Fundamentals of Neutrino Physics and Astrophysics

Similar documents
PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

Contents. Preface to the First Edition Preface to the Second Edition

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

FYS3510 Subatomic Physics. Exam 2016

An Introduction to the Standard Model of Particle Physics

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

Introduction to Neutrino Physics. TRAN Minh Tâm

FYS3510 Subatomic Physics. Exam 2016

Elementary Particles, Flavour Physics and all that...

Quantum Field Theory 2 nd Edition

Neutrinos Lecture Introduction

Introduction to Elementary Particles

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

The Standard Model and Beyond

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

The PMNS Neutrino-Mixing Matrix in the Scale- Symmetric Theory

Nuclear and Particle Physics

Paul Langacker. The Standard Model and Beyond, Second Edition

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia)

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Part III The Standard Model

Neutrino Flavor Mixing

Neutrino Physics: Lecture 1

Neutrino Oscillations

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Introduction to Cosmology

Standard Model & Beyond


F. TASNÁDI LINKÖPING UNIVERSITY THEORETICAL PHYSICS NEUTRINO OSCILLATIONS & MASS

Stephen Blaha, Ph.D. M PubHsMtw

SM predicts massless neutrinos

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

Neutrino Event Tagging Based On Nucleon Energy Spectra

The Standard Model of particle physics and beyond

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

Welcome to the PANIC Pedagogical Lectures! Jesse Thaler Big Questions in Particle Physics

Index. Cambridge University Press Introduction to High Energy Physics: 4th Edition Donald H. Perkins. Index.

Warwick particle physics masterclass 19 March 2014

Many-Body Problems and Quantum Field Theory

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Matter-antimatter asymmetry in the Universe

Neutrinos in Astrophysics and Cosmology

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Relativity, Gravitation, and Cosmology

Neutrino Physics: an Introduction

Elementary Particles and Their Interactions

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Neutrinos From The Sky and Through the Earth

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Interactions/Weak Force/Leptons

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

Quantum Gravity and Entanglement

A COURSE IN FIELD THEORY

Interactions/Weak Force/Leptons

1 Neutrinos. 1.1 Introduction

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

The 64th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

arxiv:hep-ph/ v1 26 Jul 2006

Neutrino Interactions

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Neutrino Physics: an Introduction

Neutrinos as a Unique Probe: cm

Neutrino Quantum Kinetic Equations - I

Elementary Particle Physics

Phenomenology of neutrino mixing in vacuum and matter

Weak interactions. Chapter 7

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Neutrino Mysteries, Surprises and Promises

Nuclear and Particle Physics

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 11 : Neutrino Oscillations. Neutrino Experiments

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Introduction to Neutrino Physics

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

Physics (PHYS) Courses. Physics (PHYS) 1

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Particle Physics: Neutrinos part I

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

The history of neutrino oscillations

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations And Sterile Neutrinos

Some fundamental questions

Yang-Hwan, Ahn (KIAS)

Hot Big Bang model: early Universe and history of matter

The Origin of Matter

Recent Discoveries in Neutrino Physics

1. Neutrino Oscillations

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years

Higgs Physics and Cosmology

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Beyond Standard Models Higgsless Models. Zahra Sheikhbahaee

Particle Physics: Neutrinos part II

Lecture III: Majorana neutrinos

Weak interactions and vector bosons

Transcription:

Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea Institute for Advanced Study, Seoul, Korea and The Johns Hopkins University, Baltimore, MD, USA OXJORD UNIVERSITY PRESS

1 Historical introduction 1 2 Quantized Dirac fields 7 2.1 Dirac equation 7 2.2 Representations of 7 matrices 9 2.3 Products of 7 matrices 11 2.4 Relativistic covariance 13 2.5 Helicity 17 2.6 Gauge transformations 17 2.7 Chirality 18 2.8 Solution of the Dirac equation 22 2.9 Quantization 31 2.10 Symmetry transformation of states 36 2.11 C, P, and T transformations 48 2.12 Wave packets 60 2.13 Finite normalization volume 63 2.14 Fierz transformations 64 3 The Standard Model 67 3.1 Electroweak Lagrangian 71 3.2 Electroweak interactions 75 3.3 Three generations 80 3.4 The Higgs mechanism \ 83 3.5 Fermion masses and mixing 88 3.6 Gauge bosons 97 3.7 Effective low-energy CC and NC Lagrangians 102 4 Three-generation mixing 106 4.1 Diagonalization of the mass matrix 107 4.2 Physical parameters in the mixing matrix 108 4.3 Parameterization of the mixing matrix 109 4.4 Degenerate masses 116 4.5 Mixing matrix with one vanishing element 118 4.6 CP violation 120 4.7 Rephasing invariants 124 4.8 Unitarity triangles 129 4.9 Conditions for CP violation ' 133 5 Neutrino interactions 135 5.1 Neutrino-electron interactions 136

