News on tensor network algorithms

Similar documents
Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum spin systems - models and computational methods

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Ground State Projector QMC in the valence-bond basis

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

Fermionic tensor networks

Chiral spin liquids. Bela Bauer

quasi-particle pictures from continuous unitary transformations

Gapless Spin Liquids in Two Dimensions

The density matrix renormalization group and tensor network methods

Matrix Product Operators: Algebras and Applications

Quantum phase transitions and entanglement in (quasi)1d spin and electron models

Solving the sign problem for a class of frustrated antiferromagnets

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Introduction to Tensor Networks: PEPS, Fermions, and More

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Loop optimization for tensor network renormalization

Quantum Convolutional Neural Networks

Quantum Spin-Metals in Weak Mott Insulators

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets

Spin liquids on ladders and in 2d

Stochastic series expansion (SSE) and ground-state projection

SPIN LIQUIDS AND FRUSTRATED MAGNETISM

Golden chain of strongly interacting Rydberg atoms

Matrix-Product states: Properties and Extensions

A new perspective on long range SU(N) spin models

Kitaev honeycomb lattice model: from A to B and beyond

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Understanding Topological Order with PEPS. David Pérez-García Autrans Summer School 2016

Spin liquids in frustrated magnets

Fermionic tensor networks

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Scale invariance on the lattice

Symmetric Surfaces of Topological Superconductor

Simulations of Quantum Dimer Models

Lecture 3: Tensor Product Ansatz

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Matrix product states for the fractional quantum Hall effect

Techniques for translationally invariant matrix product states

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

Quantum Monte Carlo Simulations in the Valence Bond Basis

Geometry, topology and frustration: the physics of spin ice

Universal phase transitions in Topological lattice models

Fermionic topological quantum states as tensor networks

Renormalization of Tensor Network States

Valence Bonds in Random Quantum Magnets

Universal Topological Phase of 2D Stabilizer Codes

Neural Network Representation of Tensor Network and Chiral States

Numerical diagonalization studies of quantum spin chains

arxiv:quant-ph/ v2 24 Dec 2003

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Degeneracy Breaking in Some Frustrated Magnets

Jung Hoon Kim & Jung Hoon Han

2. Spin liquids and valence bond solids

Spin liquids on the triangular lattice

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

The uses of Instantons for classifying Topological Phases

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Non-abelian statistics

Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome

Multiple spin exchange model on the triangular lattice

Simulation of Quantum Many-Body Systems

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Spin-charge separation in doped 2D frustrated quantum magnets p.

Holographic Geometries from Tensor Network States

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Vortices and vortex states of Rashba spin-orbit coupled condensates

7 Frustrated Spin Systems

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

Dimerized & frustrated spin chains. Application to copper-germanate

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

Entanglement spectrum as a tool for onedimensional

Linked-Cluster Expansions for Quantum Many-Body Systems

Machine learning quantum phases of matter

Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid

It from Qubit Summer School

Holographic Branching and Entanglement Renormalization

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES

Physics 239/139 Spring 2018 Assignment 2 Solutions

Symmetry protected topological phases in quantum spin systems

Boundary Degeneracy of Topological Order

arxiv: v2 [cond-mat.str-el] 14 Aug 2012

Transcription:

News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98, 1558 (2018) S. S. Jahromi, RO, arxiv:1808.00680 P. Schmoll, S. Singh, M. Rizzi, RO, arxiv:1809.08180 A. Kshetrimayum, M. Rizzi, J. Eisert, RO, arxiv:1809.08258 P. Schmoll, A. Haller, M. Rizzi, RO, arxiv:1812.01311

Applications welcomed

Tensor networks everywhere HEP and lattice gauge theories Quantum information and computation Quantum gravity, string theory and AdS/CFT Strongly correlated systems Classical statistical mechanics Quantum simulations Entanglement and Tensor Networks Numerical tensor calculus Nuclear physics Quantum chemistry Materials science AI, Deep learning & Linguistics

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder Overview, omit many technical details

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018)

