2421 Fields and Waves

Integral Expression of EM Fields Summary

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

Chapter 2. A Brief Review of Electron Diffraction Theory

Definition: The radiant (luminous) intensity is the power per unit solid angle from a point. CS348B Lecture 5 Pat Hanrahan, Spring 2000

Large scale magnetic field generation by accelerated particles in galactic medium

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

19 The Born-Oppenheimer Approximation

Computational models, algorithms & computer codes in accelerator physics. Valentin Ivanov Stanford Linear Accelerator Center 23 February 2006

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

3. A Review of Some Existing AW (BT, CT) Algorithms

Slide 1. Quantum Mechanics: the Practice

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

11/13/ LASER Physics. Light Amplification and Inversion. Outline: Biomedical Optics LASER. Atomic Energy States: 2 Level System

Khintchine-Type Inequalities and Their Applications in Optimization

ECE 107: Electromagnetism

Antennas & Propagation

Transport Coefficients For A GaAs Hydro dynamic Model Extracted From Inhomogeneous Monte Carlo Calculations

THE TIME-DEPENDENT CLOSE-COUPLING METHOD FOR ELECTRON-IMPACT DIFFERENTIAL IONIZATION CROSS SECTIONS FOR ATOMS AND MOLECULES

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 23,

Application of Complex Vectors and Complex Transformations in Solving Maxwell s Equations

Amplifier Constant Gain and Noise

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Retrieval of three-dimensional distribution of rainfall parameters for rain attenuation correction using multi-parameter radar

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

Energy in Closed Systems

Review of Vector Algebra and Vector Calculus Operations

ELECTRIC FIELD NEAR BUNDLE CONDUCTORS

Announcements. Stereo (Part 3) Summary of Stereo Constraints. Features on same epipolar line. Stereo matching. Truco Fig. 7.5

Detection and Estimation Theory

Analytical Formulas for the Drain Current of Silicon Nanowire MOSFET

Broadband Noise Predictions Based on a New Aeroacoustic Formulation

Nuclear Medicine Physics 02 Oct. 2007

Module 05: Gauss s s Law a

A Study about One-Dimensional Steady State. Heat Transfer in Cylindrical and. Spherical Coordinates

LETTER A Mathematical Proof of Physical Optics Equivalent Edge Currents Based upon the Path of Most Rapid Phase Variation

Part V: Velocity and Acceleration Analysis of Mechanisms

Velocimetry Techniques and Instrumentation

THE MANY-BODY PROBLEM

Implementation in the ANSYS Finite Element Code of the Electric Vector Potential T-Ω,Ω Formulation

Unconventional double-current circuit accuracy measures and application in twoparameter

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

Amplitude and Phase Fluctuations for Gravitational Waves Propagating through Inhomogeneous Mass Distribution in the Universe

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29,

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

3. Magnetostatic fields

The geometric construction of Ewald sphere and Bragg condition:

1 Fundamental Solutions to the Wave Equation

PY208 Matter & Interactions Final Exam S2005

Excellent web site with information on various methods and numerical codes for scattering by nonspherical particles:

Measurement of the normal acoustic impedance using beamforming method

THE REGRESSION MODEL OF TRANSMISSION LINE ICING BASED ON NEURAL NETWORKS

Dirichlet Mixture Priors: Inference and Adjustment

4 Recursive Linear Predictor

Coarse Mesh Radiation Transport Code COMET Radiation Therapy Application*

Note: Please use the actual date you accessed this material in your citation.

6.6 The Marquardt Algorithm

Frequency-Domain Analysis of Transmission Line Circuits (Part 1)

Chapter 23: Electric Potential

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

Gauss Law. Physics 231 Lecture 2-1

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS

Chap 5. Circular Motion: Gravitation

Topic 7: Electrodynamics of spinning particles Revised Draft

Written as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

Multistage Median Ranked Set Sampling for Estimating the Population Median

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

A Method of Reliability Target Setting for Electric Power Distribution Systems Using Data Envelopment Analysis

Transcription:

wth Modfed Suface-nomal Vectos fo RCS calculaton of Scattees wth Edges and Wedges N. Omak N. Omak, T.Shjo, and M. Ando Dep. of Electcal and Electonc Engneeng, Tokyo Insttute of Technology, Japan 1

