PTRAN. McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ. Hugo Palmans

Similar documents
NPL s progress towards absorbed dose standards for proton beams

Published text: Institute of Cancer Research Repository Please direct all s to:

Dosimetry and beam calibration

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137

Simulation of light ion transport in a water phantom using Geant4.

Instrumentation for Verification of Dose

Instrumentation for Verification of Dose

Lecture notes on Chapter 13: Electron Monte Carlo Simulation. Nuclear Engineering and Radiological Sciences NERS 544: Lecture 13, Slide # 1:13.

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

Radiation Dosimetry. Electron interactions with matter. Important processes in radiotherapy. Contents. Alun Beddoe

Ranges of Electrons for Human Body Substances

Fluka advanced calculations on stopping power and multiple Coulomb scattering

3 Monte Carlo tools for proton dosimetry

assuming continuous slowing down approximation , full width at half maximum (FWHM), W 80 20

THE mono-energetic hadron beam such as heavy-ions or

Geant4 and Fano cavity : where are we?

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications

Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

8/3/2016. Chia-Ho, Hua St. Jude Children's Research Hospital. Kevin Teo The Hospital of the University of Pennsylvania

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

N. E. Ipe*, K. E. Rosser, C. J. Moretti, J. W. Manning and M. J. Palmer

ERRATA LIST AND UPDATES TO IAEA TRS-398 (2000) 1

Interazioni delle particelle cariche. G. Battistoni INFN Milano

Small field dosimetry

NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams

Secondary Radiation and Shielding Design for Particle Therapy Facilities

Updating reference dosimetry a decade after TG-51

Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy

From Russia with Love Monte Carlo Particle Transport Code SHIELD-HIT(10A)

Il picco di Bragg. G. Battistoni INFN Milano. 08/06/2015 G. Battistoni

7. a XV-2 high spatial resolution lm detector (Kodak). Important parameters of these detectors are given in Table1. The ionization chambers and the di

a). Air measurements : In-air measurements were carried out at a distance of 82cm from the surface of the light beam

Air Kerma Primary Standard: Experimental and. Simulation Studies on Cs-137. J. Cardoso, L. Santos, C. Oliveira

Chapter V: Cavity theories

FLUKA simulations of selected topics regarding proton pencil beam scanning

PHYS 5012 Radiation Physics and Dosimetry

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1

Shielding of Ionising Radiation with the Dosimetry & Shielding Module

Composite field dosimetry

Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification.

Limitations and benchmarks of EGSnrc

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

Monte Carlo radiation transport codes

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Radiation Transport Tools for Space Applications: A Review

Academy of Sciences, Moscow , Russia

COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES *

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

8/2/2012 UPDATING TG-51. When will it end? Part 1 - photon addendum. What are these updates? Photons: Electrons: More widespread revision required

Validity of the Analysis of Radiochromic Film Using Matlab Code

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles.

Dose detectors, sensors, and their applications

Shielding Design Considerations for Proton Therapy Facilities

2. Passage of Radiation Through Matter

Monte Carlo modeling of an electronic brachytherapy source using MCNP5 and EGSnrc

Monte Carlo Simulation concerning Particle Therapy

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Characterization of heavy charged particle fields using fluorescent nuclear track detectors

The Monte Carlo Method in Medical Radiation Physics

M.B. Chadwick.

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator

Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy

Towards Proton Computed Tomography

Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET)

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper

Comment on Proton beam monitor chamber calibration

Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water

PHITS calculation of the radiation field in HIMAC BIO

Monte Carlo commissioning of photon beams in medical LINACS using wide-field profiles in a water phantom

This is the third of three lectures on cavity theory.