The ruby model H= X α=x,y,z Jα X σiα σjα α links <latexit sha1_base64="4zpoby6jmn0eeuamn8sqowsfki4=">aaacthicbvbnswmxem3wr1q/qh69bivgocquchoril6kpwrwfrp1mu3tnjbzxzkswjf9gv48epnxepggigbav9hqqodne2+yyfmjzps27ucrnzu9mzuxny8slc4trxrx1y5ugetc6ytkowz6ochnaa1rpjltrpkc8dlt+iotkd64plkxmdjxw4i2bfqc1muetkg8iqnii7ydxrull3gbr30wxe0zd8v4nswnxsb9muzgxjucm50dlazgyz0bhrv89o77q6/ek5bsxxtc+c9wmlbcwdw84opbcuksakajb6vajh3pdgjsm8jpwnbjrsmga+jrloebckraytimfg8zpoo7otqv0hjm/pxiqcg1fl5xctb9namnyp+0vqy7h+2ebvgsaua+f3vjjnwir8nidpouad40aihk5lzm+icbajn/wytgth75l7jy23umptsvvy6zopjoa22ibesga1rbvvrddutqhxpcl+jvureertfr/doas7kzdfsrcrmfmkqyzw==</latexit> Reproduces the low-energy sector of the topological color code model in its gapped phase (Z2 x Z2 topological order) E. Bombin, M. A. Martin-Delgado, PRL 97, 180501 (2006) Coarse-graining triangles leads to brickwall lattice Study with ipeps

Energies and phase diagram Ground state energy 1.05 1.06 0.55 Jc=(0.8, 0.8, 0.4) J=(1, 1, 1) 0.56 ipeps FU ED (N=24) 1.07 Multicritical point ipeps FU ED (N=24) Comparison to exact diag. for 24 sites. 0.57 1.08 0.58 ε0 ε0 1.09 1.1 0.59 Good convergence. Multicritical point challenging. 1.11 0.6 1.12 0.61 1.13 1.14 0.1 0.2 0.3 0.4 1/D 0.5 0.6 0.62 0.1 0.2 0.3 0.4 0.5 0.6 1/D 3 phases separated by 2nd order QPTs. QPTs meet at a multicritical point. A1 phase: gapped, Z2 x Z2 TO. A2 & A3 phases: gapless. Gapped by a perturbation, colored Ising anyons. S. S. Jahromi, M. Kargarian, S. F. Masoudi, A. Langari, PRB 94, 125145 (2016) Phase diagram J x + Jy + J z = 2 <latexit sha1_base64="vafdml2snczwpqlikq/ymgnv+eg=">aaab/hicbzdlsgmxfibp1futt9eu3qsliahlpgi6eypupksk9gltmgtstbuauzbkxlhuv3hjqhg3pog738z0ogttpzdw8f/nkjpfizmtyrk+jclk6tr6rngztlw9s7tn7h+0zzqiqlsk4phoelhszklaukxx2o0fxyhhaccbx8/8zj0vkkxhnupj6gr4gdkfeay05jrlhvuatlhdtbp7ev2immtwrkqvfvogo4ck5nv0za/+icjjqenfojayz1uxcizykey4nzb6iaqxjmm8pd2niq6odcbz8ln0rjub8ioht6hqpv6emobayjtwdgea1uguejpxp6+xkp/cmbawthqnyfwhp+firwiwbbowqyniqqzmbno7ijlcahol8yrpeozfly9du1a1nd+evepxerxfoiqjoaebzqeon9cefhbi4rle4c14ml6md+nj3low8pky/cnj8wflfzju</latexit>

