Single Index Quantile Regression for Heteroscedastic Data

Similar documents
Single Index Quantile Regression for Heteroscedastic Data

The Pennsylvania State University The Graduate School Eberly College of Science A NON-ITERATIVE METHOD FOR FITTING THE SINGLE

Econ 582 Nonparametric Regression

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract

Inference on distributions and quantiles using a finite-sample Dirichlet process

Nonparametric Econometrics

Minimum Hellinger Distance Estimation in a. Semiparametric Mixture Model

IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade

Efficient Quantile Regression for Heteroscedastic Models

Modelling Non-linear and Non-stationary Time Series

Asymmetric least squares estimation and testing

Transformation and Smoothing in Sample Survey Data

DEPARTMENT MATHEMATIK ARBEITSBEREICH MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE

Estimating a frontier function using a high-order moments method

SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES. Liping Zhu, Mian Huang, & Runze Li. The Pennsylvania State University

Median Cross-Validation

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β

Identification and Estimation of Partially Linear Censored Regression Models with Unknown Heteroscedasticity

Local Polynomial Regression

Stat 710: Mathematical Statistics Lecture 31

Estimation of cumulative distribution function with spline functions

Program Evaluation with High-Dimensional Data

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego

Nonparametric Methods

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Quantile Regression for Extraordinarily Large Data

Nonparametric Modal Regression

Can we do statistical inference in a non-asymptotic way? 1

Additive Isotonic Regression

Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation

Quantile Regression for Panel Data Models with Fixed Effects and Small T : Identification and Estimation

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

Density estimation Nonparametric conditional mean estimation Semiparametric conditional mean estimation. Nonparametrics. Gabriel Montes-Rojas

41903: Introduction to Nonparametrics

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

Statistica Sinica Preprint No: SS

Advanced Statistics II: Non Parametric Tests

Robust estimation, efficiency, and Lasso debiasing

Linear programming II

Nonparametric Inference via Bootstrapping the Debiased Estimator

Quantile Processes for Semi and Nonparametric Regression

Semi-Nonparametric Inferences for Massive Data

Inference For High Dimensional M-estimates: Fixed Design Results

SEMIPARAMETRIC ESTIMATION OF CONDITIONAL HETEROSCEDASTICITY VIA SINGLE-INDEX MODELING

Penalty Methods for Bivariate Smoothing and Chicago Land Values

WEIGHTED LIKELIHOOD NEGATIVE BINOMIAL REGRESSION

Simple and Efficient Improvements of Multivariate Local Linear Regression

Local Quantile Regression

Statistical Properties of Numerical Derivatives

Monitoring Wafer Geometric Quality using Additive Gaussian Process

Nonparameteric Regression:

Bayesian spatial quantile regression

CALCULATION METHOD FOR NONLINEAR DYNAMIC LEAST-ABSOLUTE DEVIATIONS ESTIMATOR

Time Series and Forecasting Lecture 4 NonLinear Time Series

Some Theories about Backfitting Algorithm for Varying Coefficient Partially Linear Model

Estimation of risk measures for extreme pluviometrical measurements

arxiv: v1 [stat.me] 28 Apr 2016

Empirical Bayes Quantile-Prediction aka E-B Prediction under Check-loss;

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Expecting the Unexpected: Uniform Quantile Regression Bands with an application to Investor Sentiments

Lecture 3: Statistical Decision Theory (Part II)

Introduction to Nonparametric Regression

Bickel Rosenblatt test

The high order moments method in endpoint estimation: an overview

Nonparametric Identification of a Binary Random Factor in Cross Section Data - Supplemental Appendix

Robust Backtesting Tests for Value-at-Risk Models

L. Brown. Statistics Department, Wharton School University of Pennsylvania

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction

Local Polynomial Modelling and Its Applications

Introduction to Machine Learning

Stat 5101 Lecture Notes

Testing Equality of Nonparametric Quantile Regression Functions

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

Convergence of Multivariate Quantile Surfaces

The Bootstrap: Theory and Applications. Biing-Shen Kuo National Chengchi University

