Status and Future of the HESS experiment

Similar documents
Galactic sources in GeV/TeV Astronomy and the new HESS Results

Application of an analysis method based on a semi-analytical shower model to the first H.E.S.S. telescope

Simulations for H.E.S.S.

H.E.S.S. High Energy Stereoscopic System

H.E.S.S. High Energy Stereoscopic System

TEV GAMMA RAY ASTRONOMY WITH VERITAS

The H.E.S.S. Standard Analysis Technique

Performance and Sensitivity of H.E.S.S.

The early days of ground-based gamma-ray astronomy in France. Gerard Fontaine - Hillas symposium Heidelberg December

DATA ANALYSIS: EXTRACTING SCIENCE FROM MAGIC

Recent Observations of Supernova Remnants

Recent Results from CANGAROO

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

RECENT RESULTS FROM CANGAROO

Analysis methods for Atmospheric Cerenkov Telescopes. Mathieu de Naurois

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration

Monte Carlo Simulation and System Layout

Cherenkov Telescopes for Gamma-Ray Astrophysics

Are supernova remnants PeV accelerators? The contribution of HESS observations

HAP-Fr, a pipeline of data analysis for the H.E.S.S. II experiment

arxiv: v1 [astro-ph.he] 9 Sep 2015

H.E.S.S. Highlights. Pierre Brun for the H.E.S.S. collaboration August 2014, Quy Nhon Vietnam

arxiv: v1 [astro-ph.im] 17 Sep 2015

Monte Carlo Studies for CTA

Status of the MAGIC telescopes

The DISP analysis method for point-like or extended γ source searches/studies with the MAGIC Telescope

Improving H.E.S.S. cosmic-ray background rejection by means of a new Gamma-Ray Air Shower Parametrisation (GRASP)

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

CANGAROO-III: Status report

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

Variable atmospheric transparency studies for the MAGIC telescopes

TeV to PeV Gamma-ray Astronomy with TAIGA

Monte Carlo Studies for a Future Instrument. Stephen Fegan Vladimir Vassiliev UCLA

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

TAIGA-HiSCORE results from the first two operation seasons

OBSERVATIONS OF VERY HIGH ENERGY GAMMA RAYS FROM M87 BY VERITAS

VERITAS Performance Gernot Maier

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

arxiv: v1 [astro-ph.im] 7 Sep 2015

A New TeV Source in the Vicinity of Cygnus OB2

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope

Calibrating Atmospheric Cherenkov Telescopes with the LAT

Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte for the MAGIC collaboration

The VelaX pulsar wind nebula in the TeV regime. Bernhard Glück for the H.E.S.S. Collaboration July 8th, 2009, Boston

VHE Gamma-Ray Future Project: Beyond CANGAROO

Search for TeV Radiation from Pulsar Tails

Observations of the Crab Nebula with Early HAWC Data

VERITAS: exploring the high energy Universe

AGIS (Advanced Gamma-ray Imaging System)

Dieter Horns, MPI-K, Heidelberg 3 H46+48 (Aharonian et al. ) ES (Götting et al. ICRC ) Mkn 5 (Bradbury et al. 997, Aharonian et al. 997,999a,999

CANGAROO. September 5, :13 Proceedings Trim Size: 9in x 6in morim

Multiwaveband Observations of the TeV Blazar PKS with HESS, Fermi, RXTE and Swift

VERITAS Observations of Supernova Remnants

Investigation of Observation Quality Parameters for H.E.S.S.-II

The Milky Way in VHE γ-rays. Christopher van Eldik Max-Planck-Institut für Kernphysik Heidelberg

The origin of NORMAL cosmic rays First results from H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg

COSMIC RAY COMPOSITION.

experiment, we will describe the upgraded parameters of the HESS camera. Then the set-up and expected performance are presented.

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

TeV Gamma Rays from Synchrotron X-ray X

TenTen: A new IACT Array for Multi-TeV Gamma-Ray Astronomy

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

(Future) Experiments for gamma-ray detection

GRB observations at very high energies with the MAGIC telescopes

Highlights from the ARGO-YBJ Experiment

Ground Based Gamma Ray Astronomy with Cherenkov Telescopes. HAGAR Team

A Novel Maximum Likelihood Method For VERITAS Analysis

The Whipple Collaboration

Observations of the Shell-Type Supernova Remnants RX J and RX J (Vela Junior) with H.E.S.S.

