SOLUTIONS TO NONLOCAL FRACTIONAL DIFFERENTIAL EQUATIONS USING A NONCOMPACT SEMIGROUP

Similar documents
On boundary value problems for fractional integro-differential equations in Banach spaces

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES

Nonlocal Fractional Semilinear Delay Differential Equations in Separable Banach spaces

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

SOME RESULTS FOR BOUNDARY VALUE PROBLEM OF AN INTEGRO DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

Existence Results for Multivalued Semilinear Functional Differential Equations

Existence of solutions for multi-point boundary value problem of fractional q-difference equation

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

EXISTENCE OF MILD SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

IMPULSIVE NEUTRAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE DEPENDENT DELAYS AND INTEGRAL CONDITION

Tiziana Cardinali Francesco Portigiani Paola Rubbioni. 1. Introduction

BOUNDARY VALUE PROBLEMS FOR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL INEQUALITY IN BANACH SPACE

EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

INTEGRAL SOLUTIONS OF FRACTIONAL EVOLUTION EQUATIONS WITH NONDENSE DOMAIN

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

A General Boundary Value Problem For Impulsive Fractional Differential Equations

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

Research Article Existence of Mild Solutions for a Class of Fractional Evolution Equations with Compact Analytic Semigroup

Fractional order Pettis integral equations with multiple time delay in Banach spaces

MEASURE OF NONCOMPACTNESS AND FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

Upper and lower solutions method and a fractional differential equation boundary value problem.

Countably condensing multimaps and fixed points

Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument

On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

Fractional differential equations with integral boundary conditions

Fractional Evolution Integro-Differential Systems with Nonlocal Conditions

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions

FRACTIONAL BOUNDARY VALUE PROBLEMS WITH MULTIPLE ORDERS OF FRACTIONAL DERIVATIVES AND INTEGRALS

Research Article A New Fractional Integral Inequality with Singularity and Its Application

POSITIVE SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH DERIVATIVE TERMS

Controllability of Fractional Nonlocal Quasilinear Evolution Inclusions with Resolvent Families

FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT THEOREM

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FUNCTIONAL INTEGRO-DIFFERENTIAL FRACTIONAL EQUATIONS

Monotone Iterative Method for a Class of Nonlinear Fractional Differential Equations on Unbounded Domains in Banach Spaces

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

Nonlocal Cauchy problems for first-order multivalued differential equations

Applied Mathematics Letters

Existence Theorem for First Order Ordinary Functional Differential Equations with Periodic Boundary Conditions

On four-point nonlocal boundary value problems of nonlinear impulsive equations of fractional order

On Monch type multi-valued maps and fixed points

Functional Differential Equations with Causal Operators

Application of Measure of Noncompactness for the System of Functional Integral Equations

EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

SOLUTIONS OF TWO-TERM TIME FRACTIONAL ORDER DIFFERENTIAL EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS AT RESONANCE IN HILBERT SPACES

Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 1, 2017, 3 18

Vol 46, pp

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

Advances in Difference Equations 2012, 2012:7

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS

Existence, Uniqueness and Stability of Hilfer Type Neutral Pantograph Differential Equations with Nonlocal Conditions

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional operators

x(t)), 0 < t < 1, 1 < q 2, 0 < p < 1 x(1). x(0) = 0, x (1) = αi p 0

EXISTENCE OF SOLUTIONS TO FRACTIONAL-ORDER IMPULSIVE HYPERBOLIC PARTIAL DIFFERENTIAL INCLUSIONS

On the solvability of an inverse fractional abstract Cauchy problem

Nonlocal cauchy problem for delay fractional integrodifferential equations of neutral type

EXISTENCE OF SOLUTIONS TO FRACTIONAL ORDER ORDINARY AND DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS

Mild Solution for Nonlocal Fractional Functional Differential Equation with not Instantaneous Impulse. 1 Introduction

SOLUTION OF AN INITIAL-VALUE PROBLEM FOR PARABOLIC EQUATIONS VIA MONOTONE OPERATOR METHODS

Positive solutions for a class of fractional boundary value problems

Research Article Positive Mild Solutions of Periodic Boundary Value Problems for Fractional Evolution Equations

LOCAL FIXED POINT THEORY INVOLVING THREE OPERATORS IN BANACH ALGEBRAS. B. C. Dhage. 1. Introduction

Study of Existence and uniqueness of solution of abstract nonlinear differential equation of finite delay

HYBRID DHAGE S FIXED POINT THEOREM FOR ABSTRACT MEASURE INTEGRO-DIFFERENTIAL EQUATIONS

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation

On Some Stochastic Fractional Integro-Differential Equations

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

Approximate controllability and complete. controllability of semilinear fractional functional differential systems with control

Positive solutions for nonlocal boundary value problems of fractional differential equation

A fixed point theorem for multivalued mappings

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Fuzzy Fractional Differential Equations