Local linear multiple regression with variable. bandwidth in the presence of heteroscedasticity

A Conditional Approach to Modeling Multivariate Extremes

Data Mining Techniques. Lecture 2: Regression

Extreme inference in stationary time series

Sparse polynomial chaos expansions as a machine learning regression technique

Correlation and Regression Theory 1) Multivariate Statistics

Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures

Deductive Derivation and Computerization of Semiparametric Efficient Estimation

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Nonparametric Regression

On Fractile Transformation of Covariates in Regression 1

Inference for High Dimensional Robust Regression

Semiparametric modeling and estimation of the dispersion function in regression

Remedial Measures for Multiple Linear Regression Models

Statistical inference on Lévy processes

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Nonrobust and Robust Objective Functions

Efficient Estimation in Convex Single Index Models 1

Ultra High Dimensional Variable Selection with Endogenous Variables

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University

Nonparametric Regression. Changliang Zou

Stat588 Homework 1 (Due in class on Oct 04) Fall 2011

Day 3B Nonparametrics and Bootstrap

Transcription:

Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University JSM, 2015 E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 1 / 32

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 2 / 32

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 3 / 32

Introduction Motivation Least Squares Regression: Models the relationship between a d-dimensional vector of covariates X and the conditional mean of the response Y given X = x. Least Squares Estimator: 1 provides only a single summary measure for the conditional distribution of the response given the covariates. 2 sensitive to outliers and can provide a very poor estimator in many non-gaussian and especially long-tailed distributions. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 4 / 32

Introduction Motivation Quantile Regression (QR): Models the relationship between a d-dimensional vector of covariates X and the τ th conditional quantile of the response Y given X = x, Q τ (Y x). Quantile Regression: 1 provides a more complete picture for the conditional distribution of the response given the covariates. 2 useful for modeling data with heterogeneous conditional distributions, especially data where extremes are important. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 5 / 32

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 6 / 32

Introduction Possible Models Linear QR: Q τ (Y x) = β x, for a d-dimensional vector of unknown parameters β. Disadvantage: linear assumption not always valid. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 7 / 32

Introduction Possible Models Linear QR: Q τ (Y x) = β x, for a d-dimensional vector of unknown parameters β. Disadvantage: linear assumption not always valid. Nonparametric QR: Q τ (Y x) = g(x), for an unspecified function g : R d R. Disadvantage: meets the data sparseness problem for high dimensional data. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 7 / 32

Introduction Possible Models Linear QR: Q τ (Y x) = β x, for a d-dimensional vector of unknown parameters β. Disadvantage: linear assumption not always valid. Nonparametric QR: Q τ (Y x) = g(x), for an unspecified function g : R d R. Disadvantage: meets the data sparseness problem for high dimensional data. Single-Index QR: Q τ (Y x) = g(β x β), depends on x only through the single linear combination β x. Advantage: reduces the dimension and maintain some nonparametric flexibility. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 7 / 32

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 8 / 32

The Proposed Estimator The Model Let {Y i, X i } n i=1 be independent and identically distributed (iid) observations that satisfy Y i = Q τ (Y X i ) + ɛ i, where Q τ (Y x) = Q τ (Y β 1x) and the error term satisfies Q τ (ɛ i x) = 0. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 9 / 32

The Proposed Estimator The Model Let {Y i, X i } n i=1 be independent and identically distributed (iid) observations that satisfy Y i = Q τ (Y X i ) + ɛ i, where Q τ (Y x) = Q τ (Y β 1x) and the error term satisfies Q τ (ɛ i x) = 0. For identifiability, we impose certain conditions on β 1 : the most common one: β 1 = 1 with its first coordinate positive. the one adopted here: β 1 = (1, β ). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 9 / 32

The Proposed Estimator The Model The true parametric vector β satisfies β = arg min b E ( ρ τ (Y Q τ (Y b 1X)) ), where b 1 = (1, b ) and ρ τ (u) = (τ I (u < 0))u. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 10 / 32

