On the volume conjecture for quantum 6j symbols

Similar documents
On the growth of Turaev-Viro 3-manifold invariants

Generalized volume and geometric structure of 3-manifolds

Evgeniy V. Martyushev RESEARCH STATEMENT

Optimistic limits of the colored Jones polynomials

Geometric structures of 3-manifolds and quantum invariants

On the Volume of a Hyperbolic and Spherical Tetrahedron

arxiv:math/ v1 [math.gt] 24 Jun 2002

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

On the volume of a hyperbolic and spherical tetrahedron 1

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME

RE-NORMALIZED LINK INVARIANTS FROM THE UNROLLED QUANTUM GROUP. 1. Introduction

Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology

TitleColored Alexander invariants and co. Citation Osaka Journal of Mathematics. 45(2)

Homological representation formula of some quantum sl 2 invariants

Knot invariants, A-polynomials, BPS states

Super-A-polynomials of Twist Knots

Volume Conjecture: Refined and Categorified

Patterns and Stability in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

Knot polynomials, homological invariants & topological strings

arxiv: v1 [math.gt] 25 Feb 2017

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

A topological description of colored Alexander invariant

TORUS KNOT AND MINIMAL MODEL

Dijkgraaf-Witten invariants of cusped hyperbolic 3-manifolds

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS The state sum invariant of 3-manifolds constructed from the E 6 linear skein.

On the complex volume of hyperbolic knots Yoshiyuki Yokota Tokyo Metropolitan University

Some distance functions in knot theory

Knots and Physics. Lifang Xia. Dec 12, 2012

The Seidel problem on the volume of hyperbolic tetrahedra

Do Super Cats Make Odd Knots?

Towards a modular functor from quantum higher Teichmüller theory

arxiv: v1 [math.cv] 14 Nov 2017

CALCULUS II MATH Dr. Hyunju Ban

Evaluation of sl N -foams. Workshop on Quantum Topology Lille

QUANTUM REPRESENTATIONS AND MONODROMIES OF FIBERED LINKS

Reidemeister torsion on the variety of characters

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

DENSITY SPECTRA FOR KNOTS. In celebration of Józef Przytycki s 60th birthday

On the Mahler measure of Jones polynomials under twisting

Quantum Algorithms Lecture #3. Stephen Jordan

(Quantum) Super-A-polynomial

The Dual Jacobian of a Generalised Hyperbolic Tetrahedron, and Volumes of Prisms

Knot Homology from Refined Chern-Simons Theory

Mahler measure of the A-polynomial

Alexander polynomial, finite type invariants and volume of hyperbolic knots

K-theoretic analog of Postnikov Shapiro algebra distinguishes graphs

Loop Quantum Gravity 2. The quantization : discreteness of space

On the Volume Formula for Hyperbolic Tetrahedra

CHERN-SIMONS THEORY AND WEYL QUANTIZATION Răzvan Gelca

Knot Contact Homology, Chern-Simons Theory, and Topological Strings

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

Problems on invariants of knots and 3-manifolds

CHERN-SIMONS THEORY AND LINK INVARIANTS! Dung Nguyen! U of Chicago!

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS

The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space

Research Statement Katherine Walsh October 2013

Quandle theory and optimistic limits of representations of knot groups

A manifestation of the Grothendieck-Teichmueller group in geometry

Problems on Low-dimensional Topology, 2017

Kazuhiro Ichihara. Dehn Surgery. Nara University of Education

arxiv: v2 [math.gt] 18 Nov 2017

Sec. 1.1: Basics of Vectors

Moment map flows and the Hecke correspondence for quivers

. Consider the linear system dx= =! = " a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z

Ma 530 Power Series II

STAVROS GAROUFALIDIS AND THOMAS W. MATTMAN

Observables in the Turaev-Viro and Crane-Yetter models

Generalised Rogers Ramanujan identities and arithmetics. Ole Warnaar School of Mathematics and Physics

arxiv: v2 [hep-th] 12 Sep 2018

Polylogarithms and Hyperbolic volumes Matilde N. Laĺın

Worksheet 7, Math 10560

Cabling Procedure for the HOMFLY Polynomials

Infinite series, improper integrals, and Taylor series

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

arxiv:math/ v4 [math.gt] 24 May 2006 ABHIJIT CHAMPANERKAR Department of Mathematics, Barnard College, Columbia University New York, NY 10027

Categorification and (virtual) knots

Infinitely many corks with special shadow complexity one

Preface. The version of the textbook that has been modified specifically for Math 1100 at MU is available at:

THE STRUCTURE OF A RING OF FORMAL SERIES AMS Subject Classification : 13J05, 13J10.