RESEARCH ARTICLE. Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal

Second order Volterra-Fredholm functional integrodifferential equations

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS. 1. Introduction

ULAM STABILITY OF BOUNDARY VALUE PROBLEM

ON QUADRATIC INTEGRAL EQUATIONS OF URYSOHN TYPE IN FRÉCHET SPACES. 1. Introduction

On Positive Solutions of Boundary Value Problems on the Half-Line

TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT BOUNDARY-VALUE PROBLEMS

Research Article Solvability of a Class of Integral Inclusions

CONTINUATION METHODS FOR CONTRACTIVE AND NON EXPANSIVE MAPPING (FUNCTION)

Tomasz Człapiński. Communicated by Bolesław Kacewicz

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

NONLOCAL INITIAL VALUE PROBLEMS FOR FIRST ORDER FRACTIONAL DIFFERENTIAL EQUATIONS

Transcription:

Electronic Journal of Differential Equations, Vol. 213 (213), No. 24, pp. 1 14. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SOLUTIONS TO NONLOCAL FRACTIONAL DIFFERENTIAL EQUATIONS USING A NONCOMPACT SEMIGROUP SHAOCHUN JI, GANG LI Abstract. This article concerns the existence of solutions to nonlocal fractional differential equations in Banach spaces. By using a type of newly-defined measure of noncompactness, we discuss this problem in general Banach spaces without any compactness assumptions to the operator semigroup. Some existence results are obtained when the nonlocal term is compact and when is Lipschitz continuous. 1. Introduction In this article, we study the following fractional differential equations with nonlocal conditions C D α u(t) = Au(t) + f(t, u(t)), t J = [, b], (1.1) u() = g(u), where A : D(A) X X is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators {T (t)} t in a Banach space X; C D α is the Caputo fractional derivative operator of order α with < α 1; f and g are appropriate continuous functions to be specified later. Fractional differential equations arise in many engineering and scientific problems, such as diffusion process, control theory, signal and image processing. Compared with the classical integer-order models, the fractional-order models are more realistic and practical to describe many phenomena in nature (see [5]). For some recent development on this topic, we refer to the monographs of Kilbas et al. [16], Podlubny [25], Lakshmikantham et al. [18], and [1, 7, 17, 19, 2, 3]. By using some probability density functions, El-Borai [9] introduced fundamental solutions of fractional evolution equations in a Banach space. Wang et al. [28] obtained the existence and uniqueness of α-mild solutions by means of fractional calculus and Leray-Schauder fixed point theorem with a compact analytic semigroup. Ren et al. [26, 27] established the existence of mild solutions for a class of semilinear integro-differential equations of fractional order with delays. The study of nonlocal semilinear differential equation in Banach spaces was initiated by Byszewski [6] and the importance of the problem consists in the fact 2 Mathematics Subject Classification. 26A33, 34G2. Key words and phrases. Fractional differential equations; nonlocal conditions; measure of noncompactness. c 213 Texas State University - San Marcos. Submitted August 22, 213. Published October 29, 213. 1

2 S. JI, G. LI EJDE-213/24 that it is more general and has better effect than the classical initial conditions u() = u alone. For example, Deng [8] defined the function g by q g(u) = c j u(s j ), j=1 where c j are given constants and < s 1 < s 2 < < s q b. This allows measurements to be made at t =, s 1,..., s q, rather than just at t = and more information can be obtained. Subsequently several authors have investigated some different types of differential equations and integrodifferential equations in Banach spaces[23, 2, 32]. Most of the previous results are obtained with the assumption that semigroup T (t) is compact. Then one of the difficulties on the nonlocal problems is how to deal with the compactness on the solution operator. By using the measure of noncompactness, Xue[29] discussed integral solutions of the nonlinear nonlocal initial value problem and Fan et al.[1], Ji et al.[14] discussed nonlocal impulsive differential equations when the semigroup T (t) is equicontinuous. From the viewpoint of theory and practice, it is natural for mathematics to combine fractional differential equations and nonlocal conditions. Mophou et al.[22] and Balachandran et al.[3] investigated the existence of solutions of fractional abstract differential equations with nonlocal conditions. Zhou and Jiao[31] discussed the problem based on Krasnoselskii s fixed point theorem with the assumption that semigroup T (t) is compact and nonlocal item g is Lipschitz continuous. Very recently, Li, Peng and Gao[21] study the existence of mild solutions to the problem (1.1) by using the Hausdorff measure of noncompactness when the semigroup T (t) is equicontinuous and g is compact. In this paper, we study (1.1) without assuming T (t) is compact or equicontinuous and do not require additional conditions compared with those in[21]. Therefore, the existence theorems of mild solutions given here are quite general, even in the case of integer-order differential equations. The work is based on a type of newly-defined measure of noncompactness (see Lemma 3.1), which can be seen as a generalization of classical Hausdorff measure of noncompactness. Moreover, we do not need the assumption of separability on the Banach space X. The article is organized as follows. In Section 2 we recall some preliminary facts that we need in the sequel. In Section 3 we prove our results when nonlocal item g is compact. In Section 4 we get our results when nonlocal item g is Lipschitz continuous. The conclusions and applications of the paper are given in Section 5. 2. Preliminaries Let (X, ) be a real Banach space and N be the set of positive integers. We denote by C([, b]; X) the space of X-valued continuous functions on [, b] with the norm x = sup{ x(t), t [, b]} and by L 1 ([, b]; X) the space of X-valued Bochner integrable functions on [, b] with the norm f L 1 = b f(t) dt. Let us recall the following definitions. For basic facts about fractional derivatives and fractional calculus, one can refer to the books [16, 25]. Definition 2.1. The Riemann-Liouville fractional integral of order α > with the lower limit zero for a function f can be defined as I α f(t) = 1 Γ(α) (t s) α 1 f(s) ds, t >,

