The Big Deal with the Little Higgs

Similar documents
Little Higgs Models Theory & Phenomenology

Physics at TeV Energy Scale

New Phenomenology of Littlest Higgs Model with T-parity

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Higgs Signals and Implications for MSSM

Higgs Boson Phenomenology Lecture I

Hidden two-higgs doublet model

Hunting New Physics in the Higgs Sector

Radiative corrections to the Higgs potential in the Littlest Higgs model

+ µ 2 ) H (m 2 H 2

Inverse See-saw in Supersymmetry

A model of the basic interactions between elementary particles is defined by the following three ingredients:

The bestest little Higgs

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

The Higgs discovery - a portal to new physics

Little Higgs Models Status and Concepts

Low Scale Flavor Gauge Symmetries

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

The Physics of Heavy Z-prime Gauge Bosons

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

Light generations partners at the LHC

The Super-little Higgs

Light Pseudoscalar Higgs boson in NMSSM

T -Parity in Little Higgs Models a

Introduction to Supersymmetry

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Properties of the Higgs Boson, and its interpretation in Supersymmetry

The Standard Model and Beyond

Triplet Higgs Scenarios

Supersymmetry Breaking

Gauge-Higgs Unification on Flat Space Revised

Finding the Higgs boson

Introduction to the SM (5)

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Electroweak physics and the LHC an introduction to the Standard Model

General Composite Higgs Models

Electroweak and Higgs Physics

Little Higgs at the LHC: Status and Prospects

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

Higgs Boson Physics, Part II

Particle Physics Today, Tomorrow and Beyond. John Ellis

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Composite Higgs and Flavor

Non-Abelian SU(2) H and Two-Higgs Doublets

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

The Higgs Mechanism and the Higgs Particle

Beyond the SM: SUSY. Marina Cobal University of Udine

Higgs boson(s) in the NMSSM

The Higgs Boson and Electroweak Symmetry Breaking

Composite Higgs/ Extra Dimensions

Beyond the Higgs. new ideas on electroweak symmetry breaking

Composite Higgs Overview

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Effective Theory for Electroweak Doublet Dark Matter

Beyond the Standard Model

Higgs couplings in the Composite Higgs Models

IX. Electroweak unification

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

Photon Coupling with Matter, u R

Basics of Higgs Physics

U(1) Gauge Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Phenomenology of a light singlet-like scalar in NMSSM

Magnetic moment (g 2) µ and new physics

Explaining the LHC 750 GeV Diphoton Excess via Photon Fusion

Top quark effects in composite vector pair production at the LHC

Higgs Physics, after July 2012

What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs

Discovery of the Higgs Boson

Split Supersymmetry A Model Building Approach

Double Higgs production via gluon fusion (gg hh) in composite models

New Physics Scales to be Lepton Colliders (CEPC)

HUNTING FOR THE HIGGS

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Models of Neutrino Masses

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

Mirror World and Improved Naturalness

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Mono Vector-Quark Production at the LHC

Probing Two Higgs Doublet Models with LHC and EDMs

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

SUPERSYMETRY FOR ASTROPHYSICISTS

The Shadow of a Scale-Invariant Hidden U(1)

Higgs physics at the ILC

Elementary Particles II

The Standard Model Part. II

Searching for the Higgs at the LHC

Lepton non-universality at LEP and charged Higgs

Transcription:

The Big Deal with the Little Higgs Jürgen Reuter DESY Theory Group, Hamburg Seminar Dresden, 16.Dec.2005

Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L

The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L Problem: Mass terms for W, Z and fermions not gauge invariant

The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L Problem: Mass terms for W, Z and fermions not gauge invariant Solution: Introduction of a field which absorbs the mismatch of transformation laws: Higgs field

The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L Problem: Mass terms for W, Z and fermions not gauge invariant Solution: Introduction of a field which absorbs the mismatch of transformation laws: Higgs field Spontaneous symmetry breaking: Higgs gets a Vacuum Expectation value (VEV): ( ) 0 V(Φ) = µ 2 Φ Φ + λ(φ Φ) 2, Φ exp[iπ/v] v + H D µ Φ 2 1 2 M 2 W W 2 a, Y d Q L Φd R m d d L d R

Hierarchy Problem M h [GeV] 750 500 250 Λ[GeV] 10 3 10 6 10 9 10 12 10 15 10 18

Hierarchy Problem 750 500 250 M h [GeV] 10 3 10 6 10 9 10 12 10 15 10 18 Λ[GeV] Motivation: Hierarchy Problem Effective theories below a scale Λ

Hierarchy Problem 750 500 250 M h [GeV] 10 3 10 6 10 9 10 12 10 15 10 18 Λ[GeV] Motivation: Hierarchy Problem Effective theories below a scale Λ Loop integration cut off at order Λ: Λ 2

Hierarchy Problem 750 500 250 M h [GeV] 10 3 10 6 10 9 10 12 10 15 10 18 Λ[GeV] Motivation: Hierarchy Problem Effective theories below a scale Λ Loop integration cut off at order Λ: Λ 2 Problem: Naturally, m h O(Λ 2 ): m 2 h = m 2 0 + Λ 2 (loop factors) Light Higgs favoured by EW precision observables (m h < 0.5 TeV) m h Λ Fine-Tuning!? Solution: Mechanism for eliminating loop contributions

Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions

Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions Little Higgs: Gauge group structure/global Symmetries = Loops of particles of like statistics

Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions Little Higgs: Gauge group structure/global Symmetries = Loops of particles of like statistics Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984 Light Higgs as Pseudo-Goldstone boson spontaneously broken (approximate) global symmetry; non-linear sigma model w/o Fine-Tuning: v Λ/4π

Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions Little Higgs: Gauge group structure/global Symmetries = Loops of particles of like statistics Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984 Light Higgs as Pseudo-Goldstone boson spontaneously broken (approximate) global symmetry; non-linear sigma model w/o Fine-Tuning: v Λ/4π New Ingredience: Arkani-Hamed/Cohen/Georgi/..., 2001 Collective Symmetry Breaking eliminates quadratic divergences @ 1-loop level = 3-scale model

The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum.