AE9/AP9 Proton Displacement Damage Kernels (version 2)

Basic Radiation Physics of Protons

] T. The Mulassis Normalization factor. Omni-directional flux to Current [1]: Flux in Energy range of the simulation:

Bureau International des Poids et Mesures

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

FOREWORD In 1987 the IAEA published a Code of Practice entitled Absorbed Dose Determination in Photon and Electron Beams: An International Code of

Prompt Radiation Fields at Accelerators

Investigation of the standard temperature- pressure correction factor at low x-ray energies

The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through

INDC International Nuclear Data Committee

Reference Dosimetry for Megavoltage Therapy Beams: Electrons

STANDARD WATER PHANTOM BACKSCATTER FACTORS FOR MEDIUM ENERGY X-RAYS

Initial Studies in Proton Computed Tomography

arxiv: v2 [physics.med-ph] 29 May 2015

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Chapter 2: Interactions of Radiation with Matter

Particle Interactions in Detectors

An introduction to IAEA TRS-483

Electron therapy Class 2: Review questions

Fusion Neutronics, Nuclear Data, Design & Analyses - Overview of Recent FZK Activities -

III. Energy Deposition in the Detector and Spectrum Formation

Neutron dose assessments for MATROSHKA using the HPA PADC dosemeter

Monte Carlo radiation transport codes

Supplementary Information

DR KAZI SAZZAD MANIR

Transcription:

PTRAN McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ Hugo Palmans Centre for Acoustics & Ionising Radiation, National Physical Laboratory, Teddington, Middlesex, UK

Louvain-la-Neuve 1994 Why PTRAN? 1.07 1.06 D /D ion(eched) WaterCalorimeter 1.05 1.04 1.03 1.02 1.01 1.00 NE2571 FWT-IC18 Exr-T2 Exr-T2

Incidental remark Why PTRAN here? Order out of chaos: McPTRAN.MEDIA McPTRAN.CAVITY (&McPTRAN.CHAMBER) McPTRAN.RZ Illustrative

PTRAN Martin Berger 1993 (NISTIR 5113) Available through NEA, RSICC Designed for calculation of dose distributions in water

PTRAN: pre-calculated grid T 0 δs 0 f V (λ) 0 T 1 δs 1 f V (λ) 1 T 2 δs 2 f V (λ) 2 f M (ϑ) 0 f M (ϑ) 1 f M (ϑ) 2 σ nuc0 σ nuc1 σ nuc2 E 0 s 0 x 0 y 0 z 0 θ 0 ϕ 0 E 1 s 1 x 1 y 1 z 1 θ 1 ϕ 1 W 1 E 2 s 2 x 2 y 2 z 2 θ 2 ϕ 2 W 2 T n δs n f V (λ) n f M (ϑ) n σ nucn E n s n x n y n z n θ n ϕ n W n

Vavilov PTRAN: energy straggling 0.25 0.20 60 MeV E av = 0.25 MeV 0.15 f V (E) 0.10 0.05 0.00 0.10 0.20 0.30 0.40 0.50 E ( MeV)

Molière PTRAN: multiple scattering 0.040 60 MeV E av = 0.25 MeV 0.030 f M (θ) 0.020 0.010 0.000 0.0 0.2 0.4 0.6 θ (deg)

PTRAN: Total inelastic nuclear 600 interaction cross sections 500 σ (mbarn) 400 300 200 100 0 1 10 100 1000 E (MeV) Carlson et al, 1975 Renberg et al, 1972 PTRAN ICRU 63 Theoretical threshold (Selzer, 1993)

PTRAN: preparatory programs PARAM Parameters for Molière and Vavilov Path lengths in CSDA Nuclear attenuation coefficients VPREP: Vavilov distribution MPREP: Molière distribution

PTRAN: transport algorithm (x 0,y 0,z 0 ) = (0,0,0); (u 0,v 0,w 0 ) = (0,0,1) E 0 is only parameter E n E n-1 from Vavilov at nearest T i s n by interpolation θ from Molière at [T i,t i+1 ] & ϕ uniform between -180 and +180 degrees. (θ,ϕ ) transformed to (θ,ϕ) using [R] x, y, z calculated x, y, z transformed to x, y, z using [R] Stop when E n < E cut or E n < E fin and dump E n

PTRAN: random generator Default = congruential generator, period 2 28 Optional: Lagged Fibonacci (Marsaglia- Zaman, 1987) period 2 144

