Joint mass and anisotropy modeling of the. Fornax Dwarf Spheroidal

Similar documents
MAMPOSSt modeling of true & mock dwarf spheroidal galaxies

Mass modelling of dwarf spheroidals. Jorge Peñarrubia

The tidal stirring model and its application to the Sagittarius dwarf

Cluster density profiles and orbits of galaxies from dynamical analysis. Andrea Biviano, INAF/Oss.Astr.Trieste

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Dark Matter and/or MOND in Giant Ellipticals

MASS PROFILES OF GALAXY CLUSTERS from dynamics. Andrea Biviano INAF - Trieste

Overview of Dynamical Modeling. Glenn van de Ven

Kinematic, lensing & X-ray mass estimates of a poor cluster

arxiv: v6 [astro-ph.co] 21 Sep 2010

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Made-to-Measure (M2M) Dynamical modelling of external galaxies and the Milky Way

A tool to test galaxy formation arxiv: Joe Wolf (UC Irvine)

Summary So Far! M87van der Maerl! NGC4342! van den Bosch! rotation velocity!

Dynamical modelling of galaxies. Eugene Vasiliev

MOND and the Galaxies

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

arxiv: v1 [astro-ph] 31 Jul 2007

Dynamical friction, galaxy merging, and radial-orbit instability in MOND

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Galaxy evolution in clusters from the CLASH-VLT survey

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8

Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies

The Formation and Evolution of Galaxy Clusters

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7

Masses of Dwarf Satellites of the Milky Way

Structure and substructure in dark matter halos

The motions of stars in the Galaxy

Dynamics of Galaxies: Practice. Frontiers in Numerical Gravitational Astrophysics July 3, 2008

Coordinate Systems! The geometry of the stream requires an oblate near-spherical halo!

For β = 0, we have from our previous equations: d ln ν d ln r + d ln v2 r

Bayesian Mass Estimates of the Milky Way: incorporating incomplete data

The Caustic Technique An overview

The Distribution Function

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

Astronomy 330 Lecture 7 24 Sep 2010

Dark Matter Dominated Objects. Louie Strigari Stanford

Collisionless Boltzmann Eq (Vlasov eq)" S+G sec 3.4! Collisionless Boltzmann Eq S&G 3.4!

Fabrizio Nesti. LNGS, July 5 th w/ C.F. Martins, G. Gentile, P. Salucci. Università dell Aquila, Italy. The Dark Matter density. F.

UMa II and the Orphan Stream

Constraining self-interacting dark matter with scaling laws of observed halo surface densities

Dark Matter Halos of M31. Joe Wolf

The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar populations

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M

A novel JEAnS analysis of the Fornax dwarf using evolutionary algorithms: mass follows light with signs of an off-centre merger

Structure formation in the concordance cosmology

SUPPLEMENTARY INFORMATION

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching

What are the best constraints on theories from galaxy dynamics?

Overview spherical accretion

Stellar Dynamics and Structure of Galaxies

Probing Gravity in the Low Acceleration Regime with Globular Clusters

arxiv: v2 [astro-ph.ga] 18 Nov 2016

Distinguishing Between Warm and Cold Dark Matter

DA(z) from Strong Lenses. Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Inaugural MIAPP Workshop on Extragalactic Distance Scale May 26, 2014

Robust estimate of the dark matter halo of the Milky-way's dwarf spheroidal galaxies

A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

Hubble Space Telescope survey of the Perseus Cluster I. The structure and dark matter content of cluster dwarf spheroidals

Kinematics of the Solar Neighborhood

arxiv: v1 [astro-ph.ga] 3 Nov 2015

Rotation curves of spiral galaxies

Surface Brightness of Spiral Galaxies

Lecture 7: the Local Group and nearby clusters

What can M2M do for Milky Way Models?

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

The Hernquist model revisited: completely analytical anisotropic dynamical models

Dark Matter Detection Using Pulsar Timing

I. Basic Goals. Most galaxies are in approx. equilibrium in the present-day universe.

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

Spatial distribution of stars in the Milky Way

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies

arxiv: v1 [astro-ph.ga] 10 May 2016

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè

Extra Gal 9: Photometry & Dynamics

Determining the Nature of Dark Matter with Astrometry

MASS PROFILES OF X-RAY BRIGHT RELAXED GROUPS: METHODS AND SYSTEMATICS

Veilleux! see MBW ! 23! 24!

