Optical Characteristics of Aerosols over south-western islands of Japan using SKYNET observation network

Similar documents
Ground based monitoring of aerosol optical properties and surface radiation budget

MAX-DOAS air quality observations at Phimai,

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB)

JAXA Status Report. JAXA Status Report. 4-6 April 2017 WMO ET-SAT

Aerosols and climate. Rob Wood, Atmospheric Sciences

Taking an advantage of innovations in science and technology to develop MHEWS

Annual mean AOT by MODIS/Terra in 2006

Aerosol optical properties over east Asia determined from ground-based sky radiation measurements

M. Campanelli 1, V. Estellés 2, H. Diemoz 3, N. Kouremeti 4, S. Kazadzis 4, R. Becker 5, S. Vergari 6, S. Dietrich 1. 1.

Direct radiative forcing due to aerosols in Asia during March 2002

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

Continuous observation of aerosols in East Asia using a ground based lidar network (AD NET)

Influence of Clouds and Aerosols on the Earth s Radiation Budget Using Clouds and the Earth s Radiant Energy System (CERES) Measurements

The Boundary layer Air Quality-analysis Using Network of Instruments (BAQUNIN) Super-Site for atmospheric science and satellite data validation

A study of regional and long-term variation of radiation budget using general circulation. model. Makiko Mukai* University of Tokyo, Kashiwa, Japan

UKCA_RADAER Aerosol-radiation interactions

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

1. Space-based constraints on non-methane VOC emissions in Asia

Satellite remote sensing of aerosols & clouds: An introduction

Future Change Storm Surge based on Multi-Scenario and Multi-Regional Climate Model Ensemble Experiments

An Overview of the Radiation Budget in the Lower Atmosphere

SIMULATION OF THE MONOCHROMATIC RADIATIVE SIGNATURE OF ASIAN DUST OVER THE INFRARED REGION

水槽中で培養したマコンブ胞子体の子嚢斑形成と生長にお よぼす水温及び光周期の影響

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

メタン転化用メカノケミカル法と水熱合成を組み合わせた. Al 置換ゼオライト触媒合成

Site Report: Lauder, New Zealand

Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-pacific

Proceedings of the International SKYNET Workshop 2013 (and the 19 th CEReS International Symposium on Remote Sensing)

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

CO 近赤外線吸収から探る銀河中心 pc スケールでのガスの物理状態 : あかりと Spitzer による低分散分光観測

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology)

Course outline, objectives, workload, projects, expectations

How good are our models?

Near-infrared brightness of the Galilean satellites eclipsed in Jovian shadow TSUMURA Kohji (FRIS, Tohoku Univ.)

Overview of The CALIPSO Mission

The Need For Meteoritic Dust In The Stratosphere

Interannual variability of top-ofatmosphere. CERES instruments

EXTRACTION OF THE DISTRIBUTION OF YELLOW SAND DUST AND ITS OPTICAL PROPERTIES FROM ADEOS/POLDER DATA

climate change Contents CO 2 (ppm)

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Yutaka Shikano. Visualizing a Quantum State

Observation of air pollution aerosols and Asian dusts using the Asian Dust and aerosol lidar observation Network (AD-Net)

The Current Status of Aerosol Remote Sensing in China

GRASS 入門 Introduction to GRASS GIS

Atmospheric Measurements from Space

京都 ATLAS meeting 田代. Friday, June 28, 13

Changes in Earth s Albedo Measured by satellite

Aerosol type how to use the information from satellites for models???