PTRAN: scoring geometry transport scoring z 1 /r 0 z i /r 0

PTRAN: scoring (de/dz) C, estimated as (S/ρ) cross W cross /cosθ cross (de/dz) N, estimated as E cross µ cross W cross /cosθ cross Φ estimated as 1/cosθ cross Spectral distribution of Φ and radial distribution of (de/dz) C

Input file Boundary file

Example: 60 MeV pdd de/dx MeV g -1 cm 2 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 PTRAN Geant4 - QGSP_BIC MCNPX 60 MeV protons in water 0.0 27.0 0.0 5.0 28.0 10.0 29.0 15.030.0 20.0 31.025.0 32.0 30.0 33.0 35.0 depth (mm)

Example: 250 MeV pdd de/dx MeV g -1 cm 2 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 250 MeV protons in water PTRAN Geant4 - QGSP_BIC 0 100 200 300 400 depth (mm)

Examples: proton spectra fluence 1E+00 1E-01 1E-02 (s w,air )=+0.03% (s w,air )=-0.04% Spectra at 0.9 x r 0 PTRAN-050MeV PTRAN-150MeV PTRAN-250MeV MCNPX-050MeV MCNPX-150MeV MCNPX-250MeV 1E-03 (s w,air )=-0.15% 1E-04 10.0 100.0 1000.0 E (MeV)

Example: radial distributions (150 MeV) 2.0 (de/dz)c (MeV cm 2 g -1 ) 1.5 1.0 0.5 z /r 0 = 0.90 z /r 0 = 0.50 z /r 0 = 0.99 0.0 0.0 5.0 10.0 15.0 r (mm)

McPTRAN.MEDIA: aim Other materials than water Inhomogeneous slab geometries Broad rectangular and circular beams Incident beam with energy distribution Incident beam with angular distribution Implementation of modulator wheel

McPTRAN.MEDIA: data Stopping powers: ICRU 49 (for materials not listed: Bragg + I 0 + Barkas) For Vavilov: S 1 and I 1 (from Inokuti et al. 1978, 1981 Phys. Rev. A 17:1229-1231 and 23:95-109) For Molière: k HF (from Berger and Wang 1988 ed. Jenkins ) Inelastic nuclear cross sections: Janni (1982) and ICRU 63 (for materials not listed: interpolation as a function of A)

s alanine,water McPTRAN.MEDIA: Stopping powers (consistent with ICRU 49) 1.01 1.00 0.99 Bragg ICRU49 recommend. Bragg alanine alanine pellet (NPL) s alanine,pmma 1.03 1.02 1.01 Bragg Bragg alanine ICRU49 recommend. alanine pellet (NPL) 0.98 ICRU49 recommend. 1.00 ICRU49 recommend. 0.97 0.99 1 10 100 1000 Energy (MeV) 1 10 100 1000 Energy (MeV)

McPTRAN.MEDIA: Total inelastic nuclear cross sections Janni ICRU63 σ inel /A (mbarn) 40.0 30.0 20.0 10.0 water graphite polystyrene A150 PMMA air 0.0 1 10 100 1000 E (MeV) 1 10 100 1000 E (MeV) aluminium

McPTRAN.MEDIA: geometry transport scoring z 1 z i (expressed in cm)

McPTRAN.MEDIA: boundary crossing Linear interpolation of Energy loss Angle Displacements x, y, z

McPTRAN.MEDIA: example: fluence correction factors D ( z ) = D ( z ). s pl.φ w w pl pl w, pl w z w = z pl. () z 0 w () z0 pl

McPTRAN.MEDIA: example: fluence correction factors 6% Janni ICRU 63 3% 4% 2% φ w PMMA -1 2% 0% 50 MeV -2% 100 MeV 150 MeV -4% 200 MeV 250 MeV -6% 0 0.2 0.4 0.6 0.8 1 z/z 0 1% 0% -1% -2% -3% 0.0 0.2 0.4 0.6 0.8 1.0 z/z 0