The Los Cabos Lectures

Peculiar (Interacting) Galaxies

arxiv:astro-ph/ v1 24 Feb 2005

Galaxy Dynamics Galaxies Block Course 2008 Hans-Walter Rix - MPIA

arxiv: v2 [astro-ph.ga] 23 Nov 2017

Constraining Dark Matter Equation of State with CLASH Clusters

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations

Milky Way disc dynamics and kinematics from mock data

1 [3 p.] First things first. 4 [2p.] Mass to light II. 5 [3p.] Merger remnants

Secular Evolution of Galaxies

Phenomenological studies in dark matter direct detection: from the impact of the escape speed estimates to tests of halo models

arxiv: v1 [astro-ph.co] 22 Nov 2012

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL)

Equations of Stellar Structure

E. not enough information given to decide

Potential-Density pair: Worked Problem In a spherical galaxy, the density of matter varies with radius as. a r 2 (r+a) 2, ρ(r) = M 4π

Brief update (3 mins/2 slides) on astrophysics behind final project

Axisymmetric orbit-based models of a mock dwarf spheroidal galaxy

Transcription:

Joint mass and anisotropy modeling of the Fornax Dwarf Spheroidal Fornax Dwarf Spheroidal with Chris GORDON (Oxford) Andrea BIVIANO (Trieste) DSS 1

Motivations Large velocity data sets in Dwarf Spheroidals Walker et al. 09 2267 member velocities in Fornax! constraints on Dark Matter normalization constraints on Dark Matter inner slope constraints on velocity anisotropy of stars 2

Mass anisotropy degeneracy Spherical stationary Jeans equation anisotropic dynamical pressure tracer density d ( ) νσr 2 dr +2 β(r) r β(r) = 1 σ2 θ (r) σ 2 r(r) νσ 2 r = ν GM(r) r 2 = velocity anisotropy isotropic orbits: β = 0 radial orbits: β = 1 circular orbits: β Mass / Anisotropy Degeneracy MAD 3

Exploratory Mass-Anisotropy Modeling 1) Model-fitting of Line-of-Sight velocity dispersion profile Mtot(r) + β(r) σlos(r) 4

1) assume both M(r) & β(r) & fit the LOS velocity dispersions for β = 0 line-of-sight velocity dispersion Tremaine et al. 94; Prugniel & Simien 97 R Σ(R) σ 2 los (R) = 2G R r 2 R 2 r 2 ν(r)m(r)dr tracer surface density kernels for other simple β(r) Mamon & Łokas 05b 5

Exploratory Mass-Anisotropy Modeling 1) Model-fitting of Line-of-Sight velocity dispersion profile Mtot(r) + β(r) σlos(r) 2) Anisotropy inversion { Σ(R) + Mtot(r) β(r) σlos(r) Binney & Mamon 82 Tonry 83; Bicknell et al. 89 Solanes & Salvador-Solé 90 Dejonghe & Merritt 92 6

Exploratory Mass-Anisotropy Modeling 1) Model-fitting of Line-of-Sight velocity dispersion profile Mtot(r) + β(r) σlos(r) 2) Anisotropy inversion { Σ(R) + Mtot(r) β(r) σlos(r) 3) Mass inversion { Σ(R) σlos(r) + β(r) Mtot(r) Mamon & Boué 10 Wolf et al. 10 7

3) Mass inversion Mamon & Boué 10; Wolf et al. 10 Kinematic deprojection & mass inversion of spherical systems with known anisotropy anisotropic kinematic projection p = ρ σ r2 = dynamical pressure P(R) = 2 R 1 β R2 r 2 p r dr r 2 R 2 P = Σ σ los2 = projected pressure deprojection MB10: simple β(r) (1 β) p = = r r K[β(s)] s dp dr L β (R, r) dp dr dr R dr R2 r 2 insert dynamical pressure into Jeans equation mass profile simple β(r): single integral! vc 2 1 { R d 2 P (r) = π [1 β(r)] ρ(r) R2 r 2 dr 2 C β(r, r) dp } dr r 8 dr

Radius where mass is independent of anisotropy Wolf et al. 10 Sérsic (or similar): at r -3 r1/2 Mamon & Boué 10 NFW: at 7 rs or 3 rs 9

Exploratory Mass-Anisotropy Modeling 1) Model-fitting of Line-of-Sight velocity dispersion profile Mtot(r) + β(r) σlos(r) 2) Anisotropy inversion { Σ(R) + Mtot(r) β(r) σlos(r) 3) Mass inversion { Σ(R) σlos(r) + β(r) Mtot(r) 4) Fitting stars in Projected Phase Space MAMPOSSt Mamon, Biviano & Boué 11, to be subm ν(r) + M tot (r) + β(r) + {v}(r) g(r,vlos) 10