EJDE-213/24 SOLUTIONS TO NONLOCAL DES 3 provided the right-hand side is pointwise defined on [, ), where Γ( ) is the gamma function. Definition 2.2. The Riemann-Liouville derivative of order α with the lower limit zero for a function f can be written as R L D α 1 f(t) = Γ(n α) dt n where α (n 1, n), n N. d n (t s) n α 1 f(s) ds, t >, Definition 2.3. The Caputo derivative of order α with the lower limit zero for a function f can be written as C D α f(t) = where α (n 1, n), n N. 1 Γ(n α) (t s) n α 1 f (n) (s) ds, t >, If f takes values in a Banach space X, the integrals which appear in the above three definitions are taken in Bochner s sense. Especially, when < α < 1, we have C D α f(t) = 1 Γ(1 α) f (s) (t s) α ds. We firstly recall the concept of mild solutions to equation (1.1) developed in [9, 31]. Definition 2.4. A function u C(J; X) is said to be a mild solution of (1.1) if u satisfies for t J, where S α (t) = u(t) = S α (t)g(u) + ϖ α (θ) = 1 π ξ α (θ)t (t α θ) dθ, (t s) α 1 T α (t s)f(s, u(s)) ds, T α (t) = α ξ α (θ) = 1 α θ 1 1 α ϖα (θ 1 α ), ( 1) n 1 αn 1 Γ(nα + 1) θ sin(nπα), n! n=1 θξ α (θ)t (t α θ) dθ, θ (, ). Here ξ α (θ) is a probability density function defined on (, ) satisfying ξ α (θ) dθ = 1, θ v ξ α (θ) dθ = Γ(1 + v), v [, 1]. Γ(1 + αv) Lemma 2.5 ([28]). For any fixed t, the operators S α (t) and T α (t) are linear and bounded operators; i.e., for any x X, S α (t)x M x and T α (t)x x, where M is the constant such that T (t) M for all t [, b]. Mα Γ(1+α) Now we give some facts on measure of noncompactness, see Banas and Goebel[4]. Definition 2.6. Let E + be the positive cone of an ordered Banach space (E, ). A function Φ defined on the set of all bounded subsets of the Banach space X with values in E + is called a measure of noncompactness (in short MNC) on X if Φ(coΩ) = Φ(Ω) for all bounded subsets Ω X, where coω stands for the closed convex hull of Ω. A measure of noncompactness Φ is said to be:

4 S. JI, G. LI EJDE-213/24 (1) monotone if for all bounded subsets Ω 1, Ω 2 of X we have: (Ω 1 Ω 2 ) (Φ(Ω 1 ) Φ(Ω 2 )); (2) nonsingular if Φ({a} Ω) = Φ(Ω) for every a X, Ω X; (3) regular if Φ(Ω) = if and only if Ω is relatively compact in X. One of the most important examples of MNC is the Hausdorff measure of noncompactness β( ) defined by β(b) = inf{ε > : Bhas a finite ε-net in X}, for each bounded subset B in a Banach space X. It is well known that the Hausdorff measure of noncompactness β enjoys the above properties. Lemma 2.7 ([4]). Let X be a real Banach space and B, C X be bounded. Then the following properties are satisfied: (1) B is relatively compact if and only if β(b) = ; (2) β(b) = β(b) = β(conv B), where B and conv B mean the closure and convex hull of B, respectively; (3) β(b) β(c) when B C; (4) β(b + C) β(b) + β(c), where B + C = {x + y : x B, y C}; (5) β(b C) max{β(b), β(c)}; (6) β(λb) λ β(b) for any λ R; (7) If the map Q : D(Q) X Z is Lipschitz continuous with constant k, then β Z (QB) kβ(b) for any bounded subset B D(Q), where Z is a Banach space. (8) If {W n } n=1 is a decreasing sequence of bounded closed nonempty subsets of X and lim n β(w n ) =, then n=1w n is nonempty and compact in X. We will also use the sequential MNC β generated by β, that is, for any bounded subset B X, we define β (B) = sup { β({x n : n 1}) : {x n } n=1 is a sequence in B }. It follows that β (B) β(b) 2β (B). (2.1) If X is a separable space, we have β (B) = β(b). Lemma 2.8 ([15]). If {u n } n=1 L 1 (J; X) satisfies u n (t) ϕ(t) a.e. on [, b] for all n 1 with some ϕ L 1 (J; R + ), then for t [, b], we have ( { t β u n (s) ds } ) 2 β({u n=1 n (s)} n=1) ds. Lemma 2.9 ([12]). Suppose b, σ > and a(t) is nonnegative function locally integrable on t < b (b + ), and suppose c(t) is nonnegative and locally integrable on t < b with on this interval. Then c(t) a(t) + µ c(t) a(t) + b (t s) σ 1 c(s) ds E σ(µ(t s))a(s) ds, t b, where µ = (bγ(σ)) 1/σ, E σ (z) = n= znσ /Γ(nσ + 1), E σ(z) = d dz E σ(z).

