Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Similar documents
Hopf algebra structures in particle physics

Functions associated to scattering amplitudes. Stefan Weinzierl

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

NNLO antenna subtraction with two hadronic initial states

Evaluating double and triple (?) boxes

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

Multiloop integrals in dimensional regularization made simple

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Triangle diagrams in the Standard Model

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

arxiv: v1 [hep-ph] 30 Dec 2015

Linear reducibility of Feynman integrals

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

Exploring the function space of Feynman integrals. Stefan Weinzierl

arxiv:hep-lat/ v1 30 Sep 2005

Numerical Evaluation of Loop Integrals

Scalar One-Loop Integrals using the Negative-Dimension Approach

Combinatorial Hopf algebras in particle physics I

arxiv:hep-ph/ v1 26 May 1994

HyperInt - exact integration with hyperlogarithms

Numerical Evaluation of Multi-loop Integrals

Feynman Integrals, Polylogarithms and Symbols

arxiv:hep-ph/ v2 13 Jul 2005

Numerical Evaluation of Multi-loop Integrals

Symbolic integration of multiple polylogarithms

Structural Aspects of Numerical Loop Calculus

Functional equations for Feynman integrals

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

From Tensor Integral to IBP

Single mass scale diagrams: construction of a basis for the ε-expansion.

Renormalizability in (noncommutative) field theories

NNLO antenna subtraction with one hadronic initial state

Master integrals without subdivergences

Feyman integrals and difference equations

arxiv:hep-ph/ v1 21 Jan 1998

Hopf algebras in renormalisation for Encyclopædia of Mathematics

Analytic continuation of functional renormalization group equations

Analytic 2-loop Form factor in N=4 SYM

Simplified differential equations approach for NNLO calculations

Reduction of Feynman integrals to master integrals

arxiv: v2 [hep-ph] 2 Apr 2019

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

arxiv: v1 [hep-ph] 11 May 2010

Maximal Unitarity at Two Loops

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

Multiloop scattering amplitudes in the LHC Era

Epstein-Glaser Renormalization and Dimensional Regularization

Multiple polylogarithms and Feynman integrals

Automatic calculations of Feynman integrals in the Euclidean region

Multiple polylogarithms and Feynman integrals

Five-loop massive tadpoles

On the renormalization problem of multiple zeta values

arxiv: v2 [hep-ph] 18 Nov 2009

REVIEW REVIEW. Quantum Field Theory II

Quantum Field Theory II

Differential Equations and Associators for Periods

arxiv: v1 [hep-th] 22 Dec 2017

Simplified differential equations approach for the calculation of multi-loop integrals

1 Running and matching of the QED coupling constant

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

5 Infrared Divergences

Two-loop Remainder Functions in N = 4 SYM

Transcendental Numbers and Hopf Algebras

Vacuum Energy and Effective Potentials

1 The Quantum Anharmonic Oscillator

Loop corrections in Yukawa theory based on S-51

Review of scalar field theory. Srednicki 5, 9, 10

arxiv:hep-ph/ v1 4 May 1999

The unitary pion mass at O(p 4 ) in SU(2) ChPT

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Solution to sunset diagram problem

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

arxiv: v3 [hep-ph] 20 Apr 2017

Forcer: a FORM program for 4-loop massless propagators

pqcd at High Temperature

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

arxiv:hep-ph/ v1 28 Mar 2006

Feynman integrals as Periods

arxiv:hep-th/ v1 2 Jul 1998

Introduction to Loop Calculations

LSZ reduction for spin-1/2 particles

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

Dipole subtraction with random polarisations

Computer Algebra Algorithms for Special Functions in Particle Physics.

MHV Diagrams and Tree Amplitudes of Gluons

Loop Corrections: Radiative Corrections, Renormalization and All

Quantum Field Theory 2 nd Edition

Elliptic dilogarithms and two-loop Feynman integrals

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

PHY 396 L. Solutions for homework set #20.