Radiation Quantities in the ECMWF model and MARS

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin]

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City

Characterization of free-tropospheric aerosol layers from different source regions

Radiative Effects of Contrails and Contrail Cirrus

Development of EarthCARE ATLID data retrieval algorithm and validation plan using the ground-based lidar network

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Marine Stratus Regions

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds

Arctic Clouds and Radiation Part 2

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Dr. Laurent Vuilleumier, project leader Dr. Stephan Nyeki, Armand Vernez, Serge Brönnimann, Dr. Alain Heimo

OPTICAL MEASUREMENT OF ASIAN DUST OVER DAEJEON CITY IN 2016 BY DEPOLARIZATION LIDAR IN AD-NETWORK

Projects in the Remote Sensing of Aerosols with focus on Air Quality

Atmospheric Aerosol in High Latitudes: Linkages to Radiative Energy Balance and Hydrological Cycle

Background. Background. Objective. Table of Contents 11/16/2012. Effects of wind erosion on water balance in a crop field in the Sahel, West Africa

Monitoring of environmental radioactivity

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Assessment of sulfate aerosols and its uncertainty due to clouds using global models

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

シリコンベース新材料を用いた薄膜結晶太陽電池を目指して

Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Japan disaster Mitigation and prevention information XML format (JMX) is in operation! 6 Apr 2011 Yoshiaki SUGIYAMA Planning Division, JMA

Effects of Black Carbon on Temperature Lapse Rates

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

開催日 :2015 年 9 月 日会場 : 情報通信研究機構 ( 小金井 ) 主催 :SCOSTEP, WDS 共催 : 名大 STE 研 国立極地研 NICT SGEPSS

Numerical Experiments with Multi-Models for Paleo-Environmental Problems

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

[3] Tadafumi Adschiri: Supercritical Route for Super Hybrid Nanomaterials, ICMAT 2011, Suntec, Singapore,

The unification of gravity and electromagnetism.

Inaugural University of Michigan Science Olympiad Tournament

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle

Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing GAO, Yan CHEN, Lei ZHANG * and Wu ZHANG

EARLY ONLINE RELEASE

October 7, Shinichiro Mori, Associate Professor

TESTS. GRASP sensitivity. Observation Conditions. Retrieval assumptions ISTINA-WP AERO. MODELS. B. Torres, O. Dubovik and D.

Atmospheric Radiation

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

Simulations of Atmospheric General Circulations of Earth-like Planets by AFES

原子核の弱電相互作用と超新星ニュートリノ

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

観光の視点から見た民泊の現状 課題 展望

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer

Transcription:

Optical Characteristics of Aerosols over south-western islands of Japan using SKYNET observation network Tamio TAKAMURA ( 高村民雄 ) Takamura@faculty.chiba-u.jp Center for Environmental Remote Sensing, Chiba University

Contents Objectives and overview of SKYNET Importance of atmospheric parameters in radiation budget Aerosol observation by spectropyranometer, Examples

Figure 2.20 (A) Global mean RFs from the agents and mechanisms discussed in this chapter, grouped by agent type. Anthropogenic RFs and the natural direct solar RF are shown. The plotted RF values correspond to the bold values in Table 2.12. Columns indicate other characteristics of the RF; efficacies are not used to modify the RFs shown. Time scales represent the length of time that a given RF term would persist in the atmosphere after the associated emissions and changes ceased. No CO2 time scale is given, as its removal from the atmosphere involves a range of processes that can span long time scales, and thus cannot be expressed accurately with a narrow range of lifetime values. The scientific understanding shown for each term is described in Table 2.11. (B) Probability distribution functions (PDFs) from combining anthropogenic RFs in (A). Three cases are shown: the total of all anthropogenic RF terms (block filled red curve; see also Table 2.12); LLGHGs and ozone RFs only (dashed red curve); and aerosol direct and cloud albedo RFs only (dashed blue curve). Surface albedo, contrails and stratospheric water vapour RFs are included in the total curve but not in the others. For all of the contributing forcing agents, the uncertainty is assumed to be represented by a normal distribution (and 90% confidence intervals) with the following exceptions: contrails, for which a lognormal distribution is assumed to account for the fact that the uncertainty is quoted as a factor of three; and tropospheric ozone, the direct aerosol RF (sulphate, fossil fuel organic and black carbon, biomass burning aerosols) and the cloud albedo RF, for which discrete values based on Figure 2.9, Table 2.6 and Table 2.7 are randomly sampled. Additional normal distributions are included in the direct aerosol effect for nitrate and mineral dust, as these are not explicitly accounted for in Table 2.6. A one-million point Monte Carlo simulation was performed to derive the PDFs (Boucher and Haywood, 2001). Natural RFs (solar and volcanic) are not included in these three PDFs. Climate efficacies are not accounted for in forming the PDFs. Cited from WG1 _Pub_ch2 page203.