Recent highlights from VERITAS

H.E.S.S. contributions to the 28th International Cosmic Ray Conference Tsukuba, Japan. July 31 - August 7, 2003

arxiv: v1 [astro-ph] 26 Apr 2007

Gamma-ray Astrophysics

Diffuse TeV emission from the Cygnus region

Multi-TeV to PeV Gamma Ray Astronomy

A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array

FACT. Alerts from TeV Gamma Rays in the Context of Multi Messenger Astrophysics. Daniela Dorner for the FACT Collaboration

Non-thermal emission from pulsars experimental status and prospects

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Mirror Alignment and Optical Quality of the H.E.S.S. Imaging Atmospheric Cherenkov Telescopes

arxiv:astro-ph/ v1 23 May 2000

Extreme high-energy variability of Markarian 421

Second large-scale Monte Carlo study for the Cherenkov Telescope Array

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

Recent Results from VERITAS

Integral flux (cm -2 s -1 )

Recent results from CANGAROO-III

PoS(ICRC2017)765. Towards a 3D analysis in Cherenkov γ-ray astronomy

CANGAROO. Masaki Mori* for the CANGAROO team. *ICRR, The University of Tokyo

Detection of TeV Gamma-Rays from Extended Sources with Milagro

Recent results in very high energy gamma ray astronomy

Hadronic Interaction Studies with ARGO-YBJ

Results from the Telescope Array Experiment

The air-shower experiment KASCADE-Grande

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere.

Gamma-ray Observations of Blazars with VERITAS and Fermi

Future Gamma-Ray Observations of Pulsars and their Environments

Aldo Morselli, INFN & Università di Roma Tor Vergata, 1. Scineghe07. Aldo Morselli

Transcription:

Status and Future of the HESS experiment Martin Tluczykont for the HESS Collaboration LLR Ecole Polytechnique Joint Symposium on GeV-TeV Astrophysics in the GLAST Era Stanford, September 2004 HESS Phase 1 Status Performance Operation and Observations HESS Phase 2 Concept Expectations Collaboration with GLAST

HESS 1: Stereoscopic System of 4 Cherenkov Telescopes Namibia, Khomas Highlands (23 S, 15 E) Altitude 1800 m 380 mirrors 12 m relectors (4 107 m2 ) 960 PMT cameras (0.16 ) Fast trigger coincidence Electronics integrated in Cameras 5.3 FoV Energy threshold 100 GeV Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 2/26

HESS I Phase 1 Completed First light telescope 1 : June 2002 Two telescopes : March 2003 Stereoscopy : July 2003 Three telescopes : September 2003 Four telescopes : December 2003 Phase 1 completed and operational! Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 3/26

The Mirror Alignment Data PSF 2.3 off axis MC Individual mirror facets steerable Alignment of facets using stars PSF well within specifications Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 4/26

The Mirror Alignment Data PSF 2.3 off axis MC Individual mirror facets steerable Alignment of facets using stars PSF well within specifications Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 5/26

The Mirror Alignment Data PSF 2.3 off axis MC Individual mirror facets steerable Alignment of facets using stars PSF well within specifications Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 6/26

Simulation, Calibration & Analysis Monte Carlo simulations CORSIKA + sim hessarray KASKADE + smash 2 Calibration chains Heidelberg Paris Background subtraction Geometric models Template-model Likelihood-based model Different Calibration methods Laser System Single ph.e. Muon rings Shower reconstruction methods Standard Hillas reconstruction Semi-analytical model 3D-Model Redundance gives confidence: Robust results Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 7/26

HESS 1 Performance: The Crab Nebula (preliminary) HESS: Crab Nebula Preliminary High zenith angle (E thr 325 GeV) Independent analyses give consistent results Spectral index: α = 2.59 ± 0.04 Compatible with previous results Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 8/26

HESS 1 Performance: Sensitivity 0.01 Crab in 25 h 0.05 Crab in 1 h Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 9/26

HESS 1 Performance: Angular resolution Standard analysis: Angular resolution < 0.10 300 250 HESS Preliminary Crab Nebula 2 χ / ndf 216 / 23 p0 324.9 ± 23.59 p1 0.06771 ± 0.001988 200 events 150 100 50 0 0 0.05 0.1 0.15 0.2 0.25 2 2 squared angular distance θ [deg ] Improving with more sophisticated models (Semi-Analytical model & 3D-Model) Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 10/26

HESS 1 Performance: Extended objects / Images Skymaps of Field of View HESS: 1 st ever VHE image 5 deg Field of View Independent Background estimations: Ring-background Template-model Likelihood-based Angular resolution < 0.1 Pointing error 20 Optimum conditions for extended sources and surveys Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 11/26

HESS 1 Performance: Energy Reconstruction MC Energy resolution: 10-20 % Reconstruction bias < 10 % Crab Nebula Spectrum α = 2.59 ± 0.04 stat Whipple: α = 2.49 ± 0.07 HEGRA: α = 2.62 ± 0.05 CAT: α = 2.76 ± 0.04 Flux (E>1 TeV): 2.16 ± 0.08 10 7 m 2 s 1 Whipple: 2.15 ± 0.43 10 7 m 2 s 1 HEGRA: 1.75 ± 0.37 10 7 m 2 s 1 CAT: 1.78 ± 0.39 10 7 m 2 s 1 Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 12/26

HESS Observations Object Significance Flux [σ] [Crab] Crab Nebula > 50 1.00 PSR B1259-63/SS2823 >10 0.05 HESS J1303-63 18 0.10 RXJ 1713.7-3946 20 0.66 Galactic Center 9 0.05 Mrk 421 >50 0.5-5 PKS 2155-304 45 0.10-0.60 1 st source of new HESS catalogue!! Most efficient shift so far : 90 % η 70% Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 13/26