The Proposed Estimator Iterative algorithms As in the single index mean regression (SIMR) problem, the unknown Q τ (Y b 1X) must be replaced with an estimator. Unlike the SIMR problem, however, there is no closed form expression for the estimator of Q τ (Y b 1 X i), and this has led to iterative algorithms for estimating β (Wu, Yu, and Yu, 2010; Kong and Xia, 2012). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 11 / 32

The Proposed Estimator The New Approach For any given b R d 1, define the function g(u b) : R R as where b 1 = (1, b ). g(u b) = E(Q τ (Y X) b 1X = u), E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 12 / 32

The Proposed Estimator The New Approach For any given b R d 1, define the function g(u b) : R R as where b 1 = (1, b ). Noting that β also satisfies where b 1 = (1, b ). g(u b) = E(Q τ (Y X) b 1X = u), g(β 1X β) = Q τ (Y X), β = arg min b E ( ρ τ (Y g(b 1X b)) ), (1) E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 12 / 32

The Proposed Estimator The New Approach The sample level version of (1) consists of minimizing S n (τ, b) = n ρ τ (Y i g(b 1X i b)). i=1 E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 13 / 32

The Proposed Estimator The New Approach The sample level version of (1) consists of minimizing S n (τ, b) = n ρ τ (Y i g(b 1X i b)). i=1 Again, g( b) is unknown but it can be estimated, in a non-iterative fashion, by first obtaining estimators Q τ (Y X i ), for i = 1,..., n, and forming the Nadaraya-Watson-type estimator ĝ NW ˆQ (t b) = n i=1 ( ) t b Q τ (Y X i )K 1 X i 2 h 2 ( ) n k=1 K t b, (2) 1 X k 2 h 2 where K 2 ( ) is a univariate kernel function and h 2 is a bandwidth. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 13 / 32

The Proposed Estimator The New Approach For the estimator Q τ (Y X i ), we use the local linear conditional quantile estimator (Guerre and Sabbah, 2012). Specifically, for a multivariate kernel function K 1 (x) = K 1 (x 1,..., x d ) and a univariate bandwidth h 1, let L n ((α 0, α 1 ); τ, h 1, x) = 1 nh d 1 n i=1 ( ) ρ τ (Y i α 0 α Xi x 1(X i x))k 1 h 1 and define Q τ (Y x) as α 0 (τ; h 1, x), where α 0 (τ; h 1, x) is defined through ( α 0 (τ; h 1, x), α 1 (τ; h 1, x)) = arg min (α 0,α 1 ) L n((α 0, α 1 ); τ, h 1, x). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 14 / 32

The Proposed Estimator The proposed estimator is obtained by β = arg min b Θ n ( ) ρ τ Y i ĝ NW (b 1X i b), (3) i=1 where Θ R d 1 is a compact set, β is in the interior of Θ. ˆQ E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 15 / 32

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 16 / 32

Main Results Proposition 1 Let ĝ NW (t b) be as defined in (2).Under some regularity conditions, we ˆQ have sup ĝ NW Q (t b) g(t b) ( = O p a n + a n + h2) 2, b Θ,t T b where a n = (log n/n) s/(2s+d) and a n = (log n/(nh 2 )) 1/2. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 17 / 32

Main Results Proposition 1 Let ĝ NW (t b) be as defined in (2).Under some regularity conditions, we ˆQ have sup ĝ NW Q (t b) g(t b) ( = O p a n + a n + h2) 2, b Θ,t T b where a n = (log n/n) s/(2s+d) and a n = (log n/(nh 2 )) 1/2. Proposition 2 Let β be as defined in (3). Under regularity conditions, β is n-consistent estimator of β. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 17 / 32

Main Results Theorem Let β be as defined in (3). Under regularity conditions, n( β β) d N ( 0, τ(1 τ)v 1 ΣV 1), where V = E ( (g (β 1X β)) 2 (X 1 E(X 1 β 1X))(X 1 E(X 1 β 1X)) f ɛ X (0 X) ), and Σ = E ( (g (β 1X β)) 2 (X 1 E(X 1 β 1X))(X 1 E(X 1 β 1X)) ). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 18 / 32