EJDE-213/24 SOLUTIONS TO NONLOCAL DES 5 3. T (t) strongly continuous and g compact Let r be a positive constant and B r = {x X : x r}, W r = {x C(J; X) : x(t) B r, t J}. We define the solution operator G : C(J; X) C(J; X) by with Gu(t) = S α (t)g(u) + G 2 u(t) = (t s) α 1 T α (t s)f(s, u(s)) ds G 1 u(t) = S α (t)g(u), (t s) α 1 T α (t s)f(s, u(s)) ds, for all t J. It is easy to see that u is the mild solution of the problem (1.1) if and only if u is a fixed point of the map G. Now we introduce some noncompact measures. For any bounded set B C(J; X), we define χ 1 (B) = sup β(b(t)), t J where β is the Hausdorff MNC on X and it is easy to see that χ 1 coincides with the the Hausdorff MNC β C on equicontinuous sets. We also define χ 2 (B) = sup mod C (B(t)), t J where mod C (B(t)) is the modulus of equicontinuity of the set B at t J, given by the formula mod C (B(t)) = lim δ sup{ x(t 1 ) x(t 2 ) : t 1, t 2 (t δ, t + δ), x B}. Then the MNC χ 1, χ 2 are well-defined and are both monotone and nonsingular, but in general they are not necessarily regular. Similar definitions with χ 1, χ 2 can be found in Kamenskii [15] or Fan[11]. Now we define Then we have the following result. χ(b) = χ 1 (B) + χ 2 (B). Lemma 3.1. χ is a monotone, nonsingular and regular measure of noncompactness defined on bounded subsets of C(J; X). Proof. It is easy to check that χ is well-defined, monotone and nonsingular. Now we shall show that χ is regular. If B is relatively compact in C(J; X), then by the abstract version of the Ascoli-Arzela theorem, we have χ(b) =. On the other hand, if χ(b) =, by the definition of χ, we have χ 1 (B) =, χ 2 (B) =. That is, for every t J, B(t) is precompact in X. Then it remains to prove that B is equicontinuous on J. Suppose not, then there exist ε > and sequences {u n } B, {t n }, {t n } [, b], such that t n t, t n t as n and for all n 1. Note that u n (t n ) u n (t n ) ε, u n (t n ) u n (t n ) sup{ u(t n ) u(t n ) : u B}.

6 S. JI, G. LI EJDE-213/24 We take the upper limit for n and get that lim n u n (t n ) u n (t n ) mod C (B(t )) χ 2 (B) =, which gives the contradiction < ε. Thus B C(J; X) is equicontinuous on J. This completes the proof. We will use the following hypotheses: (HA) The operator A generates a strongly continuous semigroup {T (t)} t in X. Moreover, there exists a positive constant M > such that M = sup tb T (t) (see Pazy[24]). (HG1) g : C(J; X) X is continuous and compact. There exists a positive constant N such that g(u) N for all u C(J; X). (HF1) f : [, b] X X is continuous. (HF2) there exists a constant L >, such that for any bounded set D X, β(f(t, D)) Lβ(D), for a.e. t J. The following lemma is useful for our proofs. Lemma 3.2. Suppose that the semigroup {T (t)} t is strongly continuous and hypotheses (HF1), (HF2) are satisfied. Then for any bounded set B C(J; X), we have β(g 2 B(t)) 4αML (t s) α 1 β(b(s)) ds, Γ(1 + α) for t [, b]. Proof. For t [, b], due to the inequality (2.1), we obtain that for arbitrary ε >, there exists a sequence {v k } k=1 B such that β(g 2 B(t)) 2β({G 2 v k (t)} k=1) + ε. (3.1) It follows from Lemma 2.8 and hypotheses (Hf 1 ), (Hf 2 ) that β({g 2 v k (t)} k=1) 2 2 (t s) α 1 β({t α (t s)f(s, v k (s))} k=1) ds (t s) α 1 αm Γ(1 + α) Lβ({v k(s)} k=1) ds 2αML Γ(1 + α) According to e3.1, we can derive that β(g 2 B(t)) 4αML Γ(1 + α) (t s) α 1 β(b(s)) ds. (t s) α 1 β(b(s)) ds + ε. Since the above inequality holds for arbitrary ε >, it follows that β(g 2 B(t)) This completes the proof. 4αML Γ(1 + α) (t s) α 1 β(b(s)) ds. Now, we give the main existence result of this section.

