Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Similar documents
Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

The Oxford Solid State Basics

Preface Introduction to the electron liquid

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Many-Body Problems and Quantum Field Theory

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

NANO/MICROSCALE HEAT TRANSFER

Statistical Mechanics

CONTENTS. vii. CHAPTER 2 Operators 15

Optical Characterization of Solids

Electronic Properties of Materials An Introduction for Engineers

Electronic and Optoelectronic Properties of Semiconductor Structures

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Semiconductor Physical Electronics

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

FYS Vår 2017 (Kondenserte fasers fysikk)

Basic Semiconductor Physics

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

The Physics of Nanoelectronics

Magnetism in Condensed Matter

Physics of Low-Dimensional Semiconductor Structures

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

Solid Surfaces, Interfaces and Thin Films

The Quantum Theory of Magnetism

Electron Correlation

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Study Plan for Ph.D in Physics (2011/2012)

ELECTRODYNAMICS OF CONTINUOUS MEDIA

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Molecular Electronics

M.Sc. Physics

Contents Basic Facts Atomic Magnetism

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Concepts in Surface Physics

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

The Physics of Semiconductors

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Condensed Matter Physics

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

Condensed matter physics FKA091

Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2015/16. Introduction to Solid State Physics

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

ITINERANT ORDERING IN CRYSTALS

List of Comprehensive Exams Topics

Physics of atoms and molecules

SOLID STATE PHYSICS ADRIANUS J. DEKKER DEPARTMENT OF ELECTRICAL ENGINEERING, UNIVERSITY OF GRONINGEN

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

Introduction to Modern Physics

Quantum Tunneling and

Semiconductor Physical Electronics

QUANTUM WELLS, WIRES AND DOTS

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

ES - Solid State

Practical Quantum Mechanics

Quantum Physics II (8.05) Fall 2002 Outline

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

Introduction to the Electronic Properties of Materials

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

MASTER OF SCIENCE IN PHYSICS

QUANTUM MECHANICS. Yehuda B. Band. and Yshai Avishai WITH APPLICATIONS TO NANOTECHNOLOGY AND INFORMATION SCIENCE

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

Minimal Update of Solid State Physics

MOLECULAR SPECTROSCOPY

Structure and Dynamics : An Atomic View of Materials

INTRODUCTION TO THE STRUCTURE OF MATTER

Quantum Mechanics: Fundamentals

The Manchester Physics Series General Editors D. J. SANDIFORD: F. MANDL: A. C. PHILLIPS

WORLD SCIENTIFIC (2014)

Quantum Condensed Matter Physics Lecture 1

Electrical Transport in Nanoscale Systems

Contents. Acknowledgments

LECTURES ON QUANTUM MECHANICS

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

Fundamentals and New Frontiers of Bose Einstein Condensation

On the Higgs mechanism in the theory of

Elementary Lectures in Statistical Mechanics

The Physics of Ferromagnetism

Problems for Solid State Physics (3rd year course B.VI) A. Ardavan and T. Hesjedal

Superconductivity. Introduction. Final project. Statistical Mechanics Fall Mehr Un Nisa Shahid

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

Molecular Aggregation

Quantum Theory of the Optical and Electronic Properties of Semiconductors Downloaded from

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

Photoelectron Spectroscopy

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

The Mott Metal-Insulator Transition

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Table of Contents [ttc]

Phonon II Thermal Properties

Quantum Physics in the Nanoworld

Nanomaterials and their Optical Applications

Transcription:

Solid State Physics GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pisa, and INFM GIUSEPPE PASTORI PARRAVICINI Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM ACADEMIC PRESS An imprint of Elsevier Science Amsterdam " Boston * London 9 New York " Oxford Paris* San Diego " San Francisco " Singapore " Sydney " Tokyo

Contents Chapter I Electrons in one-dimensional periodic potentials 1 1 The Bloch theorem for one-dimensional periodicity....................... 2 2 Energy levels in a periodic array of quantum wells........................ 5 3 Electron tunneling and energy bands................................... 8 3.1 Transmission and reflection of electrons through an arbitrary potential.. 8 3.2 Electron tunneling through a periodic potential...................... 14 4 The tight-binding approximation....................................... 16 4.1 Expansion in localized orbitals..................................... 16 4.2 Tridiagonal matrices and continued fractions......................... 18 5 Plane waves and nearly free-electron approximation...................... 24 5.1 Expansion in plane waves......................................... 24 5.2 The Mathieu potential and the continued fraction solution............ 27 6 Some dynamical aspects of electrons in band theory...................... 29 Further reading......................................................... 35 Chapter II Geometrical description of crystals : direct and reciprocal lattices 37 1 Simple lattices and composite lattices................................... 38 1.1 Periodicity and Bravais lattices.................................... 38 1.2 Simple and composite crystal structures............................. 41 2 Geometrical description of some crystal structures........................ 43 3 Wigner-Seitz primitive cells........................................... 53 4 Reciprocal lattices.................................................... 54 4.1 Definitions and basic properties.................................... 54 4.2 Planes and directions in Bravais lattices............................. 56 5 Brillouin zones....................................................... 59 6 Translational symmetry and quantum mechanical aspects................. 62 6.1 Translational symmetry and Bloch wavefunctions.................... 62 6.2 The parametric k - p Hamiltonian.................................. 63 6.3 Cyclic boundary conditions........................................ 67 6.4 Special k points for averaging over the Brillouin zone................. 68