Outlne. Backgound. wth modfed nomal vecto (Modfed ). Objectve v. Smplfed suface-nomal vectos fo RCS Accuacy check fo edge (sample: 2D-stp) fo wedge (sample: cone eflecto) Analytcal explanaton of the accuacy ffo 3-D D objects compason wth expements and PTD (sample: Cubes) Concluson Hghe accuacy ( ) ) than 2

Backgound Physcal Optcs () easy algothm no sngulaty eo nea edges H : ncdent wave nˆ : unt nomal vecto 3

The Empcal Idea to Intoduce the Modfed Suface-nomal Vectos Scattee Infnte plane E d dffacton eo 1 2πk ρ jkρ j 4 ( D D ) e = Ε π Souce Incdent feld : H Nomal vecto : ˆn Modfed nomal vecto : nˆ Obseve Fcttous plane s E = J S J exp ( jk ) o o = 2nˆ H ds Modfed J = 2nˆ + 2 ˆ H n H ( H = H 2 nˆ ( H n ˆ )) 4

Outlne. Backgound. wth modfed nomal vecto (Modfed ). Objectve v. Smplfed suface-nomal vectos fo RCS Accuacy check fo edge (sample: 2D-stp) fo wedge (sample: cone eflecto) Analytcal explanaton of the accuacy ffo 3-D D objects compason wth expements and PTD (sample: Cubes) Concluson Hghe accuacy ( ) ) than 5

Defntons of the Modfed Suface-nomal Vectos Reflecton component Reflecton egon Souce Shadow component Reflecton egon Souce n n k n n Obseve kd φ d φ Obseve kd φ d φ nˆ = kˆ ˆ d k kˆ kˆ d Scattee nˆ = k k d d k k m m -n Scattee km Shadow egon Shadow egon Image Lne cuent Obseve Lne cuent Statonay phase pont Stp 60deg Statonay phase pont Stp -60 deg Mo Modfed J = 2nˆ + 2 ˆ H n H ( 2 H = H nˆ ( H n ˆ )) Obseve 6

Pocedue to ntoduce the modfed suface-nomal vectos n the Reflecton component Shadow component Equvalent cuents I J M = nˆ H = E nˆ = 2n ˆ H + J M = = nˆ H E nˆ Dffacton coeffcents Dffacton coeffcents GTD Equvalent cuents φ + φ φ φ d d sn sn 2 + 2 φ + φ φ φ d d cos cos 2 2 1 1 + φ + φ φ φ d d cos cos 2 2 ( H ˆ ) M J = nˆ + ˆ 2 ˆ H n H n n 2 Modfed φ + φ d sn 2 φ + φ d cos 2 1 φ + φ cos d 2 J = ˆ n H M = ˆ E n + + + φ φ d sn 2 φ φ d cos 2 Modfed nomal vecto 1 φ φ d cos 2 J = ˆ n H M = ˆ E n 7

Eo coecton of Fne ageement at all angles Refeence fom Shjo et al.[2]) 8

Outlne. Backgound. wth modfed nomal vecto (Modfed ). Objectve v. Smplfed suface-nomal vectos fo RCS Accuacy check fo edge (sample: 2D-stp) fo wedge (sample: cone eflecto) Analytcal explanaton of the accuacy ffo 3-D D objects compason wth expements and PTD (sample: Cubes) Concluson Hghe accuacy ( ) ) than 9

Smplfcaton of the Modfed Sufacenomal Vectos n RCS Reflecton component Shadow component nˆ = kˆ ˆ d k kˆ kˆ d nˆ = kd k m k k d m Modfed J = 2nˆ + 2 ˆ H n H ( 2 H = H nˆ ( H n ˆ )) Ognal suface-nomal vectos J = 2nˆ H 10

Outlne. Backgound. wth modfed nomal vecto (Modfed ). Objectve v. Smplfed suface-nomal vectos fo RCS Accuacy check fo edge (sample: 2D-stp) fo wedge (sample: cone eflecto) Analytcal explanaton of the accuacy fo 3-D objects compason wth expements and PTD (sample: Cubes) Concluson Hghe accuacy ( ) ) than 11