EJDE-213/24 SOLUTIONS TO NONLOCAL DES 7 Theorem 3.3. Assume that the hypotheses (HA), (HG1), (HF1), (HF2) are satisfied. Then the nonlocal fractional differential system (1.1) has at least one mild solution on [, b], provided that there exists a constant r > such that MN + Mbα sup f(s, u(s)) r. (3.2) Γ(1 + α) s [,b],u W r Proof. We shall prove this result by using the Schauder s fixed point theorem. Step 1. We shall prove that G is continuous on C(J; X). Let {u m } m=1 be a sequence in C(J; X) with lim m u m = u in C(J; X). By the continuity of f, we deduce that for each s [, b], f(s, u m (s)) converges to f(s, u(s)) in X uniformly for s [, b]. And we have Gu m Gu S α (t)g(u m ) g(u) + (t s) α 1 T α (t s)[f(s, u m (s)) f(s, u(s))] ds M g(u m ) g(u) + Mbα Γ(1 + α) sup f(s, u m (s)) f(s, u(s)). s [,b] Then by the continuity of g, we get lim m Gu m = Gu in C(J; X), which implies that G is continuous on C(J; X). Step 2. We construct a bounded convex and closed set W C(J; X) such that G maps W into itself. Let W = {u C(J; X) : u(t) r, t J}, where r satisfies the condition (3.2). For any u W, by hypotheses (HG1), (HF1) and (3.2), we have Gu(t) S α (t)g(u) + MN + (t s) α 1 T α (t s)f(s, u(s)) ds Mbα sup f(s, u(s)) r, Γ(1 + α) s [,b],u W for t [, b], which implies that GW W. Define W 1 = conv{g(w ), u }, where conv means the closure of convex hull, u W. Then W 1 W is nonempty bounded closed and convex. We define W n = conv{g(w n 1 ), u } for n 1. It is easy to know that {W n } n= is a decreasing sequence of C(J; X). Moreover, set W = n=w n, then W is a nonempty, convex, closed and bounded subset of C(J; X) and GW W. Step 3. We claim that W is compact in C(J; X) by using the newly-defined MNC χ. As {W n } is a decreasing sequence of C(J; X), then {β(w n (t))} n= is nonnegative decreasing sequence for any t [, b]. From the compactness of g and Lemma 3.2, we get β(w n+1 (t)) β({s α (t)g(u) : u W n }) + β({ 4αML Γ(1 + α) (t s) α 1 T α (t s)f(s, u(s)) ds : u W n }) (t s) α 1 β(w n (s))ds. (3.3)

8 S. JI, G. LI EJDE-213/24 Taking n to both sides of (3.3), we have β(w (t)) 4αML Γ(1 + α) (t s) α 1 β(w (s))ds. By Lemma 2.9 we obtain that β(w (t)) = for any t [, b]. Then according to the definition of χ 1, we have χ 1 (W n ), as n. (3.4) Next, we will estimate χ 2 (W n ). Fix t (, b), < p < α. Then for given n N, according to the continuity of f, we take δ, < δ < min{t, b t } such that ( +δ t δ f(s, u(s)) 1/p ds ) p 1 n, for any u W r. (3.5) From the definition of Hausdorff MNC β, there exist finite points x 1, x 2,..., x k X such that W n (t δ ) k i=1b(x i, 2β(W n (t δ ))). Moreover, for each u GW n 1, there exists v W n 1 such that u(t 1 ) = S α (t 1 (t δ ))u(t δ ) 1 + (t 1 s) α 1 T α (t 1 s)f(s, v(s)) ds, t δ u(t 2 ) = S α (t 2 (t δ ))u(t δ ) + 2 t δ (t 2 s) α 1 T α (t 2 s)f(s, v(s)) ds, (3.6) (3.7) for t 1, t 2 (t δ, t + δ). For the above given u, there exists x j, 1 j k, such that u(t δ ) x j 2β(W n (t δ )). (3.8) By the strong continuity of S α (t), there exists δ, < δ < δ, such that S α (t 1 (t δ ))x i S α (t 2 (t δ ))x i Mβ(W n (t δ )). (3.9) where i = 1,..., k and t 1, t 2 (t δ, t + δ).