Kontsevich integral in topological models of gravity

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin

Geometric Estimates from spanning surfaces of knots

LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS

Introducing an Analysis in Finite Fields

Knots-quivers correspondence, lattice paths, and rational knots

MATH 409 Advanced Calculus I Lecture 25: Review for the final exam.

2.2 The derivative as a Function

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

Modular forms and Quantum knot invariants

Spin foam vertex and loop gravity

THE NEXT SIMPLEST HYPERBOLIC KNOTS

arxiv: v3 [math.gt] 16 Jun 2018

arxiv:q-alg/ v1 24 Apr 1995

Dunkl operators and Clifford algebras II

LOWELL JOURNAL. DEBS IS DOOMED. Presldrtit Cleveland Write* to the New York Democratic Rilltors. friends were present at the banquet of

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

arxiv: v1 [math.gt] 22 Oct 2017

Lattice polygons. P : lattice polygon in R 2 (vertices Z 2, no self-intersections)

Mathematics for Business and Economics - I. Chapter 5. Functions (Lecture 9)

Bruhat Tits buildings and representations of reductive p-adic groups

Transcription:

On the volume conjecture for quantum 6j symbols Jun Murakami Waseda University July 27, 2016 Workshop on Teichmüller and Grothendieck-Teichmüller theories Chern Institute of Mathematics, Nankai University

Contents Quantum Invariants Volume Conjecture Quantum 6j symbol 2/22

Overview Quantum Invariants Volume Conjecture Quantum 6j symbol 3/22

Jones Polynomial Jones polynomial (1984) ` U q (sl 2 ) t`1 V K`(t) ` t V K+ (t) = t 1=2 ` t`1=2 V K0 K + : K` : K 0 : jk 1 j : Cf. Alexander polynomial r K+ (z)`r K`(z) = z r K0 (z) HOMFLY-PT polynomial (1987) ` U q (sl n ) a`1 P K`(t) ` a P K+ (t) = t 1=2 ` t`1=2 P K0 Kauffman polynomial (1987) ` U q (so n ); U q (sp 2n ) a`1 F jk`j(t) ` a F jk+j(t) = t 1=2 ` t`1=2 F jk0j ` F jk1j 4/22

Overview Quantum Invariants Volume Conjecture Quantum 6j symbol 5/22

Kashaev s conjecture Let L be a knot and K N (L) be the quantum invariant introduced by Kashaev. Then 4 1 : 5 2 : 6 1 : 2 ı lim N!1 N log jk N(L)j = Vol(S 3 n L): N`1 X K N (4 1 ) = j(q) k j 2, ky (q) k = (1 ` q j ) k=0 j=1 `! N!1 2.02988321... K N (5 2 ) = X k»l K N (6 1 ) = X k+l»m q`k(l+1)=2 (q) 2 l (q`1 ) k `! 2.82812208... N!1 q (m`k`l)(m`k+1)=2 j(q) mj 2 (q) k (q`1 ) l `! 3.16396322... N!1 K N (L) is equal to the colored Jones inv. V N L (q) for N-dim. rep. of U q (sl 2 ) at q = exp 2ı p`1=n. (H. Murakami-J.M.) 6/22

Generalizations of Kashaev s Conjecture s N = exp(ı p`1=n), q N = s 2 N. Volume Conjecture. (H. Murakami-J.M.) L : a knot 2 ı lim N!1 N log V N L (q N) = VolGr (S 3 n L); where Vol Gr is Gromov s simplicial volume. Complesified Volume Conjecture (H.Murakami-J.M.-M.Okamoto-T.Takata-Y.Yokota) L : hyperbolic knot 2 ı q lim N!1 N log V N L (q N) = Vol(S 3 n L) + `1 CS(S 3 n L): 7/22

Proof for the figure-eight knot (Ekholm) K : figure-eight knot, s N = exp(ı p`1=n), q N = s 2 N. N`1 X jy V N K (s N) = (s N`k N j=0 k=1 N`1 X ` s`n+k N )(s N+k N ` s`n`k N ) = jy j=0 k=1 4 sin 2 ık N : Let a j = Q j ık k=1 4 sin2 N and a j max be the max. term of a j. Since a jmax» V N K (s N)» N a jmax, 2ı log a lim jmax N!1 N 2ı log V» lim N K (sn) N!1 N 2ı log(n a» lim jmax ) N!1 N 2ı log(a = lim jmax ) : N!1 N a j is decreasing for small j s, increasing for middle j s and then decreasing for large j s. It takes the maximal at j 5N 6. Since a 0 = 1, a N`1 = N 2, a j is maximum at j 5N 6. Therefore 2ı log(a jmax ) lim N N!1 4 Z 5ı 6 0 4ı P 5N=6 k=1 log(2 sin ık=n) = lim N!1 N! log(2 sinx) dx = `4 5 ı 6 = = 2:02988321::: 8/22