Other popular modeling methods gaussian {vlos(r)} lose info on β ν(r) + M tot (r) + β[r] + {vlos}(r) g(r,vlos) dispersion-kurtosis Łokas 02; see Łokas, Mamon & Prada 05 Mtot(r) + β σlos(r) + κlos(r) must assume β = cst distribution function modeling Dejonghe & Merritt 92; Merritt & Saha 93 M tot (r) + f(e,j) or {fi(e,j)} g(r,vlos) don t know f(e,j); not sure that {fi(e,j)} = basis set orbit modeling Schwarzschild 79; de Lorenzi et al. 09 M tot (r) + {orbits} g(r,vlos) too slow for MCMC investigation of parameter space 11

Mass modeling of the Fornax dwarf spheroidal 12

LV = 1.9 x 10 7 Lsun Irwin & Hatzimiditriou 95 LV = 0.9 x 10 7 Lsun Walcher et al. 03 Fornax data Fornax metallicity 2633 velocities 2278 Fornax members Milky Way metallicity 2 Re m = 0.7 Sersic distribution Walcher et al. 03; Battaglia et al. 06 ellipticity: 0.21 0.36 Battaglia et al. 06 main starburst: age = 5.4 Gyr Saviane et al. 00 Mstars/LV = 4.8 Walcher et al. 03 (uncertain) center: Battaglia et al. 06 data & MW flags: Walker et al. 09 Magellan/MMFS rejected outlier 13

Fornax: velocity dispersion profile out to 2 Reff Łokas 09 isotropic, M/LV = 7.3 order 2 fit M/LV = 8.8 isotropic, M/LV = 4.8 isotropic, M/LV = 4.8, low LV order 3 fit Reff order 4 fit 1/3 fraction of dark matter in inner regions? OR LV underestimated by 40%? M/L increases outwards? OR tangential outer orbits? 14

Fornax: anisotropy inversion INPUT stars radial OUTPUT isotropic moderately tangential cst M/L radial (low M/L) or tangential (high M/L) orbits 15

Fornax: isotropic mass inversion stars dark matter, even in inner regions? luminosity and/or Mstars/L too low? fit order 4 σ los (R) falls too fast! stars stars radial outer orbits! 16

low LV log total mass (1.5kpc)( M ) std LV max stars 1σ 2σ 3σ 4σ low LV (P=0.95 MAMPOSSt with MCMC well-defined Mtot(2Re) gaussian 3D velocities cst β cst Mstars/L Kazantzidis DM: ρ ~ exp(-r/a) / r MCMC: 9 chains of 30 000 log DM scale radius (kpc) a > 2 kpc (95% conf.) anisotropy: -0.5 log(1-β) Isotropic orbits! β = -0.03±0.09 17

log total mass (1.5kpc)( M ) std LV low LV max stars 1σ 2σ 3σ 4σ std LV Free inner dark matter slope... gaussian 3D velocities cst β cst Mstars/L gen l Kazantzidis DM: ρ ~ r γ exp(-r/a) MCMC: 11 chains of 30 000 log DM scale radius (kpc) anisotropy: -0.5 log(1-β) inner DM slope inner DM slope: not too steep! 18

log total mass (1.5kpc)( M ) 1σ 2σ 3σ 4σ Increasing anisotropy... gaussian 3D velocities β=r 2 /(r 2 +a 2 ) Osipkov-Merritt cst Mstars/L gen l Kazantzidis DM: ρ ~ r γ exp(-r/a) MCMC: 11 chains of 30 000 log DM scale radius (kpc) anisotropy: -0.5 log(1-β) inner DM slope anisotropy radius: 1.6 < ranis < 25 kpc (1σ) 19

Radial variations Wolf+10 mass pinch stars slope(dm)@0.1re>-1.1: P=95% DM total frac(dm)@2re>0.6: P=98% appreciable velocity anisotropy at 2 Re but β=0 is consistent w data 20

Comparison with previous work Łokas 09 this work Walker+09 Walker et al. 09 Łokas 09 anisotropy poorly constrained: -0.42 < β < - 0.18 β < 0.17 1σ limits vs. -0.05 < β < 0.13 inner slope not constrained γ < -0.3 vs. γ > -1.0 21

Conclusions Mass modelling = exploratory data analysis: try methods: mass & β inversions, & MAMPOSSt Fornax MAMPOSSt stronger constraints Isotropic inner orbits, radial outer orbits Dark matter present: likely > 50% at all radii seen in simulations: Klimentowski+07; Lokas+10 Dark matter inner slope shallower than -1.1 see Pennarubia for tidal effects on GCs 22

Perspectives MAMPOSSt with non-gaussian 3D velocity distributions model rotation & metallicity effects Battaglia+06 in Fornax higher-parameter MCMC fits 23