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

Hypergeometric representation of the two-loop equal mass sunrise diagram

Computing of Charged Current DIS at three loops

Transcription:

Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications

The need for precision Hunting for the Higgs and other yet-to-be-discovered particles requires a better knowledge of the theoretical cross section. Theoretical predictions are calculated as a power expansion in the coupling. Higher precision is reached by including the next higher term in the perturbative expansion. State of the art: Third or fourth order calculations for a few selected quantities (R-ratio, QCD β- function, anomalous magnetic moment of the muon). Fully differential NNLO calculations for a few selected 2 2 and 2 3 processes. Automated NLO calculations for 2 n (n = 4..6,7) processes.

Quantum loop corrections Loop diagrams are divergent! Z d 4 k 1 (2π) 4 (k 2 ) = 1 Z dk 2 1 2 (4π) 2 k = 1 Z dx 2 (4π) 2 x 0 0 This integral diverges at k 2 (UV-divergence) and at k 2 0 (IR-divergence). Use dimensional regularization to regulate UV- and IR-divergences.

Feynman rules A one-loop Feynman diagram contributing to the process e + e qg q: p 5 p 4 p 1 p 2 p 3 = v(p 4 )γ µ u(p 5 ) 1 Z d D k 1 1 p 2 123 (2π) D k2 2 ū(p 1 )ε/(p 2 ) p/ 12 p 2 12 γ ν k/ 1 k 2 1 k/ 3 γ µ k3 2 γ ν v(p 3 ) with p 12 = p 1 + p 2, p 123 = p 1 + p 2 + p 3, k 2 = k 1 p 12, k 3 = k 2 p 3. Further ε/(p 2 ) = γ τ ε τ (p 2 ), where ε τ (p 2 ) is the polarization vector of the outgoing gluon. All external momenta are assumed to be massless: p 2 i = 0 for i = 1..5. The loop integral to be calculated reads: Z d D k 1 (2π) D k ρ 1 kσ 3 k 2 1 k2 2 k2 3

Standard techniques: Feynman and Schwinger parametrization Feynman: n i=1 1 ( A i ) ν i = Γ(ν 1 +... + ν n ) Γ(ν 1 )...Γ(ν n ) Z d n xδ ( 1 ) n x i x ν 1 1 1...x ν n 1 n ( x 1 A 1... x n A n ) ν 1... ν n i=1 Schwinger: 1 ( A) ν = Z 1 dxx ν 1 exp(xa) Γ(ν) 0

Standard techniques: The cooking recipe Feynman parameterization. Shift the loop momentum, such that the denominator becomes purely quadratic in k. Wick rotation to Euclidean space. Use spherical coordinates in D dimensions. The angular integration is trivial, the radial integration can be done with Euler s beta function. Master formula: Z d D k ( k 2 ) a π D/2 i( k 2 L) n = Γ(D/2 + a) Γ(D/2) Γ(n D/2 a) ( L) n+d/2+a Γ(n) This leaves the integrals over the Feynman parameters to be done.

Standard techniques: Tensor integrals Lorentz symmetry: Z d D Z k π D/2 i kµ k ν f (k 2 ) = gµν D d D k π D/2 i k2 f (k 2 ) From master formula: a factor k 2 in the numerator shifts the dimension D D + 2. Shifting the loop momentum like in k = k x 1 p 1 x 2 p 2 introduces the parameters x 1 or x 2 in the numerator. A Schwinger parameter x in the numerator is equivalent to raising the power of the original propagator by one unit: ν ν + 1. Summary: Tensor integrals in D dimensions with unit powers of the propagators are equivalent to scalar integrals in D + 2, D + 4,... dimensions and higher powers of the propagators (Tarasov 96).

Standard techniques: Graph polynomials The general l-loop integral with n propagators: I G = Z l d D k r r=1 iπ D 2 n j=1 1 ( q 2 j + m2 j )ν j The q j are linear combinations of the loop momenta k r and the external momenta. I G = Γ(ν ld/2) n Γ(ν j ) j=1 Z 0 ( n j=1 dx j x ν j 1 j ) δ(1 n x i ) Uν (l+1)d/2, ν = i=1 F ν ld/2 n ν j. j=1 The functions U and F are graph polynomials, homogeneous of degree l and l + 1, respectively.