vi 7 Density-of-states and critical points..................................... 70 Further reading......................................................... 75 Chapter III The Sommerfeld free-electron theory of metals 77 1 Quantum theory of the free-electron gas................................. 77 2 Fermi-Dirac distribution function and chemical potential.................. 82 3 Electronic specific heat in metals and thermodynamic functions............ 86 4 Thermionic emission from metals....................................... 88 Appendix A. Outline of statistical physics and thermodynamic relations....... 89 Al. Microcanonical ensemble and thermodynamic quantities............... 89 A2. Canonical ensemble and thermodynamic quantities................... 91 A3. Grand canonical ensemble and thermodynamic quantities.............. 93 Appendix B. Fermi-Dirac and Bose-Einstein statistics for independent particles 95 Appendix C. Modified Fermi-Dirac statistics in a model of correlation effects... 98 Further reading.........................................................100 Chapter IV The one-electron approximation and beyond 102 1 Introductory remarks on the many-electron problem...................... 103 2 The Hartree equations................................................ 104 3 Identical particles and determinantal wavefunctions....................... 106 4 Matrix elements between determinantal states........................... 107 5 The Hartree-Fock equations........................................... 110 5.1 Variational approach and Hartree-Fock equations.................... 110 5.2 Ground-state energy, ionization energies and transition energies........ 113 5.3 Hartree-Fock equations and transition energies in closed-shell systems.. 116 5.4 Hartree-Fock-Slater and Hartree-Fock-Roothaan approximations...... 119 6 Overview of approaches beyond the one-electron approximation............ 121 7 Electronic properties and phase diagram of the homogeneous electron gas... 122 8 The density functional theory and the Kohn-Sham equations.............. 130 Appendix A. Bielectronic integrals among spin-orbitals...................... 137 Appendix B. Outline of second quantization formalism for identical fermions... 138 Appendix C. An integral on the Fermi sphere............................... 141 Further reading......................................................... 142 Chapter V Band theory of crystals 143 1 Basic assumptions of the band theory................................... 143 2 The tight-binding method (LCAO method).............................. 145 2.1 Description of the method for simple lattices......................... 145 2.2 Description of the tight-binding method for composite lattices......... 148 2.3 Illustrative applications of the tight-binding scheme.................. 150 3 The orthogonalized plane wave (OPW) method.......................... 154 4 The pseudopotential method........................................... 163 5 The cellular method..................................................169 6 The augmented plane wave (APW) method............................. 171

vii 6.1 Description of the method......................................... 171 6.2 Expression and evaluation of the matrix elements of the APW method.. 174 7 The Green's function method (KKR method)............................ 177 7.1 Scattering integral equation for a generic potential................... 178 7.2 Scattering integral equation for a periodic muffin-tin potential......... 180 7.3 Expression and evaluation of the structure coefficients................ 183 8 Other methods and developments in electronic structure calculations....... 184 8.1 The linearized cellular methods.................................... 184 8.2 The Lanczos or recursion method.................................. 185 8.3 Modified Lanczos method for excited states.......................... 190 8.4 Renormalization method for electronic systems....................... 191 Further reading.........................................................196 Chapter VI Electronic properties of selected crystals 199 1 Band structure and cohesive energy of rare-gas solids..................... 200 1.1 General features of band structure of rare-gas solids.................. 200 1.2 Cohesive energy of rare-gas solids.................................. 203 2 Electronic properties of ionic crystals................................... 207 2.1 Introductory remarks and Madelung constant........................ 207 2.2 Considerations on bands and bonds in ionic crystals.................. 214 3 Covalent crystals with diamond structure............................... 218 4 Band structures and Fermi surfaces of some metals....................... 222 Further reading.........................................................228 Chapter VII Excitons, plasmons and dielectric screening in crystals 230 1 Exciton states in crystals.............................................. 231 2 Plasmon excitations in crystals......................................... 239 3 General considerations on the longitudinal dielectric function.............. 240 4 Static dielectric screening in metals with the Thomas-Fermi model......... 242 5 Static dielectric screening in metals with the Lindhard model.............. 245 6 Dynamic dielectric screening in metals and plasmon modes................ 250 7 Quantum expression of the longitudinal dielectric function in materials...... 254 8 Quantum expression of the longitudinal dielectric function in crystals....... 259 9 Longitudinal dielectric function and energy-loss of a fast charged particle.... 262 Appendix A. Lindhard dielectric function for the free-electron gas............. 263 Further reading......................................................... 266 Chapter VIII Interacting electronic-nuclear systems and the adiabatic principle 268 1 Electronic-nuclear systems and adiabatic potentialenergy surfaces......... 269 2 Non-degenerate adiabatic surface and nuclear dynamics................... 272 2.1 Non-degenerate adiabatic surface and classical nuclear dynamics....... 272 2.2 Non-degenerate adiabatic surface and quantum nuclear dynamics....... 273