xiv 5.2 Hadron decays 147 5.3 Neutrino-nucleon scattering 160 6 Massive neutrinos 180 6.1 Dirac masses 180 6.2 Majorana neutrinos 188 6.3 Mixing of three Majorana neutrinos 208 6.4 One-generation Dirac-Majorana mass term 216 6.5 Three-generation Dirac-Majorana mixing 229 6.6 Special cases 235 6.7 Majorana mass matrix 237 7 Neutrino oscillations in vacuum 245 7.1 Standard Derivation of the Neutrino Oscillation Probability 247 7.2 Antineutrino case 254 7.3 CPT, CP, and T transformations 256 7.4 Two-neutrino mixing 259 7.5 Types of neutrino oscillation experiments 261 7.6 Averaged transition probability 267 7.7 Large Am 2 dominance 273 7.8 Active small Am 2 277 8 Theory of neutrino oscillations in vacuum 283 8.1 Plane-wave approximation 284 8.2 Wave-packet treatment 299 8.3 Size of neutrino wave packets 311 8.4 Questions 316 9 Neutrino oscillations in matter ';. 322 9.1 Effective potentials in matter 323 9.2 Evolution of neutrino flavors 329 9.3 The MSW effect 331 9.4 Slab approximation 339 9.5 Parametric resonance 341 9.6 Geometrical representation 343 10 Solar neutrinos 352 10.1 Thermonuclear energy production 353 10.2 Standard solar models 359 10.3 Model-independent constraints on solar neutrino fluxes 364 10.4 Homestake experiment 366 10.5 Gallium experiments 368 10.6 Water Cherenkov detectors 372 10.7 Vacuum oscillations 381 10.8 Resonant flavor transitions in the Sun 382 10.9 Regeneration of solar j/ e 's in the Earth 386

xv 10.10 Global fit of solar neutrino data 389 11 Atmospheric neutrinos - - 390 11.1 Flux of atmospheric neutrinos 393 11.2 Atmospheric neutrino experiments 416 12 Terrestrial neutrino oscillation experiments 428 12.1 Sensitivity 429 12.2 Reactor experiments 432 12.3 Accelerator experiments 443 13 Phenomenology of three-neutrino mixing 452 13.1 Neutrino oscillations in vacuum 453 13.2 Matter effects 465 13.3 Analysis of oscillation data 474 14 Direct measurements of neutrino mass 484 14.1 Beta decay 485 14.2 Pion and tau decays 493 14.3 Neutrinoless double-beta decay 494 15 Supernova neutrinos 511 15.1 Supernova types. 512 15.2 Supernova rates 515 15.3 Core-collapse supernova dynamics 517 15.4 SN1987A 528 15.5 Neutrino mass 534 15.6 Neutrino mixing 535 15.7 Other neutrino properties V 536 15.8 Future ' 537 16 Cosmology 540 16.1 Basic general relativity 540 16.2 Robertson-Walker metric 543 16.3 Dynamics of expansion. 553 16.4 Matter-dominated Universe 560 16.5 Radiation-dominated Universe 562 16.6 Curvature-dominated Universe 563 16.7 Vacuum-dominated Universe 563 16.8 Thermodynamics of the early Universe 564 16.9 Entropy 569 16.10 Decoupling 572 16.11 Cosmic microwave background radiation 577 17 Relic neutrinos 586 17.1 Neutrino decoupling 587

xvi 17.2 Electron-positron annihilation 588 17.3 Neutrino temperature 589 17.4 Energy density of light massive neutrinos. 590 17.5 Energy density of heavy neutrinos 591 17.6 Big-Bang nucleosynthesis 596 17.7 Large-scale structure formation 600 17.8 Global fits of cosmological data 612 17.9 Number of neutrinos 618 17.10 Neutrino asymmetry 621 Appendices A Conventions, useful formulas, and physical constants 626 A.I Conventions 626 A.2 Pauli matrices 628 A.3 Dirac matrices 629 A.4 Mathematical formulas 634 A.5 Physical constants 635 B Special relativity * 637 B.I The Lorentz group 637 B.2 Representations of the Lorentz group 643 B.3 The Poincare group and its representations 646 C Lagrangian theory 649 C.I Variational principle and field equations 649 C.2 Canonical quantization 650 C.3 Noether's theorem 650 C.4 Space-time translations 652 ; C.5 Lorentz transformations 653 C.6 Complex fields 653 C.7 Global gauge symmetry 654 D Gauge theories 657 D.I General formulation of gauge theories - 657 D.2 Quantum chromodynamics 662 E Feynman rules of the standard electroweak model 664 E.I External lines 664 E.2 Internal lines 665 E.3 Vertices 666 E.4 Cross-sections and decay rates 668 Bibliography 671 Index 705