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 19 / 32

Numerical Studies Notation NWQR - the proposed estimator. WYY - the estimator resulting from the iterative algorithm proposed by Wu et al. (2010). WYY-1 - the estimator resulting from dividing the estimator of Wu et al. (2010) by its first component. WYY-2 - the estimator resulting from using the proposed constraint in conjunction with the iterative algorithm of Wu et al. (2010). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 20 / 32

Numerical Studies Example 1 Consider the model Y = exp(β 1X) + ɛ, (4) where X = (X 1, X 2 ), X i N(0, 1) are iid, β 1 = (1, 2) and the residual ɛ follows a standard normal distribution. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 21 / 32

Numerical Studies Example 1 Consider the model Y = exp(β 1X) + ɛ, (4) where X = (X 1, X 2 ), X i N(0, 1) are iid, β 1 = (1, 2) and the residual ɛ follows a standard normal distribution. We fit the single index quantile regression model for five different quantile levels, τ = 0.1, 0.25, 0.5, 0.75, 0.9. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 21 / 32

Numerical Studies Example 1 Consider the model Y = exp(β 1X) + ɛ, (4) where X = (X 1, X 2 ), X i N(0, 1) are iid, β 1 = (1, 2) and the residual ɛ follows a standard normal distribution. We fit the single index quantile regression model for five different quantile levels, τ = 0.1, 0.25, 0.5, 0.75, 0.9. We use sample size of n = 400 and perform N = 100 replications. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 21 / 32

Numerical Studies Example 1 For comparison of the above estimators, consider the mean square error, R( β), and the mean check based absolute residuals, R τ ( β 1 ), which are defined as R( β) = 1 N N ( β i 2) 2, R τ ( β 1 ) = 1 n i=1 n ρ τ (Y i i=1 Q LL τ (Y β 1X i )), (5) where Q LL τ (Y β 1x) is the local linear conditional quantile estimator on the univariate variable β 1X i. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 22 / 32

Table 1: mean values and standard errors (in parenthesis), R( β) and R τ ( β 1 ) for Model (4). 95% coverage probability for NWQR, WYY-2 and the second estimated coefficient of Wu et al. (2010). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 23 / 32 Numerical Studies Example 1 τ 0.1 0.25 0.5 0.75 0.9 NWQR 2.0085 2.0132 2.0149 2.0290 2.0768 (0.0603) (0.0477) (0.0481) (0.0683) (0.3905) β 1.9521 1.9890 3.4450 1.9363 1.9592 WYY-1 (0.2521) (0.2252) (3.8756) (0.3246) (0.5906) WYY-2 1.9699 1.9899 2.0158 2.0525 2.0287 (0.1593) (0.1307) (0.3937) (0.6735) (0.7240) NWQR 0.0037 0.0024 0.0025 0.0055 0.1569 R( β) WYY-1 0.0652 0.0503 192.6956 0.1084 0.3469 WYY-2 0.0260 0.0170 0.1537 0.4518 0.5197 NWQR 0.1682 0.3096 0.3909 0.3113 0.1761 R τ ( β 1 ) WYY-1 0.1783 0.3273 0.4154 0.3479 0.2265 WYY-2 0.1720 0.3160 0.4031 0.3310 0.2050 coverage NWQR 0.99 0.97 0.97 0.97 0.95 prob. WYY-2 0.93 0.90 0.92 0.80 0.70 WYY 0.55 0.76 0.86 0.66 0.28

Outline 1 Introduction Motivation Possible Models 2 Single Index Quantile Regression The Proposed Estimator Main Results 3 Numerical Studies Example 1 Example 2 4 Conclusions 5 Future Work E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 24 / 32

Numerical Studies Boston Housing Data 506 observations. 14 variables, response: medv, the median value of owner-occupied homes in $1000 s, predictors: measurements on the 506 census tracts in suburban Boston from the 1970 census. available in the MASS library in R. consider the four covariates: RM, TAX, PTRATIO, LSTAT (Opsomer and Ruppert 1998; Yu and Lu 2004; Wu et al. 2010). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 25 / 32