McPTRAN.MEDIA: example: fluence correction factors 1.04 1.00 1.03 0.95 sw,pmma 1.02 1.01 (σ n/a)w,pmma 0.90 0.85 0.80 0.75 ICRU 63 Janni (1982) 1.00 1 10 100 1000 E (MeV) 0.70 0 50 100 150 200 E (MeV)

McPTRAN.MEDIA: example: fluence correction factors correct conversion 6% Janni ICRU 63 3% φ w PMMA -1 4% 2% 2% 1% 0% 0.0 0.2 0.4 0.6 0.8 1.0 z/z 0 0% 0.0 0.2 0.4 0.6 0.8 1.0 z/z 0

6% McPTRAN.MEDIA: example: fluence correction factors 3% φ w PMMA -1 4% 2% 2% 1% 0% 0.0 100 200 300 400 z 0 -z res (mm) 0% 0.0 100 200 300 400 z 0 -z res (mm) D w ( z w ) = D pl ( z pl ) [( ρ) + ( σ )] S E A wpl, e N A T0 T S w 1 σ ( T ') A w S pl 1 σ ( T ') A pl dt '

McPTRAN.MEDIA versus McNP and Geant: fluence correction factors PTRAN GEANT4 MCNPX fluence correction factor 1.030 1.020 1.010 1.000 (a) (b) (c) 0.990 0.980 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 water equivalent depth (cm) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

McPTRAN.MEDIA: example: bone slab in water 1.02 1.010 de/dz (Mev cm 2 g -1 ) 1.00 0.98 0.96 0.94 0.92 0.90 D bone /D water D (water/bone) /D water 0 50 100 150 200 250 300 depth (mm water) 1.005 1.000 0.995 0.990

McPTRAN.MEDIA: modulator wheel transport sampled from 0.15 1.0 dϕ /de E relative contribution 0.10 0.05 0.8 0.6 0.4 0.2 cumulative distribution z 1 0.00 0 10 20 30 40 thickness (mm) 0.0 z i d wheel

Interlude: Modulator wheel in GEANT4 (Paganetti 2004 Phys. Med. Biol. 49:N75-N82)

McPTRAN.MEDIA + modwheel: example: spectra in modulated proton beam 1E+00 dϕ/de (MeV -1 ) 1E-01 1E-02 z/r 0 = 1.0 z/r 0 = 0.9 z/r 0 = 0.6 z/r 0 = 0.3 1E-03 0 20 40 60 80 100 E (MeV)

McPTRAN.MEDIA: example: stopping power ratios in modulated proton beam 0.0 % difference with mono-e -0.2-0.4-0.6-0.8-1.0-4.8% x E eff -0.71 Palmans and Verhaegen (1998) Medin and Andreo (1992) 0 50 100 150 200 250 E eff (MeV)

McPTRAN.CAVITY: geometry & scoring dϕ /de E geometry interrogation region z 1 z i d wheel

McPTRAN.CAVITY: example: p wall,gr 1.050 1.040 relative dose 1.030 1.020 1.010 McPTRAN.CAVITY Experiment 1.000 0.990 0.0 2.0 4.0 6.0 8.0 10.0 thickness wall + build-up cap (mm)

McPTRAN.CAVITY: example: gradient corrections for thimble IC (see grid calculation demo) Dair (MeV g -1 ) per proton per cm 2 70.0 60.0 50.0 40.0 30.0 20.0 10.0 60 MeV 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 depth (mm)

McPTRAN.CAVITY: example: secondary electron perturbation (Verhaegen and Palmans, Med. Phys. 28:2088-2095) 1.020 1.015 1.010 1.005 Dw,NE2571/Dw,Chamber 1.000 0.995 C/C PTW-30002 Wellhöfer-IC70 A-150/Al NE2581 PTW-30001 PTW-30006 Wellhöfer-IC69 Nylon 66/Al FTW-IC18 Exradin-T2 Chamber

McPTRAN.RZ dϕ /de E z 1 z i (expressed in cm)

McPTRAN.RZ: example: Alanine stack in PMMA

McPTRAN.RZ: example: Alanine stack in PMMA 10.0 8.0 D (MeV g -1 ) 6.0 4.0 2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 depth (cm)

That s all folks Thanks!