Fidelity from CTMs With CTMs Ground state fidelity per site C1 H.-Q- Zhou, RO, G. Vidal, PRL 0, 080601 (2008) Tr C4 Td C3 C1 Tu C2 N <latexit sha1_base64="xo9iuse/jf0lb+viestxhxz0sjq=">aaacvnicbvhlsgmxfm1mra31nerstbailuizkyjuhkigrqscfucnlkwmbuotzjbkhnl2j3wjn+jgtb9cxxccj+ece5ocbdgjsrvut2wndtk7mexebv/g8ojyotmtqyirmnrwxclzdjaijaps01qz0owlqtxgpbemhqz6451irspxqocxaxpue7rlmdkg6jj8seazyw9rx7uc/7bchhdwbhaixwj0q4owlqtxkumvos/ntqmoymg4febbc8fjuyv3vnateauqb4uqdpwpp4xwwonqmcglwp4b6/yisu0xi5ocnygsizxapdiyucbovhs0i2uclw0twm4kzriaztjljhhisg15yjwc6b5a16bknq2v6o5te0rfnggi8pygbskgjua0yxhssbbmqwmqlttcfei+kghr8xm5e4k3/urnuc+xpinfrvov+0ucwxaolkabeoagvmatqiiawoat/fi2lbk+rf87bwfmvtta9jyblbkdp045sb8=</latexit> ln F (λ1, λ2 ) ln d(λ1, λ2 ) lim N N C2 a Tl F (λ1, λ2 ) = hψ(λ2 ) Ψ(λ1 )i d(λ1, λ2 ) Tu d(λ1, λ2 ) = <latexit sha1_base64="zjjusofcsz+na81gnowvb+6pcm4=">aaactxicbzfns8mwgmft+tbn29sjl+aqjshordcjkiinoebeyb0ltdmtmky1eaqm0i/orfdmt/diqrexmxn02wobh//nlfnhtwtxynsvvmfufmfxqbhcwlldw98ob241dzwqyho0frfq+0qzwsvraafb2olijpifa/m358n8654pzwn5a4oedspskzzklicrvhlgcomdqitms0a85wd/4ue+dtldyu+nwimvq2nx8v4fiflxa3a5dggqyzduhgbdirezh+rzpffkfbtmjwjpgzogchrhlvd+dooyphgtqaxruupycxqzoobtwfksm2qwehpleqxjujki6w42ciphe0yjcbgrcytgkfq3iyor1opin5urgb6eza3fwblocufjn+mysyfj+rmotawgga+txqfxjiiygcbucxnxtpve+apma0rgbgfyydpqpkw5hq+pkqdnyzukaaftoipy0de6rzfocjuqry/ofb2jd+vjerm+ra+f0oi17tlg/6kw9a3wh7mk</latexit> C4 A2 - A3 QPT Td C1 C2 C4 C3 C1 C2 Tl Tr C4 C3 C3 Compatible with other observables: - Entanglement entropy - 2-point correlators Many open questions: - Top. nature of A2 and A3? - Multicritical point?

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder S. S. Jahromi, RO, PRB 98, 1558 (2018)

Star Heisenberg Antiferromagnet X H = Je S i S j + Jt hiji2e X Si Sj hiji2t <latexit sha1_base64="pwrwknsaiyfqrybw6/+aw+po7cc=">aaaca3icfzhpahsxema1m7zx3dz160nc28nqeyguwm4jnjecas4mj4feicfrfq086yjwahdpnmawx/kiueunesk7rp4taoksacfp38yhpe9joasliljz/i1xr99s1rbqb9+93/7q+pjp3oaledgtucpnp+ewldtyi0kk+4vbniukl5lj0bx/cy3gylyf0btaycbhwqzschjs3ljpwg84jheiw2zxfsmuxwpbxkfklhhjdqizkkpsoj3feiixygke91fww/npzt+95i8brwa/wbssq7icfltvn27crqnclblqeopbowidgoyvnysfwlk9ki0wxez4gaconc/qdqtfvjpyc8oi0ty4pqkw6r+oimfwtrpetwaclu3z3lz8x29quno4rkquskitlgelpqlkyr48jkrbqwrqgasj3v1bxhldbbnvqbsqwudpxofzn/uh45odvvvpko4a+8k+se8szl9ym3vyl/wyyh+9bw/h2/xu/ab/2f+6hpw9lafjnps/9wbdtlfo</latexit> (spin-1/2) J. Richter et al, PRB 70, 1 (2004) H. Yao, S. A. Kivelson, PRL 99, 247203 (2007) G. Kells et al, PRB 81, 4429 (20) S. Dusuel et al, PRB 78, 1252 (2008) G. Misguich, P. Sindzingre, JPCM 19, 145202 (2007) B. J. Yang, A. Paramekanti, Y. B. Kim, PRB 81 134418 (20) T. P. Choy, Y. B. Kim, PRB 80, 064404 (2009) S. J. Ran et al, PRB 97, 075146 (2018) G. Y. Huang, S. D. Liang, D. X. Yao, EPJB 86, 379 (2013) (a) σyσy σxσx σzσz (b) Frustrated triangles. Ground state not fully clear yet. Chiral QSL, VBS, spin-1 trimerized... Coarse-graining leads to brick-wall lattice (different setups) (c) (d) Same ipeps strategy than the ruby lattice T=0 phase diagram as a function of Jt/Je?