Volume potential function Dilogarithm function Analytic continuation of Z x log(1`u) Li 2 (x) = ` du = x+ x 2 3 u 2 +x + (0 < x < 1): 2 32 0 It is a multi-valued function and its branches are q li 2 (z) = Li 2 (z) + 2 k ı `1 log z + 4 l ı 2 (k; l 2 Z) Volume potential function U(x 1 ; x 2 ; : : : ) The function obtained by replacing (q) k in U q (sl 2 )-invariant by Li 2 (x) (x = q k N ). Saddle points of the volume potential function Points satisfying @U @x i = 0 (i = 1; 2; : : : ). These equations correspond to the glueing equation of the tetrahedral decomposition (Yokota). 9/22

Hyperbolic volume from the saddle point K : hyperbolic knot, U : Volume potential function of V N K (q N) (colored Jones) Hyperbolic volume! For some x (0) 1, x (0) @U 2, : : : satisfying exp = 1, @x i U(x (0) 1 ; x (0) 2 ; : : : ) ` X @U log x (0) @x i i x1=x (0) 1 ; i is the hyperbolic volume of the complement of K (Yokota, J. Cho). Optimistic calculation (H.Murakami, arxiv:math/0005289) M : 3-manifold fi N (M) : Witten-Reshetikhin-Turaev invariant Check that fi N (M) `! hyperoblic volume of M for M obtained by surgery along the figure-eight knot. Optimistic conjecture U q (sl 2 ) inariant `! hyperbolic volume 10/22

q N `! q 2 N Attention! The U q (sl 2 )-invariant grows exponentially only for Kashaev s invariant and its deformation. For other U q (sl 2 )-invariants, they does not grow exponentially. Renovation by Q. Chen-T. Yang arxiv:1503.02547 Replace q N = exp(2ı p`1=n) by q 2 N. Various U q (sl 2 )-invariants grow exponentially and the growth rates are given by the hyperbolic volume of the corresponding geometric objects. Including: WRT invariant, Turaev-Viro inv. for 3-mfds, Kirillov-Reshetikhin invariant for knotted graphs 11/22

Overview Quantum Invariants Volume Conjecture Quantum 6j symbol 12/22

Quantum 6j symbol The quantum 6j symbol is introduced to express 0 1 0 1 V m,! X ȷ ff V @ V l V k,! A i j l m,! = @ V m k n i V n,! A V i V j V k q n V i V j V k for representations of U q (sl 2 ) by Kirillov-Reshetikhin. fkg = fq 1=2 ` q`1=2 g; fkg! = fkg fk ` 1g : : : f1g; fc + 1g W 1 (e) = f1g ; W f c1+c2+c3 + 1g! 2 2(f ) = f1g f `c1+c2+c3 g!f c1`c2+c3 g!f c1+c2`c3 g! ; 2 2 2 ȷ ff «c1 c 2 c 5 c1 c ȷ ff 2 c 5 RW c1 c 2 c 5 c 4 c 3 c 6 q c 4 c 3 c 6 = p = p c 4 c 3 c ; 6 q W1(c5) W 1(c 6) W2(1;2;5) W 2(1;3;6) W 2(2;4;6) W 2(3;4;5) «min(ax 1;:::;A 3) c1 c 2 c 5 (`1) k fk + 1g! = c 4 c 3 c 6 f1g fa 1 ` kg! : : : fa 3 ` kg! fk ` B 1g! : : : fk ` B ; 4g! k=max(b 1; ;B 4) where 2 A 1 = c 1 + c 2 + c 3 + c 4 ; 2 B 1 = c 1 + c 2 + c 5 ; 2 A 2 = c 1 + c 4 + c 5 + c 6; 2 B 2 = c 1 + c 3 + c 6; 2 A 3 = c 2 + c 3 + c 5 + c 6 ; 2 B 3 = c 2 + c 4 + c 6 ; 2 B 4 = c 3 + c 4 + c 5: Here we assume c 1,, c 6 are admissible, i.e. A i, B j, A i ` B j 2 Z 0. 13/22