Numerical Studies Boston Housing Data center the dependent variable. take logarithmic transformations on TAX and LSTAT. standardize RM, log(tax), PTRATIO and log(lstat) and denote them by X 1, X 2, X 3 and X 4. consider the single index quantile regression models: Q τ (medv X) = g(x 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 β), (6) for τ = 0.1, 0.25, 0.5, 0.75, 0.9. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 26 / 32

Numerical Studies Boston Housing Data τ RM log(tax) PTRATIO log(lstat) 0.1 1-1.1274-0.6098-1.1366 (0.2431) (0.3521) (0.4038) 0.25 1-0.7052-0.5828-1.2833 (0.2325) (0.4518) (0.4861) 0.5 1-0.4984-0.4497-1.0197 (0.3286) (0.6176) (0.6765) 0.75 1-0.3323-0.3961-0.8692 (0.3585) (0.6414) (0.7184) 0.9 1-0.6809-1.6961-5.2774 (0.0452) (0.0995) (0.0936) Table 2: Parametric vector estimates and standard errors (in parenthesis) for Boston housing data for Models (6) with five different quantile levels. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 27 / 32

Numerical Studies Boston Housing Data τ WYY NWQR 0.1 1.102 1.093 0.25 2.105 2.085 0.5 2.845 2.786 0.75 2.577 2.482 0.9 1.749 1.709 Table 3: Comparison of average check absolute residuals R τ ( β 1 ) defined in (5). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 28 / 32

Conclusions conditional quantiles provide a more complete picture of the conditional distribution and share nice properties such as robustness. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 29 / 32

Conclusions conditional quantiles provide a more complete picture of the conditional distribution and share nice properties such as robustness. consider a single index model to reduce the dimensionality and maintain some nonparametric flexibility. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 29 / 32

Conclusions conditional quantiles provide a more complete picture of the conditional distribution and share nice properties such as robustness. consider a single index model to reduce the dimensionality and maintain some nonparametric flexibility. iterative algorithms for estimating the parametric vector; convergence issues. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 29 / 32

Conclusions conditional quantiles provide a more complete picture of the conditional distribution and share nice properties such as robustness. consider a single index model to reduce the dimensionality and maintain some nonparametric flexibility. iterative algorithms for estimating the parametric vector; convergence issues. proposed a method that directly estimates the parametric component non-iteratively and have derived its asymptotic distribution under heteroscedastic errors. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 29 / 32

Conclusions conditional quantiles provide a more complete picture of the conditional distribution and share nice properties such as robustness. consider a single index model to reduce the dimensionality and maintain some nonparametric flexibility. iterative algorithms for estimating the parametric vector; convergence issues. proposed a method that directly estimates the parametric component non-iteratively and have derived its asymptotic distribution under heteroscedastic errors. make use of a parametrization that corresponds to the asymptotic theory derived. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 29 / 32

Future Work for high dimensional data, it is possible to improve the local linear conditional quantile estimators Q τ (Y X i ). E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 30 / 32

Future Work for high dimensional data, it is possible to improve the local linear conditional quantile estimators Q τ (Y X i ). variable selection for estimating the local linear conditional quantile estimators. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 30 / 32

Future Work for high dimensional data, it is possible to improve the local linear conditional quantile estimators Q τ (Y X i ). variable selection for estimating the local linear conditional quantile estimators. penalty term for estimating the parametric component β. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 30 / 32

References I E. Guerre and C. Sabbah. Uniform bias study and Bahadure representation for local polynomial estimators of the conditional quantile function. Econometric Theory, 28(01):87 129, 2012. E. Kong and Y. Xia. A single-index quantile regression model and its estimation. Econometric Theory, 28:730 768, 2012. J. D. Opsomer and D. Ruppert. A fully automated bandwidth selection for additive regression model. Journal of the American Statistical Association, 93:605 618, 1998. T. Z. Wu, K. Yu and Y. Yu. Single index quantile regression. Journal of Multivariate Analysis, 101(7):1607 1621, 2010. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 31 / 32

References II K. Yu and Z. Lu. Local linear additive quantile regression. Scandinavian Journal of Statistics, 31:333 346, 2004. E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015 32 / 32