Vlll 3 Degenerate adiabatic surfaces and Jahn-Teller systems.................... 278 3.1 Degenerate adiabatic surfaces and nuclear dynamics.................. 278 3.2 The Jahn-Teller effect for doubly degenerate electronic states.......... 282 3.3 The Jahn-Teller effect for triply degenerate electronic states........... 289 4 The Hellmann-Feynman theorem and electronic-nuclear systems........... 294 4.1 General considerations on the Hellmann-Feynman theorem............ 294 4.2 Charge density and atomic forces.................................. 296 5 Parametric Hamiltonians and Berry phase............................... 297 6 Macroscopic electric polarization in crystals and Berry phase.............. 301 Further reading.........................................................305 Chapter IX Lattice dynamics of crystals 307 1 Dynamics of monatomic one-dimensional lattices......................... 308 2 Dynamics of diatomic one-dimensional lattices........................... 312 3 Dynamics of general three-dimensional crystals.......................... 315 4 Quantum theory of the harmonic crystal................................ 323 5 Lattice heat capacity. Einstein and Debye models........................ 325 6 Considerations on anharmonic effects and melting of solids................ 327 7 Optical phonons and polaritons in polar crystals......................... 329 7.1 General considerations............................................ 329 7.2 Lattice vibrations in polar crystals and polaritons.................... 331 7.3 Local field effects on polaritons.................................... 338 Appendix A. Quantum theory of the linear harmonic oscillator............... 344 Further reading.........................................................348 Chapter X Scattering of particles by crystals 349 1 General considerations................................................349 2 Elastic scattering of X-rays from crystals................................ 352 2.1 Elastic scattering of X-rays and Bragg diffraction condition............ 352 2.2 Elastic scattering of X-rays and intensity of diffracted beams.......... 358 3 Inelastic scattering of particles and phonon spectra of crystals............. 363 4 Compton scattering and electron momentum density..................... 368 5 Diffusion of particles by a single elastically-bound scatterer................ 373 5.1 Dynamical structure factor of a single scattering center............... 373 5.2 Dynamical structure factor of a three-dimensional harmonic oscillator.. 377 6 Diffusion of particles by a crystal and effects of lattice vibrations........... 380 7 Mossbauer effect.....................................................384 Further reading.........................................................387 Chapter XI Optical and transport properties in metals 389 1 Macroscopic theory of optical constants in homogeneous materials.......... 390 2 The Drude theory of the optical properties of free carriers................. 395 3 Transport properties and Boltzmann equation........................... 403 4 Static and dynamic conductivity in metals.............................. 406

ix 4.1 Static conductivity with the Boltzmann equation..................... 406 4.2 Frequency and wavevector dependence of the conductivity............. 407 4.3 Anomalous skin effect............................................. 410 5 Boltzmann treatment and quantum treatment of intraband transitions...... 413 6 The Boltzmann equation in electric fields and temperature gradients........ 414 6.1 The transport equations in general form............................ 414 6.2 Thermoelectric phenomena........................................ 418 Further reading........................................................424 Chapter XII Optical properties of semiconductors and insulators 425 1 Quantum expression of the transverse dielectric function in materials....... 426 1.1 Optical constants of homogeneous media in the linear response theory.. 426 1.2 Optical constants and Green's function of the electronic system........ 431 2 Quantum theory of band-to-band optical transitions and critical points..... 433 3 Indirect phonon-assisted transitions.................................... 438 4 Two-photon absorption...............................................443 5 Exciton effects on the optical properties................................. 446 6 Fano resonances and absorption lineshapes..............................452 7 Optical properties of vibronic systems.................................. 458 7.1 Optical properties of the Franck-Condon vibronic model.............. 458 7.2 Optical properties of typical Jahn-Teller systems..................... 465 Appendix A. Transitions rates at first and higher orders of perturbation theory. 469 Further reading.........................................................471 Chapter XIII Transport in intrinsic and homogeneously doped semiconductors 473 1 Fermi level and carrier density in intrinsic semiconductors................. 473 2 Impurity levels in semiconductors...................................... 478 3 Fermi level and carrier density in doped semiconductors................... 485 4 Thermionic emission in semiconductors................................. 490 5 Non-equilibrium carrier distributions................................... 491 5.1 Drift and diffusion currents........................................ 491 5.2 Generation and recombination of electron-hole pairs in semiconductors. 497 6 Solutions of typical transport equations in uniformly doped semiconductors.. 498 Further reading......................................................... 504 Chapter XIV Transport in inhomogeneous semiconductors 506 1 Properties of the pn junction at equilibrium............................. 506 2 Current-voltage characteristics of the pn junction........................ 512 3 The bipolar junction transistor......................................... 517 4 The junction field-effect transistor (JFET).............................. 520 5 Semiconductor heterojunctions......................................... 524 6 Metal-semiconductor contacts and MESFET transistor................... 527