The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. π i iθ a T a ikπ k V π i T a ijπ j = 0 2 V π i π j Tjkf a k + V f π j Tji a = 0 v }{{}}{{} =(m 2 ) ij =0

The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. π i iθ a T a ikπ k V π i T a ijπ j = 0 Nonlinear Realization (Example SU(3) SU(2)): V(Φ) = ( f 2 (Φ Φ) ) [ ( 2 i Φ = exp f 2 V π i π j Tjkf a k + V f π j Tji a = 0 v }{{}}{{} =(m 2 ) ij =0 0 π π π 0 )] ( ) 0 e iπ Φ 0 f + σ

The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. π i iθ a T a ikπ k V π i T a ijπ j = 0 Nonlinear Realization (Example SU(3) SU(2)): V(Φ) = ( f 2 (Φ Φ) ) [ ( 2 i Φ = exp f 2 V π i π j Tjkf a k + V f π j Tji a = 0 v }{{}}{{} =(m 2 ) ij =0 0 π π π 0 Φ U 2 Φ = (U 2 ΦU 2 )U 2Φ 0 = e i(u2πu 2 ) Φ 0 U 2 = )] ( ) 0 e iπ Φ 0 f + σ ) (Û2 0 0 1 π Û2 π, π 0 π 0 π fundamental SU(2) rep., π 0 singlet

Construction of a Little Higgs model π h??

Construction of a Little Higgs model π h?? Let s try!

Construction of a Little Higgs model π h?? Let s try! Lagrangian has translational symmetry: π π + a (exact) Goldstones have only derivative interactions

Construction of a Little Higgs model π h?? Let s try! Lagrangian has translational symmetry: π π + a (exact) Goldstones have only derivative interactions Gauge and Yukawa interactions? Expanding the kinetic term: f 2 Φ 2 = h 2 + 1 f 2 (h h) h 2 +... h h 1 f 2 Λ 2 16π

Construction of a Little Higgs model π h?? Let s try! Lagrangian has translational symmetry: π π + a (exact) Goldstones have only derivative interactions Gauge and Yukawa interactions? Expanding the kinetic term: f 2 Φ 2 = h 2 + 1 f 2 (h h) h 2 +... h Theory becomes stronlgy interacting at Λ = 4πf. h 1 f 2 Λ 2 16π Bad news Easy attempts: no potential or quadratic divergences again Collective Symmetry breaking: Two ways of model building: 1. simple Higgs representation, doubled gauge group 2. simple gauge group, doubled Higgs representation

Prime Example: Simple Group Model enlarged gauge group: SU(3) U(1); globally U(3) U(2) Two nonlinear Φ representations L = D µ Φ 1 2 + D µ Φ 2 2 [ Φ 1/2 = exp ±i f ] 2/1 Θ f 1/2 0 0 f 1/2 Θ = 1 f 2 1 + f2 2 η 0 0 η h T h η

Prime Example: Simple Group Model enlarged gauge group: SU(3) U(1); globally U(3) U(2) Two nonlinear Φ representations L = D µ Φ 1 2 + D µ Φ 2 2 [ Φ 1/2 = exp ±i f ] 2/1 Θ f 1/2 0 0 f 1/2 Θ = 1 f 2 1 + f2 2 η 0 0 η h T h η Coleman-Weinberg mechanism: Radiative generation of potential + = g2 ( 16π 2 Λ2 Φ 1 2 + Φ 2 2) g2 16π 2 f 2

Prime Example: Simple Group Model enlarged gauge group: SU(3) U(1); globally U(3) U(2) Two nonlinear Φ representations L = D µ Φ 1 2 + D µ Φ 2 2 [ Φ 1/2 = exp ±i f ] 2/1 Θ f 1/2 0 0 f 1/2 Θ = 1 f 2 1 + f2 2 η 0 0 η h T h η Coleman-Weinberg mechanism: Radiative generation of potential + = g2 ( 16π 2 Λ2 Φ 1 2 + Φ 2 2) g2 16π 2 f 2 but: Φ 1 Φ 1 Φ 2 Φ 2 = g4 16π 2 log ( Λ 2 µ 2 ) Φ 1 Φ 2 2 g4 16π 2 log ( Λ 2 µ 2 ) f 2 (h h)

Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0

Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0 Lagrangian L = L kin. + L Yuk. + L pot. Ψ Q,L = (u, d, U) L, Ψ l = (ν, l, N) L : L Yuk. = λ u 1u 1,R Φ 1 Ψ T,L λ u 2u 2,R Φ 2 Ψ T,L λd Λ ɛijk d b RΦ i 1Φ j 2 Ψk T,L λ n n 1,R Φ 1 Ψ Q,L λe Λ ɛijk e R Φ i 1Φ j 2 Ψk Q,L + h.c.,

Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0 Lagrangian L = L kin. + L Yuk. + L pot. Ψ Q,L = (u, d, U) L, Ψ l = (ν, l, N) L : L Yuk. = λ u 1u 1,R Φ 1 Ψ T,L λ u 2u 2,R Φ 2 Ψ T,L λd Λ ɛijk d b RΦ i 1Φ j 2 Ψk T,L λ n n 1,R Φ 1 Ψ Q,L λe Λ ɛijk e R Φ i 1Φ j 2 Ψk Q,L + h.c., L pot. = µ 2 Φ 1 Φ 2 + h.c.

Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0 Lagrangian L = L kin. + L Yuk. + L pot. Ψ Q,L = (u, d, U) L, Ψ l = (ν, l, N) L : L Yuk. = λ u 1u 1,R Φ 1 Ψ T,L λ u 2u 2,R Φ 2 Ψ T,L λd Λ ɛijk d b RΦ i 1Φ j 2 Ψk T,L λ n n 1,R Φ 1 Ψ Q,L λe Λ ɛijk e R Φ i 1Φ j 2 Ψk Q,L + h.c., L pot. = µ 2 Φ 1 Φ 2 + h.c. Hypercharge embedding (remember: diag(1, 1, 2)/(2 3)): Y = X T 8 / 3 D µ Φ = ( µ 1 3 g XB X µ Φ + igw w µ )Φ

Cancellations of Divergencies in Yukawa sector λ t λ t + λt λ T + λ T /f

Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2}

Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2} Little Higgs global symmetry imposes relation m T F = λ2 t + λ 2 T λ T

Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2} Little Higgs global symmetry imposes relation m T F = λ2 t + λ 2 T λ T = Quadratic divergence cancels

Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2} Little Higgs global symmetry imposes relation m T F = λ2 t + λ 2 T λ T = Quadratic divergence cancels Collective Symm. breaking: λ t λ 1 λ 2, λ 1 = 0 Φ 1 Φ 2 or λ 2 = 0 SU(3) Ψ Q Ψ Q λ2 1λ 2 2 [SU(3)] 2 16π 2 log Φ 1 Φ 1 u c 1 u c 2 ( Λ 2 µ 2 ) Φ 1 Φ 2 2

Scales and Masses µ O(10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: global SB, new dynamics, UV embedding Scale F : Pseudo-Goldstone bosons, new vector bosons and fermions Scale v: Higgs, W ±, Z, l ±,...

Scales and Masses µ O(10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: global SB, new dynamics, UV embedding Scale F : Pseudo-Goldstone bosons, new vector bosons and fermions Scale v: Higgs, W ±, Z, l ±,... Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic corrections @ 1-loop level

Scales and Masses µ O(10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: global SB, new dynamics, UV embedding Scale F : Pseudo-Goldstone bosons, new vector bosons and fermions Scale v: Higgs, W ±, Z, l ±,... H H 0 Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic corrections @ 1-loop level G 1 G 1 [H G 2 G 1 1, H 2 ] 0 g 1 0 g 2 0 /H 1 H /H 2 H M H g 1 g 2 Λ/16π 2

Generic properties Extended scalar (Higgs-) sector Extended global symmetry

Generic properties Extended scalar (Higgs-) sector Extended global symmetry Specific form of the potential: V(h, Φ) = C 1 F 2 Φ + i 2 F h h + C 2 F 2 Φ i 2 F h h h massless @ 1-loop level, h = v, M h v, M Φ F, i Φ v 2 /F h and Φ mix

Generic properties Extended scalar (Higgs-) sector Extended global symmetry Specific form of the potential: V(h, Φ) = C 1 F 2 Φ + i 2 F h h + C 2 F 2 Φ i 2 F h h h massless @ 1-loop level, h = v, M h v, M Φ F, i Φ v 2 /F h and Φ mix Extended Gauge Sector : B, Z, W ± (Hypercharge singlets & triplets)

Generic properties Extended scalar (Higgs-) sector Extended global symmetry Specific form of the potential: V(h, Φ) = C 1 F 2 Φ + i 2 F h h + C 2 F 2 Φ i 2 F h h h massless @ 1-loop level, h = v, M h v, M Φ F, i Φ v 2 /F h and Φ mix Extended Gauge Sector : B, Z, W ± (Hypercharge singlets & triplets) Extended top sector: new heavy quarks, t, t loops M 2 h < 0 EWSB

Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

Little Higgs Models Plethora of Little Higgs Models in 3 categories: Moose Models Orig. Moose (Arkani-Hamed/Cohen/Georgi, 0105239) Simple Moose (Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, 0206020) Linear Moose (Casalbuoni/De Curtis/Dominici, 0405188) Simple (Goldstone) Representation Models Littlest Higgs (Arkani-Hamed/Cohen/Katz/Nelson, 0206021) Antisymmetric Little Higgs (Low/Skiba/Smith, 0207243) Custodial SU(2) Little Higgs (Chang/Wacker, 0303001) Littlest Custodial Higgs (Chang, 0306034) Little SUSY (Birkedal/Chacko/Gaillard, 0404197) Simple (Gauge) Group Models Orig. Simple Group Model (Kaplan/Schmaltz, 0302049) Holographic Little Higgs (Contino/Nomura/Pomarol, 0306259) Simplest Little Higgs (Schmaltz, 0407143) Simplest Little SUSY (Roy/Schmaltz, 0509357) Simplest T parity (Kilian/Rainwater/JR/Schmaltz,...)