EJDE-213/24 SOLUTIONS TO NONLOCAL DES 9 On the other hand, for < p < α < 1, by the Hölder s inequality and (3.5), we have 1 t δ (t 1 s) α 1 T α (t 1 s)f(s, v(s)) ds 2 (t 2 s) α 1 T α (t 2 s)f(s, v(s)) ds t δ αm 1 (t 1 s) α 1 f(s, v(s)) ds Γ(1 + α) t δ 2 + αm (t 2 s) α 1 f(s, v(s)) ds Γ(1 + α) t δ αm ( 1 ) (t 1 s) α 1 1 p ( 1 ) p 1 p ds f(s, v(s)) 1/p ds Γ(1 + α) t δ t δ + αm ( 2 ) ( 2 (t 2 s) α 1 1 p 1 p ds f(s, v(s)) 1/p ds Γ(1 + α) t δ t δ 2αM ( 1 p ) ( 1 pb +δ ) p α p f(s, v(s)) 1/p ds Γ(1 + α) α p t δ 2αM ( 1 p ) 1 pb α p 1 Γ(1 + α) α p n. Therefore, for any given u GW n 1, it follows from (3.6) (3.1) that u(t 1 ) u(t 2 ) S α (t 1 (t δ ))u(t δ ) S α (t 1 (t δ ))x j + S α (t 1 (t δ ))x j S α (t 2 (t δ ))x j + S α (t 2 (t δ ))x j S α (t 2 (t δ ))u(t δ ) + 1 2 t δ (t 1 s) α 1 T α (t 1 s)f(s, v(s)) ds t δ (t 2 s) α 1 T α (t 2 s)f(s, v(s)) ds 5Mβ(W n (t δ )) + 2αM ( 1 p ) 1 pb α p 1 Γ(1 + α) α p n, for t 1, t 2 (t δ, t + δ ). Then we have mod C (GW n 1 (t )) 5Mβ(W n (t δ )) + 2αM ( 1 p 1 pb α p Γ(1 + α) α p) 1 n 5Mχ 1 (W n ) + 2αM ( 1 p ) 1 pb α p 1 Γ(1 + α) α p n. ) p (3.1) For t = or b, we can also verify the above inequality. By the definition of MNC χ 2, we have χ 2 (GW n 1 ) 5Mχ 1 (W n ) + 2αM ( 1 p ) 1 pb α p 1 Γ(1 + α) α p n. (3.11) According to the property of MNC, we obtain χ 2 (W n ) = χ 2 (conv{g(w n 1 ), u }) = χ 2 (GW n 1 ). (3.12)

1 S. JI, G. LI EJDE-213/24 Thus from the definition of χ and (3.4), (3.11), (3.12), it follows that χ(w n ) = χ 1 (W n ) + χ 2 (W n ) (5M + 1)χ 1 (W n ) + 2αM ( 1 p ) 1 pb α p 1 Γ(1 + α) α p n, as n. Therefore, the set W = n=1w n is a nonempty, convex, compact subset of C(J, X), since χ is a monotone, nonsingular and regular MNC (see Lemma 3.1). Moreover, G maps W into W. Therefore, due to the Schauder s fixed point theorem, G has at lest one fixed point u C(J; X), which is just the mild solution to the problem (1.1). The proof of Theorem 3.3 is complete. Remark 3.4. Li et al. [21] discussed (1.1) when T (t) is equicontinuous, g is compact and the Banach space X is separable. Our existence results are more general than many previous results in this field, where the compactness of T (t) and f are needed. If f is compact or Lipschitz continuous, then hypothesis (HF2) is obviously satisfied. The regular MNC χ defined by us plays a key role in the proof. 4. T (t)strongly continuous and g Lipschitz continuous In this section, two existence results are given when g is Lipschitz continuous. The map Q : D X X is said to be β-condensing if Q is continuous, bounded and for any nonprecompact bounded subset B D, we have β(qb) < β(b), where X is a Banach space. Lemma 4.1 (See Darbo-Sadovskii [4]). If D X is bounded closed and convex, the continuous map Q : D D is β-condensing, then Q has at least one fixed point in D. We will use the following hypotheses: (HG2) g : C([, b]; X) X and there exists a constant l g > such that g(x) g(y) l g x y, x, y C([, b]; X). (HF3) f : [, b] X X is continuous and compact. Theorem 4.2. Assume that (HA), (HG2), (HF3) are satisfied. Then the nonlocal fractional differential system (1.1) has at least one mild solution on [, b], provided that (3.2) and Ml g < 1. (4.1) Proof. Define the solution operator G : C(J; X) C(J; X) by with Gu(t) = S α (t)g(u) + G 2 u(t) = (t s) α 1 T α (t s)f(s, u(s)) ds G 1 u(t) = S α (t)g(u), (t s) α 1 T α (t s)f(s, u(s)) ds, for all t J. From the proof of Theorem 3.3, we have got that the solution operator G is continuous and maps W r into itself. It remains to show that G is β-condensing. For u, v W r, we have G 1 u G 1 v = S α (t)g(u) S α (t)g(v) Ml g u v,