Standard techniques: Graph polynomials Cutting l lines of a given connected l-loop graph such that it becomes a connected tree graph defines a monomial of degree l. U is given as the sum over all such monomials. Cutting one more line leads to two disconnected trees. The corresponding monomials are of degree l + 1. The function F 0 is the sum over all such monomials times minus the square of the sum of the momenta flowing through the cut lines and F (x) = F 0 (x) + U(x) Example: The massless two-loop non-planar vertex. n x j m 2 j. j=1 p 1 ν 1 ν 2 ν 5 ν 6 p 3 p 2 ν ν 3 4 U = x 15 x 23 + x 15 x 46 + x 23 x 46, F = (x 1 x 3 x 4 + x 5 x 2 x 6 + x 1 x 5 x 2346 ) ( ) p 2 1 +(x 6 x 3 x 5 + x 4 x 1 x 2 + x 4 x 6 x 1235 ) ( ) 2 2 +(x 2 x 4 x 5 + x 3 x 1 x 6 + x 2 x 3 x 1456 ) ( p3) 2.

Standard techniques: Mellin-Barnes Mellin-Barnes transformation: (A 1 + A 2 +... + A n ) c = 1 1 Γ(c) (2πi) n 1 Z i i dσ 1... Z i i dσ n 1 Γ( σ 1 )...Γ( σ n 1 )Γ(σ 1 +... + σ n 1 + c) A σ 1 1...Aσ n 1 n 1 A σ 1... σ n 1 c n The contour is such that the poles of Γ( σ) are to the right and the poles of Γ(σ + c) are to the left. Converts a sum into products and is therefore the inverse of Feynman parametrization.

The two-loop C-topology The result for the C-topology in arbitrary dimensions and with arbitrary powers of the propagators: p 1 p 2 = Γ(2m 2ε ν 1235 )Γ(1 + ν 1235 2m + 2ε)Γ(2m 2ε ν 2345 )Γ(1 + ν 2345 2m + 2ε) Γ(m ε ν 5 )Γ(m ε ν 23 ) Γ(ν 1 )Γ(ν 2 )Γ(ν 3 )Γ(ν 4 )Γ(ν 5 )Γ(3m 3ε ν 12345 ) Γ(2m 2ε ν 235 ) p 3 ( s 123 ) 2m 2ε ν 12345 i 1 =0 i 2 =0 x i 1 1 x i 2 2 i 1! i 2! [ Γ(i1 + ν 3 )Γ(i 2 + ν 2 )Γ(i 1 + i 2 2m + 2ε + ν 12345 )Γ(i 1 + i 2 m + ε + ν 235 ) Γ(i 1 + 1 2m + 2ε + ν 1235 )Γ(i 2 + 1 2m + 2ε + ν 2345 )Γ(i 1 + i 2 + ν 23 ) x 2m 2ε ν 1235 1 x 2m 2ε ν 2345 2 +x 2m 2ε ν 1235 1 x 2m 2ε ν 2345 2 Γ(i 1 + 2m 2ε ν 125 )Γ(i 2 + ν 2 )Γ(i 1 + i 2 + ν 4 )Γ(i 1 + i 2 + m ε ν 1 ) Γ(i 1 + 1 + 2m 2ε ν 1235 )Γ(i 2 + 1 2m + 2ε + ν 2345 )Γ(i 1 + i 2 + 2m 2ε ν 15 ) Γ(i 1 + ν 3 )Γ(i 2 + 2m 2ε ν 345 )Γ(i 1 + i 2 + ν 1 )Γ(i 1 + i 2 + m ε ν 4 ) Γ(i 1 + 1 2m + 2ε + ν 1235 )Γ(i 2 + 1 + 2m 2ε ν 2345 )Γ(i 1 + i 2 + 2m 2ε ν 45 ) Γ(i 1 + 2m 2ε ν 125 )Γ(i 2 + 2m 2ε ν 345 ) Γ(i 1 + 1 + 2m 2ε ν 1235 )Γ(i 2 + 1 + 2m 2ε ν 2345 ) ] Γ(i 1 + i 2 + 2m 2ε ν 235 )Γ(i 1 + i 2 + 3m 3ε ν 12345 ), Γ(i 1 + i 2 + 4m 4ε ν 12345 ν 5 ) with D = 2m 2ε, x 1 = ( s 12 )/( s 123 ) and x 2 = ( s 23 )/( s 123 ). This sum can be expanded systematically in ε.