Varieties of Particle spectra H = SU(5) [SU(2) U(1)]2, G = SO(5) SU(2) U(1) Arkani-Hamed/Cohen/Katz/Nelson, 2002 m Φ Φ ± Φ ±± Z W ± T Φ P B h W ± Z t

Varieties of Particle spectra H = SU(5) [SU(2) U(1)]2, G = SO(5) SU(2) U(1) Arkani-Hamed/Cohen/Katz/Nelson, 2002 H = SO(6) [SU(2) U(1)]2, G = Sp (6) SU(2) U(1) Low/Skiba/Smith, 2002 m Φ Φ ± Φ ±± Z W ± T m Φ Φ P Z W ± B T h Φ P B W ± Z t H ± h A H W ± Z t

Varieties of Particle spectra H = SU(5) [SU(2) U(1)]2, G = SO(5) SU(2) U(1) Arkani-Hamed/Cohen/Katz/Nelson, 2002 H = SO(6) [SU(2) U(1)]2, G = Sp (6) SU(2) U(1) Low/Skiba/Smith, 2002 m Φ Φ ± Φ ±± Z W ± T m Φ Φ P Z B W ± T h Φ P B W ± H = [SU(3)]2 SU(3) U(1), G = [SU(2)] 2 SU(2) U(1) Schmaltz, 2004 [SU(4)] 4 [SU(3)] 4 Z t m = H ± h A H Z X 0 /Y 0 W ± Z t ± W T U, C Kaplan/Schmaltz, 2003 2HDM, h 1/2, Φ 1,2,3, Φ P 1,2,3, Z 1,...,8, W ± 1,2, q, l h η W ± Z t

Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

The Littlest Higgs Model Setup Symmetry breaking: SU(5) SO(5) (global) [SU(2) U(1)] 2 SU(2) L U(1) Y (local) 1 heavy triplet X µ, 1 heavy singlet Y µ

The Littlest Higgs Model Setup Symmetry breaking: SU(5) SO(5) (global) [SU(2) U(1)] 2 SU(2) L U(1) Y (local) The unbroken Lagrangian: L = L (3) 0 + L (1) 0 + L G 0. 1 heavy triplet X µ, 1 heavy singlet Y µ L (3) 0 = 1 2g1 2 Tr A 1µν A µν 1 1 2g2 2 Tr A 2µν A µν 2 2 tr A µ 1 J (3) µ L (1) 0 = 1 2g 2 1 Gauge group generators: T1 a = 1 τ a 0, T2 a = 1 0 2 2 0 Tr B 1µν B µν 1 1 2g 2 2 Tr B 2µν B µν 2 B µ 1 J (1) µ. 0 τ a, Y 1 = 1 10 diag(3, 3, 2, 2, 2) Y 2 = 1 10 diag(2, 2, 2, 3, 3)

The Littlest Higgs Model Setup Symmetry breaking: SU(5) SO(5) (global) [SU(2) U(1)] 2 SU(2) L U(1) Y (local) The unbroken Lagrangian: L = L (3) 0 + L (1) 0 + L G 0. 1 heavy triplet X µ, 1 heavy singlet Y µ L (3) 0 = 1 2g1 2 Tr A 1µν A µν 1 1 2g2 2 Tr A 2µν A µν 2 2 tr A µ 1 J (3) µ L (1) 0 = 1 2g 2 1 Gauge group generators: T1 a = 1 τ a 0, T2 a = 1 0 2 2 0 Tr B 1µν B µν 1 1 2g 2 2 Tr B 2µν B µν 2 B µ 1 J (1) µ. 0 τ a, Y 1 = 1 10 diag(3, 3, 2, 2, 2) Y 2 = 1 10 diag(2, 2, 2, 3, 3) Triplet current: J (3) µ = J (3),a τ a µ 2 Singlet current: J (1) µ Couplings not unique, but: (Anomaly cancellation!)

L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) 0 0 1 F Π Ξ 0, Ξ 0 = 0 1 0 1 0 0 Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0

L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) 0 0 1 F Π Ξ 0, Ξ 0 = 0 1 0 1 0 0 Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0 Covariant derivative: D µ Ξ = µ Ξ + i k=1,2 [ ] (A µ k Ξ + Ξ(A µ k ) T ) + (B µ k Ξ + Ξ(B µ k ) T )

L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) 0 0 1 F Π Ξ 0, Ξ 0 = 0 1 0 1 0 0 Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0 Covariant derivative: D µ Ξ = µ Ξ + i k=1,2 [ ] (A µ k Ξ + Ξ(A µ k ) T ) + (B µ k Ξ + Ξ(B µ k ) T ) Chiral fields: Q R : b R, t R, T R, and Q L : q L = ( tl b L ), T L, L t = Q Qi /DQ + L Y λ 2 F ( T L T R + h.c.).

L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) 0 0 1 F Π Ξ 0, Ξ 0 = 0 1 0 1 0 0 Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0 Covariant derivative: D µ Ξ = µ Ξ + i k=1,2 [ ] (A µ k Ξ + Ξ(A µ k ) T ) + (B µ k Ξ + Ξ(B µ k ) T ) Chiral fields: Q R : b R, t R, T R, and Q L : q L = ( tl b L ), T L, L t = Q Qi /DQ + L Y λ 2 F ( T L T R + h.c.). Use a global SU(3) subsymmetry iτ 2 T L iq L 0 χ L = iq T L 0 0 L Y = λ 1 F t R Tr [ Ξ (it2 2 )Ξ ] ˆχ L + h.c. 0 0 0

Neutrino masses Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005 Naturalness does not require cancellation mechanism for light fermions Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars)

Neutrino masses Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005 Naturalness does not require cancellation mechanism for light fermions Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars) Lagrangian invariant under full gauge symmetry L N = g N F ( L c ) T ΞL with L = (iτ 2 l L, 0, 0) T EWSB: Generation of neutrino masses m ν g N v 2 /F

Neutrino masses Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005 Naturalness does not require cancellation mechanism for light fermions Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars) Lagrangian invariant under full gauge symmetry L N = g N F ( L c ) T ΞL with L = (iτ 2 l L, 0, 0) T EWSB: Generation of neutrino masses m ν g N v 2 /F Caveat: m ν too large compared to observations g N small, e.g. F /Λ, where Λ : scale of lepton number breaking