Turaev-Viro invariant State sum on a tetrahedral decomposition Let s N = exp( ıp`1 `k sk N`sN ), [k] =, [k]! = [k][k ` 1] [1], N s N`s `1 N I N = f0; 1; : : : ; N ` 2g. Turaev-Viro invariant Let M be a closed 3-manifold and let be a tetrahedral decomposition of M. Let T, F, E be the set of tetrahedrons, faces, edges of. Then TV N (M) = X : E! I N admissible Y W 1 (e) Y W 2 (f )`1 Y W 3 (t): e2e f 2F t2t TV! potential fun.! saddle pt.! hyp. volume Quantum 6j symbol quantum 6j! potential symbol function! saddle hyperbolic volume! point of tetrahedron (J. M.-M. Yano) 14/22

Chen-Yang s invariant and q `! q 2 Let s N = exp(ı p`1=n) and q N = s 2 N. Chen-Yang s invariant Extend TV-invariant for 3-manifolds with boundary by using ideal tetrahedrons and truncated tetrahedrons. Conjecture (Q.Chen-T.Yang, arxiv:1503.02547) Let M be a 3-manifold N be a positive odd integer, CY N (M) be Chen-Yang s invariant, fi N (M) be the WRT invariant, and TV N (M) be the Turaev-Viro invariant of M. Then we have 2 ı 1. lim CY N!1 N log N (M)j sn!s 2 = Vol(M) + N «4 ı 2. lim fi N!1 N log N (M)j sn!s 2 = Vol(M) + N «q `1 CS(M) q `1 CS(M) 2 ı 3. lim TV N!1 N log N (M)j sn!s 2 = Vol(M); N since 2. and the fact that TV N (M) = jfi N (M)j 2. «15/22

Volume conjecture for the quantum 6j symbol Conjecture T : hyperbolic tetrahedron with dihedral angles 1, : : :, 6, N : positive odd integer, a (N) 2 ı i : admissible sequences with lim N!1 N a(n) i = ı ` i, (1» i» 6) Then 8 2 ı lim N!1 N log < a (N) 1 a (N) 2 a (N) 9 RW = 5 : a (N) = Vol(T ): ; 4 a (N) 3 a (N) 6 Theorem The above conjecture is true if all the vertices are truncated, i.e. the sum of the three dihedral angles sharing a vertex is less than ı. q 2 N 16/22

Proof Use the same idea for the proof for figure-eight knot. If the terms of the sum are all positive, then only the maximum term contributes to the limit. Recall ȷ ff RW c1 c 2 c 5 c 4 c 3 c 6 q = «c1 c 2 c 5 c 4 c 3 c 6 p ; W2(c1;c 2;c 5) W 2(c 1;c 3;c 6) W 2(c 2;c 4;c 6) W 2(c 3;c 4;c 5) f c1+c2+c3 + 1g! 2 W 2(f ) = f1g f `c1+c2+c3 g!f c1`c2+c3 g!f c1+c2`c3 g! ; 2 2 2 «min(ax 1;:::;A 3) c1 c 2 c 5 (`1) k fk + 1g! = c 4 c 3 c 6 f1g fa 1 ` kg! : : : fa 3 ` kg! fk ` B 1 g! : : : fk ` B 4 g! ; k=max(b 1; ;B 4) where 2 A 1 = c 1 + c 2 + c 3 + c 4; 2 B 1 = c 1 + c 2 + c 5; 2 A 2 = c 1 + c 4 + c 5 + c 6 ; 2 B 2 = c 1 + c 3 + c 6 ; 2 A 3 = c 2 + c 3 + c 5 + c 6 ; 2 B 3 = c 2 + c 4 + c 6 ; 2 B 4 = c 3 + c 4 + c 5: Now apply the above idea to 0 @ a(n) 1 a (N) 2 a (N) 1 5 a (N) 4 a (N) 3 a (N) 6 A. 17/22

Proof (sign) where k = Recall that a (N) 1 a (N) 2 a (N)! 5 a (N) 4 a (N) 3 a (N) 6 = min(a 1;:::;A 3) X k=max(b 1; ;B 4) (`1) k fk + 1g! f1g fa 1 ` kg! : : : fa 3 ` kg! fk ` B 1g! : : : fk ` B 4g! ; 2 A 1 = a (N) 1 + a (N) 2 + a (N) 3 + a (N) 4 ; 2 B 1 = a (N) 1 + a (N) 2 + a (N) 5 ; 2 A 2 = a (N) 1 + a (N) 4 + a (N) 5 + a (N) 6 ; 2 B 2 = a (N) 1 + a (N) 3 + a (N) 6 ; 2 A 3 = a (N) 2 + a (N) 3 + a (N) 5 + a (N) 6 ; 2 B 3 = a (N) 2 + a (N) 4 + a (N) 6 ; s N = exp ı p`1 ; fjg = s 2 j `s`2 j N N N = 2 p`1 sin 2 j ı N ; k 2 B 4 = a (N) 3 + a (N) 4 + a (N) 5 : ( Imfjg > 0 if 0 < j < N 2, Imfjg < 0 if N 2 < j < N: 2 ı Since lim N!1 N a(n) = ı ` i i and 1 + 2 + 5» ı,, we have B i > N=2, A i < N and the terms of the denominator of k are all positive. Hence the range of k is contained in N=2 < k < N and sign fk+1g! p`1 k+1 = (`1)(N+1)=2 : 18/22