Higher transcendental functions More generally, we get the following types of infinite sums: Type A: i=0 Γ(i + a 1 )...Γ(i + a k ) Γ(i + a 1 )...Γ(i + a k ) xi Example: Hypergeometric functions J+1 F J (up to prefactors). Type B: i=0 j=0 Example: First Appell function F 1. Type C: i=0 j=0 Γ(i + a 1 )...Γ(i + a k ) Γ( j + b 1 )...Γ( j + b l ) Γ(i + j + c 1 )...Γ(i + j + c m ) Γ(i + a 1 )...Γ(i + a k ) Γ( j + b 1 )...Γ( j + b l ) Γ(i + j + c 1 )...Γ(i + j + c m) xi y j ( i + j j Example: Kampé de Fériet function S 1. Type D: i=0 j=0 ( i + j j Example: Second Appell function F 2. ) Γ(i + a1 )...Γ(i + a k ) Γ(i + a 1 )...Γ(i + a k ) Γ(i + j + c 1 )...Γ(i + j + c m ) Γ(i + j + c 1 )...Γ(i + j + c m) xi y j ) Γ(i + a1 )...Γ(i + a k ) Γ(i + a 1 )...Γ(i + a k ) Γ( j + b 1 )...Γ( j + b l ) Γ( j + b 1 )...Γ( j + b l ) Γ(i + j + c 1 )...Γ(i + j + c m ) Γ(i + j + c 1 )...Γ(i + j + c m) xi y j All a, b, c s are of the form integer + const ε.

Introducing nested sums Definition of Z-sums: Z(n;m 1,...,m k ;x 1,...,x k ) = n i 1 >i 2 >...>i k >0 x i 1 1 i m 1 1 x i 2 2 i m 2 2... xi k k i m k k. Multiple polylogarithms (n = ) are a special subset Euler-Zagier sums (x 1 =... = x k = 1) are a special subset The nested sums form a Hopf algebra Z-sums interpolate between multiple polylogarithms and Euler-Zagier sums.

Special cases For n = the Z-sums are the multiple polylogarithms of Goncharov: Z( ;m 1,...,m k ;x 1,...,x k ) = Li m1,...,m k (x 1,...,x k ) For x 1 =... = x k = 1 the definition reduces to the Euler-Zagier sums: Z(n;m 1,...,m k ;1,...,1) = Z m1,...,m k (n) For n = and x 1 =... = x k = 1 the sum is a multiple ζ-value: Z( ;m 1,...,m k ;1,...,1) = ζ(m 1,...,m k )

Expansion of Gamma functions Euler-Zagier sums (or harmonic sums) occur in the expansion for Γ functions: For positive integers n we have Γ(n + ε) = Γ(1 + ε)γ(n) (1 + εz 1 (n 1) + ε 2 Z 11 (n 1) + ε 3 Z 111 (n 1) +... + ε n 1 Z 11...1 (n 1) ). Z-sums interpolate between Goncharov s multiple polylogarithms and Euler-Zagier sums.

Multiplication Z-sums obey an algebra: Z(n;m 1,m 2 ;x 1,x 2 ) Z(n;m 3 ;x 3 ) = = Z(n;m 1,m 2,m 3 ;x 1,x 2,x 3 ) + Z(n;m 1,m 3,m 2 ;x 1,x 3,x 2 ) + Z(n;m 3,m 1,m 2 ;x 3,x 1,x 2 ) +Z(n;m 1,m 2 + m 3 ;x 1,x 2 x 3 ) + Z(n;m 1 + m 3,m 2 ;x 1 x 3,x 2 ) Pictorial representation: x 1 x 2 x 3 = x 1 x 2 x 3 + x1 x 3 x 2 + x3 x 1 + x1 x 2 x 3 + x 1x 3 x 2 x 2 The multiplication law corresponds to a quasi-shuffle algebra (Hoffman 99), also called stuffle algebra (Broadhurst)) or mixed shuffle algebra (Guo).