Heavy Vector Fields Mixing of the gauge fields: A µ 1 = W µ + g X c 2 X µ, B µ 1 = B µ + g Y c 2 Y µ, A µ 2 = W µ g X s 2 X µ, B µ 2 = B µ g Y s 2 Y µ,

Heavy Vector Fields Mixing of the gauge fields: A µ 1 = W µ + g X c 2 X µ, B µ 1 = B µ + g Y c 2 Y µ, A µ 2 = W µ g X s 2 X µ, B µ 2 = B µ g Y s 2 Y µ, Expand the Goldstone Lagrangian L G 0 = MX 2 c 2 s 2 tr X X + g X tr[x V (3) ] + 1 2 2 M Y 2 c 2 s 2 Y Y + g Y Y V (1) 4 + 1 2 tr(d µφ) (D µ φ) + (D µ h) (D µ h) 1 [ 6F 2 tr V (3) V (3)] +...,

Heavy Vector Fields Mixing of the gauge fields: A µ 1 = W µ + g X c 2 X µ, B µ 1 = B µ + g Y c 2 Y µ, A µ 2 = W µ g X s 2 X µ, B µ 2 = B µ g Y s 2 Y µ, Expand the Goldstone Lagrangian L G 0 = MX 2 c 2 s 2 tr X X + g X tr[x V (3) ] + 1 2 2 M Y 2 c 2 s 2 Y Y + g Y Y V (1) 4 + 1 2 tr(d µφ) (D µ φ) + (D µ h) (D µ h) 1 [ 6F 2 tr V (3) V (3)] +..., Heavy vector masses: M X = g X F /2 M Y = g Y F /(2 5) Higgs current V µ = i [ h(d µ h) (D µ h)h ] 1 0 : V (1) = tr V, 3 0 : V (3) = V 1 2 tr V.

Effective Field Theories How to clearly separate effects of heavy degrees of freedom?

Effective Field Theories How to clearly separate effects of heavy degrees of freedom? Toy model: Two interacting scalar fields ϕ, Φ [ ( ) ] 1 Z[j, J] = D[Φ] D[ϕ] exp i dx 2 ( ϕ)2 1 2 Φ( +M 2 )Φ λϕ 2 Φ...+JΦ+jϕ Low-energy effective theory integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting

Effective Field Theories How to clearly separate effects of heavy degrees of freedom? Toy model: Two interacting scalar fields ϕ, Φ [ ( ) ] 1 Z[j, J] = D[Φ] D[ϕ] exp i dx 2 ( ϕ)2 1 2 Φ( +M 2 )Φ λϕ 2 Φ...+JΦ+jϕ Low-energy effective theory integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting Completing the square: Φ = Φ + λ ( ) 1 M 2 1 + 2 M 2 ϕ 2 1 2 ( Φ)2 1 2 M 2 Φ 2 λϕ 2 Φ = 1 ) 1 2 Φ (M 2 + 2 )Φ + (1 λ2 2M 2 ϕ2 + 2 M 2 ϕ 2.

Integrating out Integrating out the X and Y vector fields L (1) + L (3) = L EW g,gf + f (3) JJ tr[j (3) J (3) ] + f (3) V J tr[v (3) J (3) ] + f (1) V V tr[v (3) V (3) ] + f (1) JJ J (1) J (1) + f (1) V J V (1) J (1) + f (1) V V V (1) V (1) In the Littlest Higgs e.g. f (3) V V = 1 (1 6F 2 + 32 ) (c2 s 2 ) 2

Integrating out Integrating out the X and Y vector fields L (1) + L (3) = L EW g,gf + f (3) JJ tr[j (3) J (3) ] + f (3) V J tr[v (3) J (3) ] + f (1) V V tr[v (3) V (3) ] + f (1) JJ J (1) J (1) + f (1) V J V (1) J (1) + f (1) V V V (1) V (1) In the Littlest Higgs e.g. f (3) V V = 1 (1 6F 2 + 32 ) (c2 s 2 ) 2 Coleman-Weinberg potential of the scalar fields @ 1-loop: L CW 0 = 1 2 M 2 φ tr[φφ ] + µ 2 (h h) λ 4 (h h) 2 λ 2φ i ( h φh h T φ h ) λ 2φφ tr[(φφ )(hh )] λ 4φ i(h h) ( h φh h T φ h ) λ 6 (h h) 3 Sensitive to UV completion, dimensionless parameters k and k. EWSB Constraints on k, k

Integrate out the heavy scalar (Power counting!) φ = φ 2iλ 2φ M 2 φ ( 1 + D2 M 2 φ ) 1 + 2λ ( 2φφ Mφ 2 hh 1 + λ ) 4φ h h hh T λ 2φ Higgs mass up to order v 4 /F 2 m 2 H = 2λeff 4 v2! = 2v 2 e 2 s + e2 k 2 w c2 c 2 w c 2 e 2 s 2 w s2 + e2 c 2 w s 2! e 2 s 2 w s2 c + e 2 2 c 2 w s 2 c 2 k + λ2 t c 2 k t! k + λ2 t c 2 k t (Remember µ 2 = m 2 H /2) EWSB λ eff 4 > 0 λ2 2φ M 4 φ < 1 8F 2

Equations of Motion (EOM) Couplings V J induce after SSB anom. couplings of W, Z to fermions Applying EOM eliminates corrections from field redefinitions

Equations of Motion (EOM) Couplings V J induce after SSB anom. couplings of W, Z to fermions Applying EOM eliminates corrections from field redefinitions Custodial-SU(2) Conserving Terms 0 = tr[v (3) δl µ ] = tr[v (3) V (3) ] 2 δw µ g 2 tr[v (3) µd ν W µν ] 2 tr[v (3) J (3) ] L (3) = L EW g,gf + f (3) JJ O(3) JJ + f V W O V W + f (3) V V O(3) V V O V W = tr V (3) µνw µν, O (3) JJ = tr J (3) J (3), O (3) V V = tr V (3) V (3)