ipeps phase diagram Agrees with previous results Continuous QPT New phase, breaks C3 symmetry (4x4 unit cell, D=9)

Coarse-graining setups Setup A Setup B Jt/Je << 1 Jt/Je >> 1 0.25 0.37512 Je=1, Jt=0.05 0.37514 Je=0.05, Jt=1 0.251 Setup A Setup B Setup A Setup B 0.252 0.37518 ε0 ε0 0.37516 Fast convergence! 0.3752 0.253 0.254 Better for large-d 0.37522 0.255 0.37524 0.1 0.2 0.3 0.4 1/D 0.5 0.6 0.256 0.1 0.2 0.3 0.4 1/D 0.5 0.6

Bond energies 0.1 0 0.1 Ebond 0.2 Jt/Je << 1 Je=0.05, Jt=1 0.3 0.4 Jt-bond1 Jt-bond2 Jt-bond3 Je-bond Jt/Je >> 1 0.5 0.6 0.7 0.1 0.15 0.2 0.25 1/D Jt/Je >> 1 (a) (b) (c) Degeneracy of the three configurations. RVB possible. ipeps favors one of them because it has less entanglement.

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder S. S. Jahromi, RO, arxiv:1808.00680

Graph-based PEPS (gpeps) Store information about the TN on a structure matrix Example: star lattice Links in unit cell Unit cell Label of edge for tensor Looping over the columns of the structure matrix we can authomatize tensor updates in imaginary-time evolution for essentially any lattice. Simple update (no environment): automatic! Full update (with environment): work in progress

Graph-based PEPS (gpeps) Store information about the TN on a structure matrix Example: star lattice Links in unit cell Unit cell Label of edge for tensor Looping over the columns of the structure matrix we can authomatize tensor updates in imaginary-time evolution for essentially any lattice. Simple update (no environment): automatic! Full update (with environment): work in progress

All you need is the matrix 1d chain

All you need is the matrix 2d square

All you need is the matrix 2d triangular

All you need is the matrix 2d kagome

All you need is the matrix 3d pyrochlore

Some ground state energies Simple update, and mean field environment (only lambdas) for observables. Not variational. 1d 2d 3d 2d 3d 2d 2d Very simple, efficient, and fully-atomatized way of getting a first idea about the ground state in many cases