Hopf algebras The Z-sums form actually a Hopf algebra. An algebra has a multiplication and a unit e. A coalgebra has a comultiplication and a counit ē. A Hopf algebra is an algebra and a coalgebra at the same time, such that the two structures are compatible with each other. In addition, there is an antipode S.

Hopf algebras and renormalization of quantum field theories Short-distance singularities of the perturbative expansion of quantum field theories require renormalization (Bogoliubov, Parasuik, Hepp, Zimmermann). The combinatorics involved in the renormalization is governed by a Hopf algebra (Kreimer, Connes). The model for this Hopf algebra is the Hopf algebra of rooted trees. Also the Z-sums are described by the Hopf algebra of rooted trees.

Algorithms Multiplication: Convolution: Sums involving i and n i n 1 i=1 Z(n;m 1,...;x 1,...) Z(n;m 1,...;x 1,...) x i 1 x n i 1 i m Z(i 1;m 2...;x 1 2,...) Z(n i 1;m (n i) m 2,...;x 2,...) 1 Conjugations: n i=1 ( n i ) ( 1) i xi 0 i m 0 Z(i;m 1,...,m k ;x 1,...,x k ) Conjugation and convolution: Sums involving binomials and n i n 1 i=1 ( n i ) ( 1) i x i 1 i m Z(i;m 2...;x 2,...) 1 x n i 1 Z(n i;m (n i) m 2,...;x 2,...) 1 (Moch, Uwer, S.W., 01)

Hypergeometric Functions Expansion of hypergeometric functions: 2F 1 (a + ε,b + ε;c + ε,x 0 ) = (a + ε) n (b + ε) n x0 n n=0 (c + ε) n n! Synchronize the Pochhammer symbols using Γ(x + 1) = xγ(x). Expand the Γ-functions in ε. This will introduce Euler-Zagier sums. Combine products of Euler-Zagier sums into single sums. Read out the harmonic polylogarithms.

Expansion around rational numbers Up to now we expanded Gamma funktions around integer values. The generalization towards rational numbers p/q introduces the q-th roots of unity: Expansion of the Gamma function: ) Γ (n + 1 pq + ) ε = Γ (1 pq + ε ( ) 2πip rq p = exp q ( ) Γ n + 1 p ( q ( ) exp 1 Γ 1 p q q q 1 l=0 ( r l q ) p k=1 ε k( q)k Z(q n;k;r l k q) ). (S.W. 04)

Example Refinement of sums: x 1 2 + x4 4 2 + x7 7 2 + x10 10 2 +... = 1 3 x n n=1 n + 1 e4πi 2 3 3 n=1 = 1 3 Li 2 (x) + 1 ( 3 e4πi 3 Li 2 ( xe 2πi 3 n 2 xe 2πi 3 ) ) n + 1 e2πi 3 3 n=1 + 1 ( 3 e2πi 3 Li 2 ( xe 4πi 3 xe 4πi 3 n 2 ) ) n

Multiple polylogarithms Li m1,...,m k (x 1,...,x k ) = i 1 >i 2 >...>i k >0 x i 1 1 i m 1 1 x i 2 2 i m 2 2... xi k k i m k k. Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs (Remiddi and Vermaseren, Gehrmann and Remiddi). Have also an integral representation. Fulfill two Hopf algebras (Moch, Uwer, S.W.). Can be evaluated numerically for all complex values of the arguments (Gehrmann and Remiddi, Vollinga and S.W.).

Multiple polylogarithms The multiple polylogarithms have extensively been studied by Borwein, Bradley, Broadhurst and Lisonek. The multiple polylogarihms contain as subsets the classical polylogarithms Nielsen s generalized polylogarithms Li n (x), S n,p (x) = Li n+1,1,...,1 (x,1,...,1 }{{} ), p 1 the harmonic polylogarithms of Remiddi and Vermaseren H m1,...,m k (x) = Li m1,...,m k (x,1,...,1 }{{} ) k 1 and the two-dimensional harmonic polylogarithms introduced by Gehrmann and Remiddi.