EJDE-213/24 SOLUTIONS TO NONLOCAL DES 11 which implies that G 1 is Lipschitz continuous with the constant Ml g. From Lemma 2.7 (7), we have β(g 1 W r ) Ml g β(w r ). (4.2) Next, we shall show that G 2 is a compact operator. From the Ascoli-Arzela theorem, we need prove that G 2 W r is equicontinuous and G 2 W r (t) is precompact in X for t [, b]. For u W r and t 1 < t 2 b, we have where G 2 u(t 2 ) G 2 u(t 1 ) + + 2 t 1 1 1 := I 1 + I 2 + I 3, I 2 = I 3 = (t 2 s) α 1 T α (t 2 s)f(s, u(s)) ds [(t 2 s) α 1 (t 1 s) α 1 ]T α (t 2 s)f(s, u(s)) ds (t 1 s) α 1 [T α (t 2 s) T α (t 1 s)]f(s, u(s)) ds I 1 = 2 (t 2 s) α 1 T α (t 2 s)f(s, u(s)) ds, t 1 1 1 By direct calculation we obtain [(t 2 s) α 1 (t 1 s) α 1 ]T α (t 2 s)f(s, u(s)) ds, (t 1 s) α 1 [T α (t 2 s) T α (t 1 s)]f(s, u(s)) ds. I 1 αm 1 Γ(1 + α) α (t 2 t 1 ) α sup f(s, u(s)) t J,u W r M sup f(s, u(s)) (t 2 t 1 ) α. Γ(1 + α) t J,u W r For t 1 =, < t 2 b, it is easy to see that I 2 = I 3 =. For t 1 >, we have 1 I 2 αm sup f(s, u(s)) (t 2 s) α 1 (t 1 s) α 1 ds Γ(1 + α) t J,u W r M sup f(s, u(s)) (t α 2 t α 1 ). Γ(1 + α) t J,u W r (4.3) (4.4) (4.5) Since f is compact, then [T α (t 2 s) T α (t 1 s)]f(s, u(s)), as t 1 t 2, uniformly for s J and u W r. This implies that, for any ε >, there exists δ >, such that [T α (t 2 s) T α (t 1 s)]f(s, u(s)) < ε, for < t 2 t 1 < δ and u W r. Then we have I 3 ε 1 (t 1 s) α 1 ds bα ε. (4.6) α Thus, combining the above inequalities (4.3) (4.6), we obtain the equicontinuity of GW r on [, b].

12 S. JI, G. LI EJDE-213/24 The set {T α (t s)f(s, u(s)) : t, s J, u W r } X is precompact in X as f is compact and T (t) is continuous. Similarly with the proof of Lemma 3.2, for arbitrary ε >, there exists a sequence {v k } k=1 W r, such that β(g 2 W r (t)) 2β({G 2 v k (t) : k 1}) + ε Noticing that 4 (t s) α 1 β({t α (t s)f(s, v k (s)) : k 1}) ds + ε. β({t α (t s)f(s, v k (s)) : k 1}) β({t α (t s)f(s, u(s)) : t, s J, u W r }) =, we have β(g 2 W r (t)) = for t J. By the Ascoli-Arzela theorem, we have that G 2 is a compact operator, which implies So, according to (4.2) and (4.7), we can conclude that β(g 2 W r ) =. (4.7) β(gw r ) β(g 1 W r ) + β(g 2 W r ) Ml g β(w r ). From the condition Ml g < 1, G is β condensing in W r. By the Darbo-Sadovskii s fixed point theorem, G has at least a fixed point u in W r, which is just a mild solution of the problem (1.1). The proof is complete. By using Banach contraction principle, we also give the existence theorem when f, g are uniformly Lipschitz continuous. We give the following hypothesis on f. (HF4) f : C(J; X) X is continuous and there exists a constant l f >, such that f(t, x 1 ) f(t, x 2 ) l f x 1 x 2, x 1, x 2 X. Theorem 4.3. Assume that the hypotheses (HA), (HG2), (HF4) are satisfied. Then the nonlocal fractional system (1.1) has a unique mild solution on [, b], provided that Ml g + Mbα Γ(1 + α) l f < 1. (4.8) Proof. For u, v C(J; x), t J, we have that Then Gu(t) Gv(t) S α (t)[g(u) g(v)] + (t s) α 1 T α (t s)[f(s, u(s)) f(s, v(s))] ds Ml g u v C + αm (t s) α 1 ds l f u v C Γ(1 + α) ( Ml g + Mbα Γ(1 + α) l ) f u v C. Gu Gv C ( Ml g + Mbα Γ(1 + α) l ) f u v C. According to (4.8), we find that G is a contraction operator in C(J; X). Thus G has a unique fixed point u, which is the unique mild solution to the problem (1.1). The proof is complete.