An example Antiferromagnetic Heisenberg model on the cubic lattice H= X ij <latexit sha1_base64="mnx9gy58opujhing40lzu/oqauk=">aaacexicbzbns8mwgmft+tbnw9wjl+aqdhqtchorhl52noheyc0ltdmtw5qwjbvg6vfw4lfx4kerr968+w3mtik6+yfal//neuiev58wkpvlfrmlldw19y3yzmvre2d3z9w/6mg4fzi0ccxi0forjixy0lzumdjlbegrz0jxh19p6917iisn+z2ajmsn0idtkgkktowztsa8hi5miy+joxxmjh/c29yj0mfbrh7ui+izvatuzqsxws6gcgq1ppptcwkcroqrzjcufdtkljshoshmjk84qsqjwmm0ih2nheveutlsoxyeaceaysz04qro3n8tgyqknes+7oyqgsrf2tt8r9zpvxjhzpqnqsiczx8kuwzvdkfxwiakghwbaebyup1xiidiikx0ibudgr248jj0tuu25puzauoqikmmjsaxqaebnimgaiiwaammhsateagvxqpxblwz7/pwklhmhii/mj6+avplnba=</latexit> sha1_base64="ck8pdc+ekzh4numsp+zg7r8leyk=">aaab2xicbzdnsgmxfixv1l86vq1rn8eiucozbnqpuhfzwbzco5rm5k4bmskmyr2hdh0bf25efc93vo3pz0jbdwq+zknivscullqubn9ebwd3b/+gfugfnfzjk9nmo2fz0gjsilzl5jnmfpxu2cvjcp8lgzylffbj6f0i77+gstlxtzqrmmr4wmtuck7o6oyaraadlmw2ivxdc9yanb+gss7kddujxa0dhefbucunsafw7g9liwuxuz7ggupnm7rrtrxzzi6dk7a0n+5oykv394ukz9bostjdzdhn7ga2mp/lbiwlt1eldvesarh6kc0vo5wtdmajnchizrxwyasblykjn1yqa8z3hysbg29d77odon4moa7ncafxemin3meddkalahj4hxdv4r15h6uuat66tdp4i+/zbzjgijg=</latexit> sha1_base64="rmyfn5xfpi2uqijpx3omrxghb1s=">aaacbnicbzbns8mwhmb/nw9ztq1evqshsnnovehfelzsong9wdpkmqzbtqqtssqm0q/gxa/ixymifgrvfhuzf0q3hwj88jwjyf8jus6udpwvq7sxubw9u96t7fx3dw7to2phjzkkte0snshegbxllkztztsnvvrslajou8hkzpz3h6hulinv9tsla4ghmysywdpyvl1voivkquz4orsxkpeccn0vpkmecrp9sx8j3645dwcuta7uemqwvmu3p70wizmgssyck9v3nvqpciw1i5wwfs9tnmvkgoe0bzdggqpbpp+oqgfgcvguslnijebu7xs5fkpnrwbocqxhajwbmf9l/uxhl4ocxwmmauwwd0uzrzpbs3pqycqlmk8nyckz+ssiiywx0abeiinbxr15htrnddfwrqnloiftqimlf3antwhbgwg8wjo8wpv1zl1y74u6stayt2p4i+vjg6cympq=</latexit> sha1_base64="gztutzs0z28mekjkccn5wb1pfri=">aaacexicbzc7tsmwfiydrqxcaowsfhvspyphgqwpgqvjefqinvxkoe7r1nyi20gqorwcc6/cwgbcrgxsva1ugyfo+svln/9zjuzzbwmjsjvol7wyura+svnakm/v7o7t2wehbrwnepmwjlksuwfshffbwppqrrqjjighjhsc8fw03rknutfy3oljqvocdqsnkebawl5dbcbl6kmu+xkd5tdzggje5j6fhg5j/xmfqd+uodvnjrgmbgevukjp259egooue6exq0r1xcfr/qxjttejedllfukqhqmb6rkuibpvz2yb5fduocgmymmo0hdm/p7iefdqwgptyzeeqsxa1pyv1kt1dnhpqehstqsepxsldooytuobizueazyxglck5q8qd5fewjsqyyyed3hlzwif1vzdn06lflxeuqlh4arugqvoqr00qbo0aayp4am8gffr0xq23qz3eeukvcwcgt+ypr4buqwcda==</latexit> (spin-1/2) Si Sj

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder

Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder P. Schmoll, S. Singh, M. Rizzi, RO, arxiv:1809.08180 P. Schmoll, A. Haller, M. Rizzi, RO, arxiv:1812.01311

Chiral interactions on a ladder H= X i <latexit sha1_base64="totcl0mr/kvfmpyycsqtsfvihji=">aaacm3icbzdlsgnbeev7fmb4irp0uxieibbmrncnilojrhrnfdjh6on0xmaeb901qhjgb3ljj7gqxiuibv0how8kjl5oonyqorqun0ih0bzfranpmdm5+cjccxfpeww1tlbe0hgqgk+zwmbqxqeasxhxogqu/czrnia+5nf+3wmvfn3plrzxdixdhldc2oleibhfy3mlsxocgavt0mtedmeegafixd+ay9ywy9oxquxxycsuk4oliur61nzlyqe8utmu2n3bjdhdkjohzr3ss9uowrrycjmkwjcdo8fwrhukjnledfpne8ruaic3dububg1l/ztz2dzog4jymrch9n3riyygwndd33sgfg/1ek1n/ldrphgctjirjsnyia0wbakejkexilsf4gxl1wblspi/aruliji0mrdncm74yzpq2ks6hi/2y8cnwzgkzjnskqpxyae5jjvytuqekufyqt7jh/vkvvmf1tegdcoazmyqp7k+fwacwkgy</latexit> Ji Si (Si+1 Si+2 ) (spin-1/2) Multiple motivations: wire constructionism, simpler case than 2d, etc