Inheritance Z-sums multiple polylogs Euler-Zagier sums harmonic polylogs multiple zeta values Nielsen polylogs classical polylogs

Iterated integrals Define the functions G by Scaling relation: G(z 1,...,z k ;y) = Z y 0 dt 1 t 1 z 1 Z t 1 0 dt 2 t 2 z 2... Zt k 1 0 dt k t k z k. G(z 1,...,z k ;y) = G(xz 1,...,xz k ;xy) Short hand notation: G m1,...,m k (z 1,...,z k ;y) = G(0,...,0 }{{},z 1,...,z k 1,0...,0 }{{},z k ;y) m 1 1 m k 1 Conversion to multiple polylogarithms: Li m1,...,m k (x 1,...,x k ) = ( 1) k G m1,...,m k ( 1 x 1, ) 1 1,..., ;1. x 1 x 2 x 1...x k

Shuffle algebra The functions G(z 1,...,z k ;y) fulfill a shuffle algebra. Example: G(z 1,z 2 ;y)g(z 3 ;y) = G(z 1,z 2,z 3 ;y) + G(z 1,z 3 z 2 ;y) + G(z 3,z 1,z 2 ;y) This algebra is different from the quasi-algebra already encountered and provides the second Hopf algebra for multiple polylogarithms.

Shuffle algebra versus quasi-shuffle algebra Quasi-shuffle algebra for Z-sums: Z(n;m 1 ;x 1 )Z(n;m 2 ;x 2 ) = Z(n;m 1,m 2 ;x 1,x 2 ) + Z(n;m 2,m 1 ;x 2,x 1 ) + Z(n;m 1 + m 2 ;x 1 x 2 ). i 2 = i 2 + i 2 + i 2 i 1 i 1 i 1 i 1 Shuffle algebra for G-functions: G(z 1 ;y)g(z 2 ;y) = G(z 1,z 2 ;y) + G(z 2,z 1 ;y) t 2 = t 2 + t 2 t 1 t 1 t 1

Partial integration and the antipode Integration-by-parts identity: G(z 1,...,z k ;y) + ( 1) k G(z k,...,z 1 ;y) = G(z 1 ;y)g(z 2,...,z k ;y) G(z 2,z 1 ;y)g(z 3,...,z k ;y) +... ( 1) k 1 G(z k 1,...,z 1 ;y)g(z k ;y) From the Hopf algebra we have the antipode Working out the identity for the antipode SG(z 1,...,z k ;y) = ( 1) k G(z k,...,z 1 ;y) ) S (G (1) G (2) = 0 (G) one recovers the integration-by-parts identity.

The antipode From the shuffle algebra of the iterated integrals we had: G(z 1,...,z k ;y) + ( 1) k G(z k,...,z 1 ;y) = simpler terms Using the equation for the antipode for Z-sums in the quasi-shuffle algebra: Z(n;m 1,...,m k ;x 1,...,x k ) + ( 1) k Z(n;m k,..,m 1 ;x k,...,x 1 ) = simpler terms The equation for the antipode generalizes integration-by-parts identities to cases where no integral representation exists!

Numerical evaluations of multiple polylogarithms Example: Numerical evaluation of the dilogarithm ( t Hooft, Veltman, Nucl. Phys. B153, (1979), 365) Z x Li 2 (x) = Map into region 1 Re(x) 1/2, using Li 2 (x) = Li 2 ( 1 x Accelaration using Bernoulli numbers: 0 ln(1 t) dt t = x n n=1 n 2 ) π2 6 1 2 (ln( x))2, Li 2 (x) = Li 2 (1 x) + π2 ln(x)ln(1 x). 6 Li 2 (x) = i=0 B i (i + 1)! ( ln(1 x))i+1, Generalization to multiple polylogarithms, using arbitrary precision arithmetic in C++. J. Vollinga, S.W., (2004)

Numerical evaluations of multiple polylogarithms Use the integral representation G m1,...,m k (z 1,z 2,...,z k ;y) = Z y 0 ( ) m1 1 dt t ( ) m2 1 ( ) mk 1 dt dt t z 1 t dt dt... t z 2 t dt t z k to transform all arguments into a region, where we have a converging power series expansion: G m1,...,m k (z 1,...,z k ;y) =... j 1 =1 j k =1 ( ) j1 ( ) j2 1 y 1 y 1 ( j 1 +... + j k ) m 1 ( j 2 +... + j k ) m... 2 ( j k ) m k z 1 z 2 ( ) jk y. z k Use the Hölder convolution to accelerate the convergent series. (Borwein, Bradley, Broadhurst and Lisonek)

The amplitudes for e + e 3 jets at NNLO A NNLO calculation of e + e 3 jets requires the following amplitudes: Born amplitudes for e + e 5 jets: F. Berends, W. Giele and H. Kuijf. One-loop amplitudes for e + e 4 jets: Z. Bern, L. Dixon, D.A. Kosower and S.W.; J. Campbell, N. Glover and D. Miller. Two-loop amplitudes for e + e 3 jets: L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi; S. Moch, P. Uwer and S.W.