Samples Applcaton of the Modfed to RCS (monostatc( monostatc) TARGETS 12

Smplfcaton of the Modfed Sufacenomal Vectos n RCS Reflecton component Shadow component nˆ = kˆ ˆ d k kˆ kˆ d nˆ = kd k m k k d m Modfed J = 2nˆ + 2 ˆ H n H ( 2 H = H nˆ ( H n ˆ )) Ognal suface-nomal vectos J = 2nˆ H 13

Accuacy Check fo a 2D stp (E polazaton) 30 RCS(dBlm) 20 10 0-10 MoM GTD Modfed -20 0 15 30 45 60 75 90 Angleθ (deg) 14

RCS(dBlm) Accuacy Check fo a 2D stp (H polazaton) 30 20 10 0-10 MoM GTD GTD (1st ode) Modfed -20 0 15 30 45 60 75 90 Angleθ (deg) 15

Samples Applcaton of the Modfed to RCS (monostatc( monostatc) TARGETS 16

Modfed Suface-nomal Vectos fo a Cone Reflecto n RCS Reflecton component Shadow component nˆ = kˆ ˆ d k kˆ kˆ d nˆ = kd k m k k d m Modfed J = 2n ˆ + 2 ˆ H n H ( H = H 2 nˆ ( H n ˆ )) Ognal suface-nomal vectos J = 2nˆ H 17

Accuacy Check fo a Cone Reflecto (E polazaton) RCS(dBlm) 30 20 10 0-10 edge2 GTD Modfed edge1-20 0 15 30 45 60 75 90 Angleθ (deg) φ 18

Accuacy Check fo a Cone Reflecto (E polazaton) RCS(dBlm) 30 20 10 0-10 edge2 edge1 GTD Modfed -20 0 15 30 45 60 75 90 Angleθ (deg) φ 19

Accuacy Check fo a Cone Reflecto (E polazaton) RCS(dBlm) 30 20 10 0-10 edge2 edge1 GTD Modfed -20 0 15 30 45 60 75 90 Angleθ (deg) φ 20

Accuacy Check fo a Cone Reflecto (H polazaton) RCS(dBlm) 30 20 10 0-10 edge2 GTD Modfed edge1-20 0 15 30 45 60 75 90 Angleφ (deg) 21

Accuacy Check fo a Cone Reflecto (H polazaton) RCS(dBlm) 30 20 10 0-10 edge2 GTD Modfed edge1-20 0 15 30 45 60 75 90 Angleφ (deg) 22

Accuacy Check fo a Cone Reflecto (H polazaton) RCS(dBlm) 30 20 10 0-10 edge2 edge1 GTD Modfed -20 0 15 30 45 60 75 90 Angleφ (deg) 23

GTD dffacton coeffcent s h = D D D Dffacton coeffcent fo wedge wedge D s h π sn n 1 1 = n π ( φd φ) π ( φd + φ) cos cos cos cos n n n n Dffacton coeffcent fo edge edge D s h = 1 1 1 2 φ cos d φ φ cos d + φ 2 2 24

Smplfcaton of the Modfed Sufacenomal Vectos n RCS Reflecton component Shadow component nˆ = kˆ ˆ d k kˆ kˆ d nˆ = kd k m k k d m Modfed J = 2nˆ + 2 ˆ H n H ( 2 H = H nˆ ( H n ˆ )) Ognal suface-nomal vectos J = 2nˆ H 25

Modfed Suface-nomal Vectos fo a Cone Reflecto n RCS Reflecton component Shadow component nˆ = kˆ ˆ d k kˆ kˆ d nˆ = kd k m k k d m Modfed J = 2n ˆ + 2 ˆ H n H ( H = H 2 nˆ ( H n ˆ )) Ognal suface-nomal vectos J = 2nˆ H 26

Defnton of n Vectos fo Shadow Component Patten1 Patten2 27

Accuacy Check fo a Cone Reflecto (E polazaton) 5 edge2 GTD (wedge) (edge1+edge2) Modfed edge1 30 20 edge2 GTD Modfed edge1 0 RCS(dBlm) 10 0-10 -5 0 15 30 45 60 75 90 Angle Angleθ φ (deg) Dffacton coeffcent -20 0 15 30 45 60 75 90 Angle Angleθ φ (deg) RCS analyss 28