Importance of aerosol indirect effects Usual aerosol effect Cooling effect (direct effect) 普通の雲の効果 ( 粒径大 ) エアロソル ( 凝結核 ) の影響を受けた雲 ( 粒径小で光学的厚さ大 ) エアロソル ( 凝結核 ) の影響を受けた雲 ( 降水抑制 雲水量増加 ) エアロソル ( 凝結核 ) の影響を受けた雲 ( 雲頂上昇 OLR 減少 ) エアロソル ( 凝結核 ) の影響を受けた雲 ( 雲寿命の増大 日射の減少 ) エアロソル ( 氷晶核 ) の影響を受けた雲 ( 雲量の増大 温室効果 ) エアロソルと混在する雲 ( 日射の吸収による雲の消滅 ) Cited from WG1 _Pub_ch2 page154.

Objectives of SKYNET: Optical characteristics and radiative effect by aerosol and cloud Cloud and aerosol parameters retrieved by ground based observations, using sun/sky radiometer, pyranometer and other related instruments. Estimate of the radiative effect. (Aerosol cloud interaction) Observation of vertical structure of aerosol and cloud using lidar and radar to understand variations of the parameters in regional/spatial and time domain. Analysis of physical and chemical parameters of aerosol and cloud. Validation of satellite products and model input Comparison of cloud and aerosol products retrieved from satellites with groundbased data, and secondary products such as surface radiative flux/radiation budget deduced using satellite aerosol/cloud parameters.

SKYNET & Other networks http://atmos.cr.chiba-u.ac.jp/ ESR: EUROPEAN SKYRAD USERS NETWORK

Present sites registered in the SKYNET data center of Chiba Univ. Site Responsible Data status Institute transfer Japan Moshiri( 母子里 ) GOSAT/NIES Pause ON Sendai( 仙台 ) Tohoku U Running ON Tsukuba( 筑波 ) MRI Running NA Tokyo( 東京 ) Tokyo Marine U Running ON Chiba( 千葉 ) Chiba U Running ON Fuji hokuroku( 富士北 ) NIES/AIST ON Noto( 能登 ) Kinki U NA NA Fukue jima( 福江島 ) Chiba U Running ON Cape Hedo( 辺戸岬 ) Chiba U/NIES Running ON Miyako jima( 宮古島 ) MRI Running ON Marcus( 南鳥島 ) MRI Running OFF ASIA Mongolia Mandalgobi MUST Stop OFF Korea Seoul SNU ON China Beijing( 北京 ) IAP/MRI Running Quindao( 青島 ) CMU/MRI Running Hefei( 合肥 ) AIOFM/Chiba U Running Lanzhou( 蘭州 ) Lanzhou U/Chiba U Running Dunhuang( 敦煌 ) IAP/Chiba U Closed Yinchuan( 銀川 ) IAP/Chiba U Closed Thailand Phimai Chulalongkorn U Running ON Sri Samrong Chulalongkorn U Closed India Pune IITM OFF Nepal Kathmandu Kathomanzu Univ NA NA EUROPE Italy Rome ISAC CNR Running ON Bologna ISAC CNR Running ON France Olreans GOSAT/NIES Running ON New Zealand Lauder GOSAT/NIES Running ON

Observation system for SKYNET [Extended for Super site] [Basic instruments for basic site] barometer anemometer Microwave radiometer (wvr-1100) lidar Temperature Humidity (Vaisala) PWC & LWP Aerosol profile cloud base Sky radiometer sun photometer (POM-01 POM-02) Pyranometer (CM21) Pyrgeometer (PIR) Pyrheliometer (CH01) Integrating nephelometer (M903) Absorption meter (PSAP/SP-Y01) Cloud camera (psv-100) Optical thickness size distribution single scattering albedo Downward solar radiation Downward terrestrial radiation Direct solar radiation Scattering coefficient Absorption coefficient single scattering albedo Cloud fraction