Equations of Motion (EOM) Couplings V J induce after SSB anom. couplings of W, Z to fermions Applying EOM eliminates corrections from field redefinitions Custodial-SU(2) Conserving Terms 0 = tr[v (3) δl µ ] = tr[v (3) V (3) ] 2 δw µ g 2 tr[v (3) µd ν W µν ] 2 tr[v (3) J (3) ] L (3) = L EW g,gf + f (3) JJ O(3) JJ + f V W O V W + f (3) V V O(3) V V O V W = tr V (3) µνw µν, O (3) JJ = tr J (3) J (3), O (3) V V = tr V (3) V (3) Custodial-SU(2) Violating Terms L (1) = L EW g,gf + f (1) JJ O(1) JJ + f V B O V B + f (1) V V O(1) V V

Effective Dim. 6 Operators O (I) JJ = 1 F 2 tr[j (I) J (I) ] O h,1 = 1 F 2 ( (Dh) h ) (h (D h ) ) v2 2 Dh 2 O hh = 1 F 2 (h h v 2 /2) (Dh) (Dh) O h,3 = 1 F 2 1 3 (h h v 2 /2) 3

O W W = 1 F 2 1 2 (h h v 2 /2) tr W µν W µν O B = 1 F 2 i 2 (D µh) (D ν h)b µν O BB = 1 F 2 1 4 (h h v 2 /2)B µν B µν O V q = 1 qh( /Dh)q F 2

Oblique Corrections: S, T, U All low-energy effects order v 2 /F 2 Low-energy observables parameterized by S, T, 2 parameters for contact interactions (no U here) O V W, O V B Change in gauge couplings g and g g = e s w [ 1 + M 2 W (f V W + 2f V B ) ] g = e c w [ 1 + [M 2 Z M 2 W ](f V W + 2f V B ) ]

Oblique Corrections: S, T, U All low-energy effects order v 2 /F 2 Low-energy observables parameterized by S, T, 2 parameters for contact interactions (no U here) O V W, O V B Change in gauge couplings g and g g = e s w [ 1 + M 2 W (f V W + 2f V B ) ] g = e c w [ 1 + [M 2 Z M 2 W ](f V W + 2f V B ) ] S parameter (O V W, O V B ) SU(2) c -violating sector (O h,1 ) S = 8πv 2 (f V W + 2f V B ) α T = M 2 W /M 2 W = 2v 2 f (1) V V 2v2 λ 2 2φ M 4 φ

Shift in physical vector masses: ( ) 2 ( ) 2 ev ev MW 2 = (1 + x) MZ 2 = (1 + y) 2s w 2s w c w x = α ( S/(4s 2 w) + T ) y = α S/(4s 2 wc 2 w)

Shift in physical vector masses: ( ) 2 ( ) 2 ev ev MW 2 = (1 + x) MZ 2 = (1 + y) 2s w 2s w c w x = α ( S/(4s 2 w) + T ) y = α S/(4s 2 wc 2 w) Very low energies Fermi theory Four-Fermion Interactions 2 GF = 1 v2 (1 + z) with z = α T v2 4 f (3) JJ.

Shift in physical vector masses: ( ) 2 ( ) 2 ev ev MW 2 = (1 + x) MZ 2 = (1 + y) 2s w 2s w c w x = α ( S/(4s 2 w) + T ) y = α S/(4s 2 wc 2 w) Very low energies Fermi theory Four-Fermion Interactions 2 GF = 1 v2 (1 + z) with z = α T v2 4 f (3) JJ. G F -M Z -α scheme (muon decay, LEP I, Bhabha), define the parameters ˆv 0 and ŝ 0 by s 2 w = ŝ 2 0 ˆv 0 = ( 2 G F ) 1/2 and M Z = eˆv 0 = 2ŝ 0 ĉ 0 ( ) ( ) 1 + ĉ2 0 ĉ 2 0 (y + z) c 2 ŝ2 w = ĉ 2 0 1 ŝ2 0 0 ĉ 2 0 (y + z) ŝ2 0

Constraints on LHM Constraints from contact IA: ( f (3) JJ, f (1) JJ ) c2 F /4.5 TeV c 2 F /10 TeV Constraints evaded c, c 1 B, Z, W, ± superheavy (O(Λ)) decouple from fermions

Constraints on LHM Constraints from contact IA: ( f (3) JJ, f (1) JJ ) c2 F /4.5 TeV c 2 F /10 TeV Constraints evaded c, c 1 B, Z, W, ± superheavy (O(Λ)) decouple from fermions S, T in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003 Mixing of (Z, B, Z ) and (W ±, W ± ) S [ 8π = c 2 (c 2 s 2 ) g +5 c 2 (c 2 s 2 ) 2 ] v 2 g 2 F 2 0 α T 5 4 v 2 F 2v2 λ 2 2φ 2 Mφ 4 v2 F 2

Constraints on LHM Constraints from contact IA: ( f (3) JJ, f (1) JJ ) c2 F /4.5 TeV c 2 F /10 TeV Constraints evaded c, c 1 B, Z, W, ± superheavy (O(Λ)) decouple from fermions S, T in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003 Mixing of (Z, B, Z ) and (W ±, W ± ) S [ 8π = c 2 (c 2 s 2 ) g +5 c 2 (c 2 s 2 ) 2 ] v 2 g 2 F 2 0 α T 5 4 v 2 F 2v2 λ 2 2φ 2 Mφ 4 v2 F 2 General models Triplet sector: (almost) identical to Littlest Higgs ( S only) More freedom in U(1) sector: ( T )