Chiral interactions on a ladder H= X i <latexit sha1_base64="totcl0mr/kvfmpyycsqtsfvihji=">aaacm3icbzdlsgnbeev7fmb4irp0uxieibbmrncnilojrhrnfdjh6on0xmaeb901qhjgb3ljj7gqxiuibv0how8kjl5oonyqorqun0ih0bzfranpmdm5+cjccxfpeww1tlbe0hgqgk+zwmbqxqeasxhxogqu/czrnia+5nf+3wmvfn3plrzxdixdhldc2oleibhfy3mlsxocgavt0mtedmeegafixd+ay9ywy9oxquxxycsuk4oliur61nzlyqe8utmu2n3bjdhdkjohzr3ss9uowrrycjmkwjcdo8fwrhukjnledfpne8ruaic3dububg1l/ztz2dzog4jymrch9n3riyygwndd33sgfg/1ek1n/ldrphgctjirjsnyia0wbakejkexilsf4gxl1wblspi/aruliji0mrdncm74yzpq2ks6hi/2y8cnwzgkzjnskqpxyae5jjvytuqekufyqt7jh/vkvvmf1tegdcoazmyqp7k+fwacwkgy</latexit> 1 Ji Si (Si+1 Si+2 ) (spin-1/2) 3 ~2 S ~3 + S ~3 S ~4 ~1 S ~2 S H1 = S H1 2 4 1 3 Singlet ground state S2 = 0 ~3 S ~4 ~2 S ~3 S ~2 S ~1 S H2 = + S H2 2 4 1 3 Study with SU(2) idmrg (omit tech. details) ~2 S ~1 S ~3 S ~4 ~2 S ~3 S H3 = S H3 2 4 1 3 Non-singlet ground state ~ ~ ~ ~ ~ ~ H4 = + S1 S2 S3 + S2 S3 S4 H4 2 4