The Future: HESS Phase 2 Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 14/26

HESS Phase 2 = HESS 1 + Very Large Telescope HESS Phase II : additional very large central telescope Event Classes : 1. Mono : VLCT 2. Stereo : VLCT+ LCT or LCT+ LCT HESS I (4 x LCT) Very Large Cherenkov Telescope Very Large Cherenkov Telescope: Reflector : 28 m ( 600 m 2 ) Focal distance 35 m Camera: diam. 2.5 m ( 2000 kg) 2048 PMTs (0.07 /pixel) FoV : 3.5 Trigger rate 2.5-20 khz Faster memories needed ( 500 khz) Minimize data flow: 2 nd level trigger Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 15/26

HESS Phase 2 = HESS 1 + Very Large Telescope HESS Phase II : additional very large central telescope Event Classes : 1. Mono : VLCT 2. Stereo : VLCT+ LCT or LCT+ LCT HESS I (4 x LCT) Very Large Cherenkov Telescope MC Simulation: 30 GeV γ-ray Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 16/26

HESS Phase 2 in Namibia Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 17/26

HESS Phase 2 : Expectations Energy threshold Sensitivity: Stereoscopic mode New HESS event class: E 10-50 GeV Increase sensitivity for E 50-100 GeV Improve resolution for E > 100 GeV Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 18/26

HESS: Summary HESS Phase I completed and fully operational Planned performance achieved (E thr = 100 GeV, Sensitivity 0.05 Crab in 1 h) Outstanding new results Potential for more HESS Phase II is being planned: Objective: close the gap to GLAST Method: additional Very Large Central Telescope Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 19/26

Connecting HESS with GLAST

Future collaboration with GLAST Overlapping energy regime : Observations of the same particle population GLAST trigger for HESS-observations HESS will produce sensitive variability studies Simultaneous observations of a steady source Intercalibration Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 21/26

Future collaboration with GLAST : Intercalibration Flux Intercalibration in the GeV regime HESS II : Systematics GLAST : Systematics schematical, steady state source GLAST : Statistics < 50 GeV approx. 300 GeV HESS II : Statistics MeV GeV TeV Energy Simultaneous observations of steady source estimation of the systematic error of HESS estimation of the statistical error of GLAST Work underway (Pol d Avezac & Martin Tluczykont) Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 22/26

Backup Transparencies Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 23/26

Stereoscopic Observation Technique Hofmann algorithm nr. 3 events 3000 2500 2000 1500 Crab Nebula signal region (N on ) background region (N off ) tracking direction θ reconstructed shower direction 1000 CT System 500 0 0 0.02 0.04 0.06 0.08 0.1 2 2 squared angular distance θ, [deg ] 2 images superposition:... in the camera direction (θ)... at observation level core impact position Hadron rejection: core + amplitude + zenith angle mean scaled width (mscw) frequency 700 600 500 400 300 200 100 0 Crab Nebula θ 2 <0.05 deg 2 photons 36.17 / 11 Constant 634.9 17.63 Mean 0.9987 0.2422E-02 Sigma 0.9499E-01 0.2023E-02 signal region (photons + hadrons) background region (hadronen) signal - background = photonen Gauß fit to photons hadrons 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 mscw Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 24/26

What kind of objects to observe for inter calibration? Steady state source: simplifies a lot Hadronic Naive: straight power law More efficient acceleration at GeV energies? Leptonic? 2 1 1 dn/de, [photons cm s MeV ] 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 10 21 10 22 EGRET data 3EG J2033+4113 GLAST? HEGRA data TeV J2035+415 HESS? 10 2 10 3 10 4 10 5 10 6 10 7 energy, [MeV] ], arb. units -1 TeV -1-2 m flux [ph. s 1 10-1 10-2 energy spectrum index: Γ = 2.2 R± 0.2 stat (H.E.S.S., preliminary) Possible Candidate: HESS 1303-63 Power law: α = 2.2 Flux: 0.1 Crab (E>1 TeV) 10-3 GLAST-detection: O(days) 2 4 6 8 10 12 energy [TeV] Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 25/26

Calibration LED system: Single photo electron spectrum Determination of conversion factors Laser Flatfielding: relative PMT amplitudes Single ph.-electron: conversion factor (gain) Muon Calibration: verification Entries 2 450 χ /dof 1.060 Norm 50314 P 27.31±0.26 400 σ P 16.10 ±0.19 γ e 80.78 ±0.80 350 σ γe 0.46 ±0.01 µ 1.11 ±0.01 300 250 200 150 100 50 Pedestal Single photo electron peak 0 100 50 0 50 100 150 200 250 300 ADC counts (arbitrary offsets) Muon Ring Calibration 0.24 0.22 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 Data Simulation Corrected Simulation 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 N. Leroy, 2004 collection efficiency Martin Tluczykont for the HESS Collaboration Martin.Tluczykont@poly.in2p3.fr 26/26