EW Precision Observables T 0.6 LHM F = 3.5 TeV Higgs mass variable (Coleman-Weinberg, UV completion) 0.4 0.2 0 0.2 m H = 700 GeV 400 GeV 250 GeV 120 GeV SM 0.4 0.2 0 0.2 LHM F = 4.5 TeV S S = 1 12π ln m2 H m 2 0 T = 3 16πc 2 ln m2 H w m 2 0 Peskin/Takeuchi, 1992; Hagiwara et al., 1992 Making the Higgs heavier reduces amount of fine-tuning

Direct Searches Heavy Gauge Bosons: Detection: Resonance in e + e f f, Drell-Yan Tevatron: M B 650 GeV

Direct Searches Heavy Gauge Bosons: Detection: Resonance in e + e f f, Drell-Yan Tevatron: M B 650 GeV 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Branching ratios Z BR(Z ->ll) BR(Z ->qq) BR(Z ->WW,Zh) 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Total width Z, fixed M Z : Γ Z = g2 ( cot 2 2φ + 24 tan 2 φ ) M Z 96π Determination of F, c, s O(10 2 ) lepton events @ LHC w. 300 fb 1

Heavy Scalars: Φ P : e + e, q q Φ P h, Φ P hz L Φ ± : e + e, q q Φ + W L, Φ± W LZ L Φ ±± : e e ννφ, Φ ±± W L W L Φ 0 : e + e, q q Z LΦ, Φ Z LZ L, hh, not W + W

Heavy Scalars: Φ P : e + e, q q Φ P h, Φ P hz L Φ ± : e + e, q q Φ + W L, Φ± W LZ L Φ ±± : e e ννφ, Φ ±± W L W L Φ 0 : e + e, q q Z LΦ, Φ Z LZ L, hh, not W + W Heavy Quarks: T production @ LHC: bq T q Decay T W + L b, th, tz Perelstein/Peskin/Pierce, 2003 Total cross section BRs (limit g 0): Γ T = m T λ 2 T /(16π) Γ(T th) Γ(T tz) 1 2 Γ(T bw + ) m T λ 2 T 64π Determination of m T, λ T

Reconstruction of LHM Kilian/JR, 2003; Han et al., 2005 How to unravel the structure of LHM @ colliders? Symmetry structure Quadr. Div. Cancell. Nonlinear Goldstone boson structure

Reconstruction of LHM Kilian/JR, 2003; Han et al., 2005 How to unravel the structure of LHM @ colliders? Symmetry structure Quadr. Div. Cancell. Nonlinear Goldstone boson structure SIGNALS: Anom. Triple Gauge Couplings: W W Z, W W γ Anom. Higgs Coupl.: H(H)W W, H(H)ZZ Anom. Top Couplings: ttz, tbw

Reconstruction of LHM Kilian/JR, 2003; Han et al., 2005 How to unravel the structure of LHM @ colliders? Symmetry structure Quadr. Div. Cancell. Nonlinear Goldstone boson structure SIGNALS: Anom. Triple Gauge Couplings: W W Z, W W γ Anom. Higgs Coupl.: H(H)W W, H(H)ZZ Anom. Top Couplings: ttz, tbw Direct Search (LHC) M V, F, c, c Vectors: ILC: Contact Terms e + e l + l, [ν νγ] M B 10[5] TeV Higgsstr., WW fusion: HZff, HW ff angular distr./energy dependence f (1/3) V J Check from TGC (ILC: per mil precision), GigaZ f (3) JJ Combining Determination of all coefficients in the gauge sector

Scalars: Affected by scalars and vectors T, f (1) V V, B known (λ 2φ /M 2 φ) 2 Higgsstr., W W fusion Higgs coupl., f (3) V V Higgs BRs f (1) V V, f (3) V V ; (take care of t) Goldstone contr. Evidence for nonlinear nature f (3) V V HH production f h,3 (difficult!) LHC ILC 1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to F 2 TeV

Scalars: Affected by scalars and vectors T, f (1) V V, B known (λ 2φ /M 2 φ) 2 Higgsstr., W W fusion Higgs coupl., f (3) V V Higgs BRs f (1) V V, f (3) V V ; (take care of t) Goldstone contr. Evidence for nonlinear nature f (3) V V HH production f h,3 (difficult!) LHC ILC 1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to F 2 TeV Direct production @ LHC Top: t t production f V q, v t, a t; accuracy 1-2 % tbw from t decays, single t production g tth/g bbh anom. Yukawa coupl. f hq, nonlin. structure w. 2.5% accuracy

Scalars: Affected by scalars and vectors T, f (1) V V, B known (λ 2φ /M 2 φ) 2 Higgsstr., W W fusion Higgs coupl., f (3) V V Higgs BRs f (1) V V, f (3) V V ; (take care of t) Goldstone contr. Evidence for nonlinear nature f (3) V V HH production f h,3 (difficult!) LHC ILC 1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to F 2 TeV Direct production @ LHC Top: t t production f V q, v t, a t; accuracy 1-2 % tbw from t decays, single t production g tth/g bbh anom. Yukawa coupl. f hq, nonlin. structure w. 2.5% accuracy Include all observables in a combined fit if Little Higgs signals are found (sufficient data from LHC and ILC)

Pseudo Axions in LHM Kilian/Rainwater/JR, 2004 broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

Pseudo Axions in LHM Kilian/Rainwater/JR, 2004 broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion QCD-(PQ) axion: α s L Ax. = 1 Λ 8π A 2 g ηg Gµν µν, Gµν = 1 2 ɛµνρσ G ρσ Anomalous U(1) η :