Results for the two-loop amplitude The finite part of the coefficient of a spinor structure: c (2),fin ( 12 (x 1,x 2 ) = N f N 3 ln(x 1) (x 1 +x 2 ) 2 + 1 ln(x 2 ) 2 2Li 2 (1 x 2 ) + 1 ζ(2) 1 13x 2 1 +36x 1 10x 1 x 2 18x 2 +31x 2 2 4 x 1 (1 x 2 ) 12 (1 x 2 )x 1 18 (x 1 +x 2 ) 2 ln(x 2 ) x 1 (1 x 2 ) + x 1 2 x 2 2 2x 1 +4x 2 (x 1 +x 2 ) 4 R 1 (x 1,x 2 ) 1 R(x 1,x 2 ) [5x 12 x 1 (x 1 +x 2 ) 2 2 + 42x 1 + 5 (1+x 1) 2 4 1 3x 2 1+3x 1 72 x 2 ] [ 1 1 1 + 1 x 2 1 x 1 x 2 x 1 +x 2 12 x 1 (1 x 2 ) + 6 (x 1 +x 2 ) 3 1+2x ] ) 1 1 x 1 (x 1 +x 2 ) 2 (Li 2 (1 x 2 ) Li 2 (1 x 1 )) 1 (x 1 +x 2 )x 1 2 IπN f N ln(x 2) x 1 (1 x 2 ). where R(x 1,x 2 ) and R 1 (x 1,x 2 ) are defined by R(x 1,x 2 ) = R 1 (x 1,x 2 ) = ( 1 2 ln(x 1)ln(x 2 ) ln(x 1 )ln(1 x 1 ) + 1 ) 2 ζ(2) Li 2(x 1 ) + (x 1 x 2 ). ( ( ) x1 ln(x 1 )Li 1,1,x 1 +x 2 1 x 1 +x 2 2 ζ(2)ln(1 x 1 x 2 ) + Li 3 (x 1 +x 2 ) ln(x 1 )Li 2 (x 1 +x 2 ) 1 2 ln(x 1)ln(x 2 )ln(1 x 1 x 2 ) Li 1,2 ( x1 x 1 +x 2,x 1 +x 2 ) Li 2,1 ( x1 x 1 +x 2,x 1 +x 2 )) + (x 1 x 2 ).

The two-loop two-point function ν 1 ν 2 ν 4 ν 5 ν 3 p (1 2ε)Î (2,5) (2 ε,1 + ε,1 + ε,1 + ε,1 + ε,1 + ε) = 6ζ 3 + 9ζ 4 ε + 372ζ 5 ε 2 + ( 915ζ 6 864ζ ) 2 3 ε 3 +(18450ζ 7 2592ζ 4 ζ 3 )ε 4 + (50259ζ 8 76680ζ 5 ζ 3 2592ζ 6,2 )ε 5 + ( 905368ζ 9 200340ζ 6 ζ 3 130572ζ 5 ζ 4 + 66384ζ ) 3 3 ε 6 +O(ε 7 ). Theorem: Multiple zeta values are sufficient for the Laurent expansion of the two-loop integral Î (2,5) (m ε,ν 1,ν 2,ν 3,ν 4,ν 5 ), if all powers of the propagators are of the form ν j = n j + a j ε, where the n j are positive integers and the a j are non-negative real numbers. I. Bierenbaum, S.W., (2003)

Summary Systematic algorithms for the calculation of loop integrals based on: nested sums, iterated integrals These iterated objects exhibit a rich algebraic structure All loop integrals known so far evaluate to multiple polylogarithms