x 7 The metal-oxide-semiconductor structure and MOSFET transistor......... 533 Further reading........................................................541 Chapter XV Electron gas in magnetic fields 543 1 Magnetization and magnetic susceptibility............................... 544 2 Energy levels and density-of-states of a free-electron gas in magnetic fields... 546 2.1 Energy levels of the two-dimensional electron gas in magnetic fields..... 547 2.2 Energy levels of the three-dimensional electron gas in magnetic fields... 551 3 Orbital magnetic susceptibility and de Haas-van Alphen effect............. 554 3.1 Orbital magnetic susceptibility of a two-dimensional electron gas....... 554 3.2 Orbital magnetic susceptibility of a three-dimensional electron gas...... 559 4 Spin paramagnetism of a free-electron gas............................... 562 5 Magnetoresistivity and classical Hall effect.............................. 564 6 The quantum Hall effect.............................................. 569 Appendix A. Free energy of an electron gas in a uniform magnetic field........ 574 Appendix B. Generalized orbital magnetic susceptibility of the free-electron gas. 579 Further reading.........................................................585 Chapter XVI Magnetic properties of localized systems and Kondo impurities 586 1 Quantum mechanical treatment of magnetic susceptibility................. 587 2 Magnetic susceptibility of closed-shell systems........................... 589 3 Permanent magnetic dipoles in atoms or ions with partially filled shells..... 591 4 Paramagnetism of localized magnetic moments........................... 593 5 Localized magnetic states in normal metals.............................. 598 6 Dilute magnetic alloys and the resistance minimum phenomenon........... 602 6.1 Some phenomenological aspects.................................... 602 6.2 The resistance minimum phenomenon............................... 604 6.3 Microscopic origin of the Kondo interaction : a molecular model........ 608 7 Magnetic impurity in normal metals at very low temperatures............. 612 Further reading......................................................... 618 Chapter XVII Magnetic ordering in crystals 619 1 Ferromagnetism and the Weiss molecular field........................... 620 2 Microscopic origin of the coupling between localized magnetic moments..... 627 3 Antiferromagnetism in the mean field approximation...................... 635 4 Spin waves and magnons in ferromagnetic crystals........................ 638 5 The Ising model with the transfer matrix method........................ 643 6 The Ising model with the renormalization group theory................... 647 7 The Stoner-Hubbard itinerant electron model for magnetism.............. 659 Further reading.........................................................662 Chapter XVIII Superconductivity 663 1 Some phenomenolgical aspects of superconductors........................ 664 2 The Cooper pair idea................................................. 672

xi 3 Ground state for a superconductor in the BCS theory at zero temperature... 678 3.1 Variational determination of the ground-state wavefunction............ 678 3.2 Ground-state energy and isotopic effect............................. 682 3.3 Momentum distribution and coherence length........................ 684 4 Excited states of superconductors at zero temperature.................... 686 4.1 The Bogoliubov canonical transformation........................... 686 4.2 Persistent currents in superconductors.............................. 691 4.3 Electron tunneling into superconductors............................. 691 5 Treatment of superconductors at finite temperature and heat capacity...... 693 6 Diamagnetism of superconductors and Meissner effect..................... 698 6.1 The phenomenological London model............................... 698 6.2 Pippard electrodynamics and effective magnetic penetration depth..... 702 7 Macroscopic quantum phenomena...................................... 704 7.1 Order parameter in superconductors and Ginzburg-Landau theory..... 704 7.2 Magnetic flux quantization........................................ 708 7.3 Type-I and type-ii superconductors................................ 709 8 Cooper pair tunneling between superconductors and Josephson effects...... 711 Appendix A. The phonon-induced electron-electron interaction............... 717 Further reading......................................................... 720 Subject index 722 SYNOPSIS I, II, III Introductory information and propaedeutic subjects IV, V VI, VII VIII, IX Electronic structure of crystals Adiabatic principle and lattice vibrations X, XI, XII Scattering ; optical and XIII, XIV transport properties XV, XVI XVII XVIII Magnetic field effects and magnetism Superconductivity