First intuition S <latexit sha1_base64="dvnxep6x03kjflmge9mhpnn0c4c=">aaab73icbzbns8naeiyn9avwr6phl4tf8fqsefry9okxov2anptndtiu3wzs3y1qqv+efw+kepxveppfug1z0nyxfh7emwfn3iarxbvx/xyka+sbm1vf7dlo7t7+qfnwqknjvdfssfjeqh1qjyjlbbhublythtqkblac0e2s3npcpxksh80kqt+ia8ldzqixvjvrbif5mjjeuejw3bnikng5vcbxvvf+6vzjlkyodrnu647njsbpqdkcczywuqnghlirhwdhoqqraj+b7zslz9bpkzbw9kld5u7viyxgwk+iwhzg1az1cm1m/lfrpca89jmuk9sgziupwlqqe5pz8atpftijjhyou9zustiqksqmjahkq/cwt16f5kxvs3x/wand5heu4qro4rw8uiia3eedgsbawdo8wpszdl6cd+dj0vpw8plj+cpn8wdo0o95</latexit> <latexit S 1) Kadanoff blocking on triangles H= X Ji Si (Si+1 Si+2 ) <latexit sha1_base64="gz+dlajuekmmb8cinuvxtftsnp8=">aaab+3icbzdlssnafiyn9vbrldalm8eiucqjclosunfz0v6gcwuyowmhtizhzikwkfdx40irt76io9/gazuftv4w8pgfczhn/idltgnh+byqa+sbm1vv7dro7t7+gx1y76okkxq6nogj7adeawccopppdv1uaokddr1gcjor9x5bkpaibz1nwy/jslciuaknnbtrnmy8hdz3ggjn90wbi6hdcjroxhgv3biaqfr7ah95yukzgismncg1cj1u+zmrmleorc3lfksetsgibgyfiuh5+fz2ap8aj8rris0tgs/d3xm5izwaxohpjikeq+xazpyvnsh0doxntkszbkexi6kmy53gwra4zbko5lmdhepmbsv0tcsh2srvmyg4y19ehe550zv8d9foxzdxvnexokfnyewxqivuurt1eevp6bm9ojersf6sd+tj0vqxypkj9efw5w8kk5rs</latexit> Hef f i <latexit sha1_base64="totcl0mr/kvfmpyycsqtsfvihji=">aaacm3icbzdlsgnbeev7fmb4irp0uxieibbmrncnilojrhrnfdjh6on0xmaeb901qhjgb3ljj7gqxiuibv0how8kjl5oonyqorqun0ih0bzfranpmdm5+cjccxfpeww1tlbe0hgqgk+zwmbqxqeasxhxogqu/czrnia+5nf+3wmvfn3plrzxdixdhldc2oleibhfy3mlsxocgavt0mtedmeegafixd+ay9ywy9oxquxxycsuk4oliur61nzlyqe8utmu2n3bjdhdkjohzr3ss9uowrrycjmkwjcdo8fwrhukjnledfpne8ruaic3dububg1l/ztz2dzog4jymrch9n3riyygwndd33sgfg/1ek1n/ldrphgctjirjsnyia0wbakejkexilsf4gxl1wblspi/aruliji0mrdncm74yzpq2ks6hi/2y8cnwzgkzjnskqpxyae5jjvytuqekufyqt7jh/vkvvmf1tegdcoazmyqp7k+fwacwkgy</latexit> <latexit sha1_base64="qcye88vtfubvcaovrnprdiatxpw=">aaacxhicbzfbsxwxfmczo7brqu22bs9ehl0kfqnmrej7kui9icdluyrslemmk1mdswzm3hswbl6kny/9kjw77qf1+ydkl/97j5f8uzrsweyshyhew9948bkz2d3a3nn1uvfm7awtw8p4knwyntcftvwkzycouplrxncqcsmvitvtef7qfzdw1ponths+vnsirsuyxsdlpxuwo15vhr7cj5czbxai/f55nsj5pvgiwwuoc7nwnsebhh0w8+4imntn0b15h6hvuyymhsy5c1lrwq/v5wora1zrnt5ifd7rj4fjimav0ix0ytiu8t59vtasvvwjk9tauzo0ohbuogcs+27wwt5qdksnfbrqu8xt2c3m8fahkcvutqlliyzuvzscvdzovreqfcub+zw3f/+xg7vyfrk7ozswuwzpg6pwatywdxpkythdoq1amrhhrsbuapatw390gwnp8yevwuxgma38/bh/8m1pr4fskfdkn6tkmzkhz+scdakjd+rp1ik2o9/xerwv7zyvxtgy5x35j+ldr0sctai=</latexit> J1 + J2 X S n S n+1 = sgn(j1 J2 ) 3 3 n (1,2) = nn triangles sgn(j1j2) = -1 sgn(j1j2) = +1 Spin-1/2 AFH chain: gapless, c=1 CFT Spin-1/2 FH chain: non-critical 2) Currents by exact diagonalization Jijz <latexit sha1_base64="ybr3kkthpknmtpwszufju2b3qgk=">aaacj3icbvdlsgmxfm3uv62vuzdugkwoljaziuhgkborv5xab/qxznjmmzbzimkidzi/ceovubfurjf+izm2c229ehjyzr3cngmhjappgf9aaml5zxutvz7z2nza3tf39+rcdzkmnewznzdtjaijhqljkhlpbpwg12akyy+uer1xt7igvncnxwhpukjvuydijbvl6rdtf8kbriy6ibspvkshmtyhbycjhne4ksuwv+3mlqqr3yi1hixjnbzy1vayqkvpgkvjunarmdoqbboqwppru+fj0cwexawj0tknqhyixcxfjmszdihigpai9ullqq+5rhsiic8yhimmbx2fq+njogf/t0tifwls2qozcsxmtyt8t2uf0jnrrnqlqkk8pf3khaxkhyahwr7lbes2vgbhttvfir4glzfu0wzucoa85uvqlxvnhw9psuxlwrxpcaaoqq6y4bsuwtwogbra4be8gzfwrj1pl9qh9jlttwmzmx3wp7tvhy2do4u=</latexit> H1 pbc 1st excited state (triplet) i + = (Si Sj Si Sj+ ) 2 H3 obc g.s. <S2> = 12, Sz = 3 Compatible with original intuition

H1 : energy and entropy Algebraic energy convergence: gapless -0.57895-0.57895-2 -0.578955-5 -6-7 -8-9 -6-0.57896-0.578965-8 -0.578965 - -3-2 -1-0.57897-0.57897-0.578975-0.57898-4 -4-0.578955-4 -0.57896-9 -8-7 -6-5 -0.578975-3 -0.57898-2 -9-8 -7-6 -5 Entanglement entropy: c=1 CFT 2 4 1.9 3.5 1.8 3 1.7 1.6 2.5 1.5 2 1.4 1.3 1 2 3 1.5 0 1 2 3