Pseudo Axions in LHM Kilian/Rainwater/JR, 2004 broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion QCD-(PQ) axion: α s L Ax. = 1 Λ 8π A 2 g ηg Gµν µν, Gµν = 1 2 ɛµνρσ G ρσ Anomalous U(1) η : explicit symmetry breaking m η and g ηγγ independent axion bounds not applicable no new hierarchy problem m η v 250 GeV η EW singlet, couplings an to SM particles v/f suppressed

Example: Simple Group Model Scalar Potential: µφ 1 Φ 2 + h.c. + Coleman-Weinberg pot.: m η = κ µ 2 µ m 2 H = 2(δm 2 + m 2 η)

Example: Simple Group Model Scalar Potential: µφ 1 Φ 2 + h.c. + Coleman-Weinberg pot.: m η = κ µ 2 µ m 2 H = 2(δm 2 + m 2 η) 1 b b BR [η] new Higgs decays (H Zη, H ηη) 0.1 τ + τ BR(H ηη) < 10 4 [ 5 10% OSG] 0.01 0.001 10 4 c c gg γγ µ + µ Zh 50 100 150 200 250 300 m η [GeV] m H [GeV] m η [GeV] BR(Zη) 341 223 0.1 % 375 193 0.5 % 400 167 0.8 % 422 137 1.0 % 444 96 1.2 % 464 14 1.4 %

Pseudo Axions at LHC and ILC LHC: Gluon Fusion (axial U(1) η anomaly), Peak in diphoton spectrum

Pseudo Axions at LHC and ILC LHC: Gluon Fusion (axial U(1) η anomaly), Peak in diphoton spectrum ILC: associated production 1 0.1 σ tot [fb] e + e t tη s = 1 TeV Problem: Cross section vs. bkgd. 10 4 1000 e e + t tb b #evt/2 GeV s = 800 GeV L = 1 ab 1 g ttη = 0.2 0.01 g ttη = 0.1 0.2 0.5 100 10 m η = 50 GeV 100 150 0.001 0 100 200 300 400 500 m η [GeV] 0 50 100 150 M inv (b b) [GeV] Possibility: Z Hη (analogous to A in 2HDM) Kilian/JR/Rainwater (in prep.)

Pseudo Axions at the Photon Collider Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling) S/B analogous to LC η in the µ model with (almost) identical parameters as A in MSSM ( Mühlleitner et al. (2001) )

Pseudo Axions at the Photon Collider Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling) 10 1 σ eff (γγ η, H) [pb] 0.1 S/B analogous to LC η in the µ model with (almost) identical parameters as A in MSSM ( Mühlleitner et al. (2001) ) 0.01 0.001 H (SM) H (with T) η [T] η [1 complete heavy gen.] η [3 gen. of heavy quarks] η [3 complete heavy gen.] 100 200 300 400 500 600 700 m H, m η [GeV]

g bbη = 0.4 g bbh m η 100 130 200 285 Γ γγ [kev] 0.15 0.27 1.1 3.6 1400 1200 1000 800 600 400 γγ (H, η) b b #evt/2 GeV m η = 100 GeV see = 200 GeV Lee = 400 fb 1 cos(θ) T < 0.76 p z / s ee < 0.1 200 130 0 80 100 120 140 160 M inv (b b) [GeV] 10 4 1000 100 10 γγ (H, η) b b #evt/2 GeV see = 500 GeV Lee = 1 ab 1 cos(θ) T < 0.76 p z / s ee < 0.04 m η = 200 GeV 285 100 200 300 400 M inv (b b) [GeV]

T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 T parity: T a T a, X a X a, automorphism of coset space analogous to R parity in SUSY, KK parity Bounds on f relaxed, but: pair production! Lightest T -odd particle (LTP) Candidate for Cold Dark Matter

T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 T parity: T a T a, X a X a, automorphism of coset space analogous to R parity in SUSY, KK parity Bounds on f relaxed, but: pair production! Lightest T -odd particle (LTP) Candidate for Cold Dark Matter Littlest Higgs: A LTP W, Z 650 GeV Φ 1 TeV T, T 0.7-1 TeV Annihilation: A A h W W, ZZ, hh 500 400 M H (GeV) 300 200 f M A (GeV) H 108 144 180 216 252 288 0/10/50/70/100 100 600 800 1000 1200 1400 1600 1800 2000 f (GeV)

T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 T parity: T a T a, X a X a, automorphism of coset space analogous to R parity in SUSY, KK parity Bounds on f relaxed, but: pair production! Lightest T -odd particle (LTP) Candidate for Cold Dark Matter Littlest Higgs: A LTP W, Z 650 GeV Φ 1 TeV T, T 0.7-1 TeV Annihilation: A A h W W, ZZ, hh 500 400 M H (GeV) 300 200 f M A (GeV) H 108 144 180 216 252 288 0/10/50/70/100 100 600 800 1000 1200 1400 1600 1800 2000 f (GeV) T parity Simple Group model: Pseudo-Axion η LTP Kilian/Rainwater/JR/Schmaltz

Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

Conclusions Little Higgs elegant alternative to SUSY structure stabilizes EW scale Gauge/Global Symmetry Generics: new heavy gauge bosons, scalars, quarks Little Higgs in accord w EW precision observ. w/o Fine Tuning (M H!) New developments: Pseudo-Axions, T -parity, LH Dark Matter UV embedding, GUT, Flavor? Clear experimental signatures: direct search [Gauge & Top sector, LHC (ILC)] precision observables [Gauge, Scalar, Top sector ILC (LHC)] Strategy for Reconstruction by Complementarity of ILC & LHC