Proof ( kmax ) a (N) 1 a (N) 2 a (N)! 5 a (N) 4 a (N) 3 a (N) 6 = min(a 1;:::;A 3) X k=max(b 1; ;B 4) where (`1) k fk + 1g! k = f1g fa 1 ` kg! : : : fa 3 ` kg! fk ` B 1 g! : : : fk ` B 4 g! ; fjg = s 2 j N ` s`2 j N = 2 p`1 ( sin 2 j ı N ; Im fjg > 0 if 0 < j < N 2, Im fjg < 0 if N 2 < j < N: The terms of the denominator of k are all positive. Hence the range of k is contained in N=2 < k < N and sign fk+1g! p`1 k+1 = (`1) (N+1)=2 ; sign k = (`1) (N+1)=2 : Therefore 2 ı lim N!1 N X j kmax j» k» N j k max j ; k 0 log @ a(n) 1 a (N) 2 a (N) 1 5 a (N) 4 a (N) 3 a (N) A = lim 2 ı N!1 N log j k max j : 6 k 19/22

Proof (k max ) a (N) 1 a (N) 2 a (N)! 5 a (N) 4 a (N) 3 a (N) 6 = min(a 1;:::;A 3) X k=max(b 1; ;B 4) where (`1) k fk + 1g! k = f1g fa 1 ` kg! : : : fa 3 ` kg! fk ` B 1 g! : : : fk ` B 4 g! ; fjg = s 2 j N ` s`2 j N = 2 p`1 ( sin 2 j ı N ; Im fjg > 0 if 0 < j < N 2, Im fjg < 0 if N 2 < j < N: The ratio k+1 k = ` fk + 2] fa 1 ` kg : : : fa 3 ` kg fk + 1 ` B 1 g : : : fk + 1 ` B 4 g is positive and bigger than 1 if k is small and less than 1 if k is big, and is monotonically decreasing between max(b 1 ; B 2 ; B 3 ; B 4 ) and min(a 1 ; A 2 ; A 3 ). Hence k has a maximum value at k max which satisfies kmax+1 k max 1 and so `fk max + 2g fa 1 ` k max g : : : fa 3 ` k max g fk max + 1 ` B 1 g : : : fk max + 1 ` B 4 g 1: 20/22 k

Proof (hyperbolic volume) Now consider about lim N!1 where ȷ ff RW c1 c 2 c 5 c 4 c 3 c 6 q 2 N 2 ı N = ( log a (N) 1 a (N) 2 a (N) ) RW 5 a (N) 4 a (N) 3 a (N) 6 q 2 «N c1 c 2 c 5 c 4 c 3 c 6 p ; W2(c1;c 2;c 5) W 2(c 1;c 3;c 6) W 2(c 2;c 4;c 6) W 2(c 3;c 4;c 5) f c1+c2+c3 + 1g! 2 W 2 (f ) = f1g f `c1+c2+c3 g!f c1`c2+c3 g!f c1+c2`c3 g! : 2 2 2 By using sectional mensuration, we have kx 2 ı 2 ı lim log jfkg!j = lim log 2 sin 2 ı j N!1 N N!1 N N = j=1 Z x j2 sin tj dt = (x) = Im Li 2(e 2 p`1 x ); 0 where x = 2 ı k N. So, replace fkg! by Li 2, then we get the volume formula for a truncated tetrahedron given by A. Ushijima, A volume formula for generalised hyperbolic tetrahedra. Non-Euclidean geometries, 249 265, Math. Appl. (N. Y.), 581, Springer, New York, 2006. 21/22

A generalizations Compact tetrahedron There are some oscillating terms in k, but they seems to be small and negligible. 22/22

A generalizations Compact tetrahedron There are some oscillating terms in k, but they seems to be small and negligible. 3 2 1 4ık 0 2 3 4 N ; + ı n o RW 2ı k : : : n o RW : 101 log 2ı k : : : n o RW k : : : s=exp 101 2ıi : 301 log 2ı k : : : k : : : s=exp 301 2ıi : 1001 log k : : : s=exp 1001 2ıi - - - : Vol(T jı` j ) 22/22