SKYNET and its data analysis strategy for aerosol, cloud and radiation SKYNET instruments Solar radiation, PAR Terrestrial radiation At the SFC & TOA Comparison of radiation Pyranometer Pyrgeometer Radiative Transfer Code:RSTAR Forcing calc., Algorithm improvement FM-CW 95GHz radar i-sky radiometer Microwave Radiometer GMS/MTSAT MODIS Cloud-aerosol interaction / Satellite validation Cloud /aerosol parameters, reff, cloud top, LWP, cloud fraction Comparison of parameters Cloud parameters, reff, cloud base, PWC, LWP cloud fraction Aerosol parameters,cext(z), Csca, Cabs dv/dlnr, m, g, Aerosol Sampling Chemical analysis Skyview Sky radiometer LIDAR Integrating Nephelometer Absorption photometer

Mandalgobi/Mongolia Dunghuan/China Hefei/China Cape Hedo/Japan

Mandalgovi(Mongolia) Basic site

Dunghuan(China) Basic site(closed)

Phimai(Thailand) Super site

(To south) (To northwest) Hedo-misaki Super site

Homepage of SKYNET http://atmos.cr.chiba u.ac.jp/

Quick view in SKYNET Web http://atmos.cr.chiba-u.ac.jp/

http://atmos.cr.chiba-u.ac.jp/

http://atmos.cr.chiba-u.ac.jp/

http://atmos.cr.chiba-u.ac.jp/

http://atmos.cr.chiba-u.ac.jp/

http://atmos.cr.chiba-u.ac.jp/

Monthly mean of aerosol characteristics at SKYNET Dunhuang (China) AOT(500nm) & SSA(500nm) 1 0.8 0.6 0.4 0.2 0 SSA(500nm) AOT(500nm) 1999 2000 2001 2002 2003 2004 2005 2006 2007 YEAR AOT(500nm) 1.2 AOT(500nm) 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 SSA(500nm) 1.1 1 0.9 0.8 0.7 0.6 SSA(500nm) 0 2 4 6 8 10 12 Alfa 1.4 1.2 1 0.8 0.6 0.4 0.2 0 (Ang Exp) 0 2 4 6 8 10 12 Month(1999 2006) Month(1999 2006) Month(1999 2006)

(1) Analysis and opening system(web) Present status of analysis method Level Opening time SKYRAD.pack 1.0, 1.5 quasi real time analysis V4.2 2 & 2.x Monthly V4.2 3 Monthly V5.0* (Under testing) * V5.0 will be discussed by Ms. Hashimoto/Dr. P. Khatri.

SKYNET data archive/analysis system Calibration Super sites Basic sites Transfer system Data center Archive & Analysis system, Data Opening Web Instrument Maintenance Network Maintenance Software Maintenance Software Maintenance Voluntary based for each site NIES, Chiba U U Tokyo, MRI, Chiba U Chiba U, U Toyama?

Observation for instrument calibration at MRI (2009 年 12 月 ~2010 年 1 月 ) Comparison of sky radiometers for calibration at MRI Comparison of radiation instruments for calibration at MRI Courtesy of Dr. A. Uchiyama(MRI/JMA)

F0 6.00E-05 4.00E-05 2.00E-05 Comparison between Normal Langley (Mauna Loa) and Improved Langley (on-site) calibration constants MiyakoJima FukueJima HedoMisaki 380nm Closed circles: Normal Langley (Manuna Loa) F0 F0 0.00E+00 2.00E-04 1.50E-04 1.00E-04 5.00E-05 0.00E+00 4.00E-04 3.00E-04 F0 2.00E-04 1.00E-04 0.00E+00 6.00E-04 4.00E-04 2.00E-04 0.00E+00 4.00E-04 3.00E-04 F0 2.00E-04 1.00E-04 0.00E+00 3.00E-04 2.00E-04 7 10 1 4 7 400nm 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 500nm 7 10 1 4 7 675nm 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 870nm 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 1020nm F0 1.00E-04 0.00E+00 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 2003 2004 2005 2006 2007 2008 2009 Years and Months