EJDE-213/24 SOLUTIONS TO NONLOCAL DES 13 Conclusions. This article is motivated by some recent papers [22, 31, 21], where some fractional nonlocal differential equations are discussed when T (t) is compact or equicontinuous. Since it is difficult to determine whether an operator semigroup is compact (see Pazy[24]), we do not assume that A generates a compact semigroup. It allow us to discuss some differential equations which contain a linear operator that generates a noncompact semigroup. We give a simple example. Let X = L 2 (, + ). The ordinary differential operator A = d/dx with D(A) = H 1 (, + ), generates a semigroup T (t) defined by T (t)u(s) = u(t + s), for every u X. The C -semigroup T (t) is not compact on X. Another motivation of this paper is the control problem of fractional differential system. Exact controllability for fractional order systems have been discussed by many authors. Some controllability results are obtained with the assumptions that the associated semigroup T (t) is compact and the inverse of control operator is bounded. However, Hernández and O Regan [13] have pointed out that in this case the application of controllability result is restricted to the finite dimensional space. Here we can also deal with the fractional control problem in the similar way and give a way to remove the compactness assumptions for the nonlocal control problems. Acknowledgments. Research is partially supported by the National Natural Science Foundation of China (11271316, 1111353), the Foundation of Huaiyin Institute of Technology (HGC1229). References [1] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto; On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. 72 (21), 2859-2862. [2] K. Balachandran, J. Y. Park; Existence of mild solution of a functional integrodifferential equation with nonlocal condition, Bull. Korean Math. Soc. 38 (21), 175-182. [3] K. Balachandran, J. Y. Park; Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. 71 (29), 4471-4475. [4] J. Banas, K. Goebel; Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math., vol.6, Marcel Dekker, New York. 198. [5] B. Bonilla, M. Rivero, L. Rodriguez-Germa, J. J. Trujillo; Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput. 187 (27), 79-88. [6] L. Byszewski, V. Lakshmikantham; Theorem about the existence and uniqueness of solutions of a nonlocal Cauchy problem in a Banach space, Appl. Anal. 4 (199), 11-19. [7] Y. K. Chang, J. J. Nieto; Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model. 49 (29), 65-69. [8] K. Deng; Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993), 63-637. [9] M. M. El-Bora; Some probability densities and fundamental solutions of fractional evolution equations, Chaos, Solitons and Fractals 14 (22), 433-44. [1] Z. Fan, G. Li; Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal. 258 (21) 179-1727. [11] Z. Fan, G. Li; Existence results for semilinear differential inclusions, Bull. Austral. Math. Soc, 76 (27), 227-241. [12] D. Henry; Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 84, Springer-Verlag, New York, Berlin, 1981. [13] E. Hernández, D. O Regan; Controllability of Volterra-Fredholm type systems in Banach space, J. Franklin Inst. 346 (29), 95-11. [14] S. Ji, G. Li; A unified approach to nonlocal impulsive differential equations with the measure of noncompactness, Adv. Differ. Equ. Vol.212 (212), No. 182, 1-14.

14 S. JI, G. LI EJDE-213/24 [15] M. Kamenskii, V. Obukhovskii, P. Zecca; Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, Berlin. 21. [16] A. A. Kilbas, H. M. Srivastava, J.J. Trujillo; Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 26. [17] S. Kumar, N. Sukavanam; Approximate controllability of fractional order semilinear systems with bounded delay, J. Diff. Equ. 252 (212), 6163-6174. [18] V. Lakshmikantham, S. Leela, J. Vasundhara Devi; Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 29. [19] V. Lakshmikantham, A. S. Vatsala; Basic theory of fractional differential equations, Nonlinear Anal. 69 (28), 2677-2682. [2] K. Li, J. Peng, J. Jia; Cauchy problems for fractional differential equations with Riemann- Liouville fractional derivatives, J. Funct. Anal. 263 (212), 476-51. [21] K. Li, J. Peng, J. Gao; Nonlocal fractional semilinear differential equations in separable Banach spaces, Electron. J. Diff. Eqns. Vol. 213 (213), No.7, 1-7. [22] G. M. Mophou, G. M. N Guérékata; Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum 79 (29), 322-335. [23] S. Ntouyas, P. Tsamotas; Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl. 21 (1997), 679-687. [24] A. Pazy; Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. [25] I. Podlubny; Fractional Differential Equations, Academic Press, San Diego, 1999. [26] L. Hu, Y. Ren, R. Sakthivel; Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal conditions, Semigroup Forum 79 (29), 57-514. [27] Y. Ren, Y. Qin, R. Sakthivel; Existence results for fractional order semilinear integrodifferential evolution equations with infinite delay, Integr. Equ. Oper. Theory 67 (21), 33-49. [28] J. Wang, Y. Zhou; A class of fractional evolution equations and optimal controls, Nonlinear Anal. RWA 12 (211), 262-272. [29] X. Xue; Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal. 7 (29), 2593-261. [3] H. Yang; Existence of mild solutions for a class of fractional evolution equations with compact analytic semigroup, Abstr. Appl. Anal. Vol. 212 (212), Article ID 93518, 15 pages. [31] Y. Zhou, F. Jiao; Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. RWA 11 (21), 4465-4475. [32] L. Zhu, G. Li; On a nonlocal problem for semilinear differential equations with upper semicontinuous nonlinearities in general Banach spaces, J. Math. Anal. Appl. 341 (28), 66-675. Shaochun Ji (Corresponding author) Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 2233, China E-mail address: jiscmath@gmail.com Gang Li School of Mathematical Science, Yangzhou University, Yangzhou 2252, China E-mail address: gli@yzu.edu.cn