H1 : correlation functions Critical correlation functions Spin-spin 0-1 Matches continuum limit Z 1 C(r) r -2 H g <latexit sha1_base64="mmshpbspzffgt/r8rrfh3k1g+tq=">aaacanicbzdlsgmxfiyz9vbrbdsvuakwow7kjai6lhbjsok9qduutjppqznjsdjigqy3voobf4q49snc+tam7sy09yfax3/o4et8owrug8/7dgorq2vrg8xn0tb2zu6eu3/q0ijrmdsxyej1qqqjo5w0dtwmdkqika4zayfj+rtevidku8hvzessiezdtiokkbfw3z2qv9qz7ceplxiavughnppzqjlyd8te1zsjloofqxnkavtdr95a4cqm3gcgto76njrbipshmjgs1es0kqip0zb0lxiuex2ksxmyegqdayyeso8bohn/t6qo1nosh7yzrmakf2tt879anzhrvzbslhndoj4vihigjydtpocakoinm1hawfh7v4hhymzgbgolg4k/epiytm6rvuxbi3ltoo+jci7bcagah1ycgrgbddaegdycz/ak3pwn58v5dz7mrqunnzkef+r8/gaeo5am</latexit> dx (JL,1 JR,2 JR,1 JL,2 ) <latexit sha1_base64="fy46rwicdfpahmwssggr5gigm/g=">aaacwhicbvfds8mwfe3r5+bx1edflg5bqauvqr9fx0r8mokmsi6rpukwljylurvh6z8ufnc/4ovzhkibfwlnnnmuyt0jmykmet67487nlywulveqk6tr6xu1za2wublmvmmuvpoppizlkfimcpt8kdocjqhkj+hgaqq/pnntheofcjjxtkj7qygfo2ipbk1dq0cztksx6eeguoqi0ale5qsekse4b/swhpuyw9we+iuelfl4w90fnprw9luf9dyopiewvt4eqldw9469cces8cegtibv6nzeg0ixpoepmkmnaftehp2cahrm8ria5iznla1oj7cttgnctacyb1pcnmuiijw2x642zn9pfdqxzpie1plq7jtpbut+p7vzjm87huizhhnkvi+kcwmoyjqyrejzhnjoawva2lcc61nngdq/qnoq/omvz0hr5ni3+o60fne5iwoz7jbdsk98ckyuydvpkczh5i18ovpogvphenfjrxxbxwcys03+llv1bedsshm=</latexit> -3 E.g., P.-Huang et al, PRB 95, 144413 (2017) -4 0 1 2 3 Vertical dimer-dimer -1-2 -3 C(r) -4 <latexit sha1_base64="32oadrjo3tnzecis5mjetwsqehc=">aaacd3icbzc7tsmwfiydrqxcaowsfhwolfwcimcs6mjyjhqrmla5rtnadrlldhcvltdg4vvygecilzwnt8ftm0dll1n69j9zdhz+gdmqlen8w0vlk6tr64wn4ubw9s6uvbffkkkqmgnihcwieybjgi1ju1hfsiclgqkakxywqk/q7xsije3iwzxmxi/qikyhxugzq2ef1mvifhqic5e8qc8ucgs30+joz/g809usy3p2yak4u8ffchmogvynnv3l9rocrirwmcepu67dla+rubqzkhw9vbko8agnsndgjciift29j4phxundmbhmxqpo3d8tgkvsjqpadezidev8bwl+v+umkrz0ny15qkimz4vclegvwek4se8fwyqndsasqpkrxenkclamwqijwz0/erfazxxx8e21vlvk4yiaq3aeysaff6agrkednaegj+azvii368l6sd6tj1nrkpxphia/sj5/an76nju=</latexit> -5-6 -7 0 1 2 3 1 r 5 4 Similar algebraic decays for other correlators

H1 : entanglement spectrum Entanglement spectrum of half an infinite chain comparison with spin-1/2 AFH chain 30 Same entang. spectrum 25 20 Same boundary CFT 15 Same (1+1)d-CFT 5 SU(2)1 WZW theory 0 0 1 2 3 Compatible with bosonization, Kadanoff blocking, etc Many open questions: H3? More legs? WZW limit?

OUTLOOK 1) Phase diagram and phase transitions of the topological ruby model with ipeps 2) AFH model on the star lattice has a competition between VBS phases. ipeps shows that one of them is a new phase with a 6-site unit cell 3) Structure matrix can be used to authomatize (at least some) PEPS methods to any lattice 4) SU(2) idmrg simulations of a chiral ladder suggest that it corresponds to a SU(2)1 WZW theory