Accuacy Check fo a Cone Reflecto (E polazaton) 5 edge2 GTD (wedge) (edge1+edge2) Modfed edge1 30 20 edge2 edge1 GTD Modfed 0 RCS(dBlm) 10 0-10 -5 0 15 30 45 60 75 90 Angle Angleθ φ (deg) Dffacton coeffcent -20 0 15 30 45 60 75 90 Angle Angleθ φ (deg) RCS analyss 29

Accuacy Check fo a Cone Reflecto 5 edge2 edge1 GTD (wedge) (edge1+edge2) Modfed 30 20 edge2 edge1 GTD Modfed 0 RCS(dBlm) 10 0-10 -5 0 15 30 45 60 75 90 Angle Angleθ φ (deg) Dffacton coeffcent -20 0 15 30 45 60 75 90 Angle Angleθ φ (deg) RCS analyss 30

Accuacy Check fo a Cone Reflecto (H polazaton) 5 edge2 GTD (wedge) (edge1+edge2) Modfed edge1 30 20 edge2 GTD Modfed edge1 Lnea 0 RCS(dBlm) 10 0-10 -5 0 15 30 45 60 75 90 Angleφ (deg) Dffacton coeffcent -20 0 15 30 45 60 75 90 Angleφ (deg) RCS analyss 31

Accuacy Check fo a Cone Reflecto (H polazaton) 5 edge2 edge1 GTD (wedge) (edge1+edge2) Modfed 30 20 edge2 GTD Modfed edge1 Lnea 0 RCS(dBlm) 10 0-10 -5 0 15 30 45 60 75 90 Angleφ (deg) Dffacton coeffcent -20 0 15 30 45 60 75 90 Angleφ (deg) RCS analyss 32

Accuacy Check fo a Cone Reflecto (H polazaton) 5 edge2 edge1 GTD (wedge) (edge1+edge2) Modfed 30 20 edge2 edge1 GTD Modfed Lnea 0 RCS(dBlm) 10 0-10 -5 0 15 30 45 60 75 90 Angleφ (deg) Dffacton coeffcent -20 0 15 30 45 60 75 90 Angleφ (deg) RCS analyss 33

Samples Applcaton of the Modfed to RCS (monostatc( monostatc) TARGETS 34

RCS Compason wth PTD 10 cm Cube @ 10GHz (E // x ncdence) 35

RCS Compason wth Expements 6 nch Cube @ 10GHz (E // x ncdence) Exp. data fom Natsuhaa et al.[4]) 36

RCS Compason wth Expements 6 nch Cube @ 10GHz (H // x ncdence) Exp. data fom Natsuhaa et al.[4]) 37

Outlne. Backgound. wth modfed nomal vecto (Modfed ). Objectve v. Smplfed suface-nomal vectos fo RCS Accuacy check fo E wave ncdence fo edge (sample: 2D-stp) fo wedge (sample: cone eflecto) Analytcal explanaton of the accuacy ffo 3-D D objects compason wth expements and PTD (sample: Cubes) Concluson Hghe accuacy () than 38

Concluson Applcaton of the Modfed to RCS (monostatc( monostatc) Smplfed suface-nomal vectos fo RCS Hghe accuacy () than Analytcal explanaton to wedge Futue wok Accuacy check to cuved suface 39

Refeences [1] J. Goto, Intepetaton of hgh fequency dffacton based upon, bachelo thess, Tokyo Insttute of Technology, Tokyo, chap.3 (2003-3). [2] Y. Z. Umul, Modfed theoy of physcal optcs, OPTICS EXPRESS, vol.12, no.20, Oct. 2004 Page(s) 4959-4972 [3] T. Shjo, L. Rodguez, M. Ando, Accuacy demonstaton of physcal optcs wth modfed suface-nomal vectos Antennas and Popagaton Socety Intenatonal Symposum 2006, IEEE, 9-14 July 2006 Page(s):1873 1876 [4] K. Natsuhaa, T. Muasak, and M. Ando Equvalent Edge Cuents fo Abtay Angle Wedges Usng Paths of Most Rapd Phase Vaaton, IEICE Tans. Electon., Vol. E75-C, No.9 Sep. 1992 [5] Robet G. Kouyoumjan, seno membe, IEEE, and Pabphaka H. Pathak, A Unfom Geometcal Theoy of Dffacton fo an Edge n a Pefectly Conductng Suface, Poceedngs of IEEE, Vol. 62, No. 11 Novembe 1974 40