Mathematical Analysis II, 2018/19 First semester

Similar documents
7a3 2. (c) πa 3 (d) πa 3 (e) πa3

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Practice Problems for the Final Exam

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

Review for the Final Exam

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.

MA FINAL EXAM Form B December 13, 2016

Review Sheet for the Final

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

MA FINAL EXAM Form 01 May 1, 2017

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

Partial Derivatives. w = f(x, y, z).

********************************************************** 1. Evaluate the double or iterated integrals:

Math 233. Practice Problems Chapter 15. i j k

Solutions to Sample Questions for Final Exam

Lecture 13 - Wednesday April 29th

3 Applications of partial differentiation

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

JUST THE MATHS UNIT NUMBER PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) A.J.Hobson

Math 23b Practice Final Summer 2011

Solutions to old Exam 3 problems

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Practice Midterm 2 Math 2153

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

Do not turn over until you are told to do so by the Invigilator.

Math 265H: Calculus III Practice Midterm II: Fall 2014

Calculus - II Multivariable Calculus. M.Thamban Nair. Department of Mathematics Indian Institute of Technology Madras

Department of Mathematics, IIT Bombay End-Semester Examination, MA 105 Autumn-2008

Ma 1c Practical - Solutions to Homework Set 7

Section 3.5: Implicit Differentiation

Math 234 Final Exam (with answers) Spring 2017

Review problems for the final exam Calculus III Fall 2003

MATH 2400: Calculus III, Fall 2013 FINAL EXAM

Tangent Plane. Linear Approximation. The Gradient

MAT 211 Final Exam. Spring Jennings. Show your work!

Practice problems **********************************************************

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)

Name: Instructor: Lecture time: TA: Section time:

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

MATH 332: Vector Analysis Summer 2005 Homework

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Multivariable Calculus and Matrix Algebra-Summer 2017

Optimization: Problem Set Solutions

Math 11 Fall 2018 Practice Final Exam

MATH H53 : Final exam

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Review for Exam 1. (a) Find an equation of the line through the point ( 2, 4, 10) and parallel to the vector

Multiple Integrals and Vector Calculus: Synopsis

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2.

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Review for the Final Test

MATH 52 FINAL EXAM SOLUTIONS

Review Questions for Test 3 Hints and Answers

Exercises for Multivariable Differential Calculus XM521

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Problem Points S C O R E

MATH 261 FINAL EXAM PRACTICE PROBLEMS

Practice problems. m zδdv. In our case, we can cancel δ and have z =

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

APPM 2350 FINAL EXAM FALL 2017

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt

Solutions to Practice Test 3

McGill University April 20, Advanced Calculus for Engineers

WORKSHEET #13 MATH 1260 FALL 2014

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Math Review for Exam 3

Print Your Name: Your Section:

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

Calculus of Variations Summer Term 2015

2015 Math Camp Calculus Exam Solution

Calculus III 2004 Summer Practice Final 8/3/2004

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

Faculty of Engineering, Mathematics and Science School of Mathematics

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

ENGI Partial Differentiation Page y f x

Review for the First Midterm Exam

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

MATH 19520/51 Class 5

MULTIVARIABLE CALCULUS

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

MATHS 267 Answers to Stokes Practice Dr. Jones

TEST CODE: MIII (Objective type) 2010 SYLLABUS

CURRENT MATERIAL: Vector Calculus.

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

MATH Midterm 1 Sample 4

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar.

Transcription:

Mathematical Analysis II, 208/9 First semester Yoh Tanimoto Dipartimento di Matematica, Università di Roma Tor Vergata Via della Ricerca Scientifica, I-0033 Roma, Italy email: hoyt@mat.uniroma2.it We basically follow the textbook Calculus Vol. I,II by Tom M. Apostol, Wiley. Nov 26. Implicit functions and partial derivatives. The equation x+z +y +z 2 6 defines implicitly a function fx, y z. Compute, in terms of x, y, z. Check that,, satisfies the equation, and compute,,,. Solution. Put F x, y, z x + z + y + z 2 6. The partial derivatives are, 2y + z, + 2y + z. For the partial derivaties of f, using the formula of the lecture, x, y x, y, fx, y x, y, fx, y + 2y + fx, y, x, y x, y, fx, y 2y + fx, y x, y, fx, y + 2y + fx, y. By putting x, y, fx, y,,,, 5,, x, y, fx, y x, y, fx, y 4 5. 2. Consider two surfaces 2x 2 + 3y 2 z 2 25 0, x 2 + y 2 z 2 0. The intersection C can be parametrized as Xz, Y z, z. a Check that C passes the point P 7, 3, 4. b Find a tangent vector of C at P. Solution. a By substituting x, y, z 7, 3, 4. b i. By implicit computations. Put F x, y, z 2x 2 + 3y 2 z 2 25, Gx, y, z X x 2 + y 2 z 2. We use the formula Y G G g. These partial derivatives can be computed: 4x, 6y, 2z, G 2x, G 2y, G 2z.

By putting the value P 7, 3, 4, we obtain X 4 Y 4 4 7 8 2 8 7 6 8 2 6 8 7 2 7 4 8 7 8 8 7 4 3. ii. By direct computations. We have, from 3G F 0, x 2 + 25 2z 2, which is equivalent to x Xz ± 2z 2 25. Similarly, from F 2G 0, it follows that y 2 25 z 2, which is equivalent to y Y z ± 25 z 2. Since we are interested in the point 7, 3, 4, we take the + solutions. By differentiating them, X 2z z, Y 2z z z X. At P, 4 7 8 2 25 25 z 2 Y 4 4. 3 Hence a tangent vector is Nov 26. Stationary points. 8 7 4 3.. Locate and classify the stationary points. a fx, y x 2 + y 2 b fx, y 2x 2 xy 3y 2 3x + 7y c fx, y sin x cosh y Solution. 2 0 a fx, y 2x, 2y. fx, y 0 x, y 0,. Hx, y, 0 2 2 0 hence H0,, and this has positive eigenvalues 2, 2. Therefore, 0, is 0 2 a local minumum. b fx, y 4x y 3, x 6y + 7. fx, y 0 x, y,. Hx, y 4 4, hence H,, and this has positive and negative 6 6 eigenvalues, because its determinant is 26. Therefore,, is a saddle point. c fx, y cos x cosh y, sin x sinh y. fx, y 0 cos x 0 and sinh y 0 x, y m + sin x cosh y cos x sinh y 2 π, 0. Hx, y. Note that cos x sinh y sin x cosh y sin m + 2 0. hence H m + 2, 0 has the determinant, and hence has positive and negative eigenvalues. Therefore, m + 2, 0 is a saddle point. 2. Let x,, x n be distinct numbers, y,, y n R. Let a, b R, fx ax + b. With Ea, b n j fx j y j 2. Find a, b which minimize Ea, b. Solution. We can write Ea, b ax j + b y j 2. Therefore, j Ea, b 2x j ax j + b y j, j 2 2ax j + b y j j

From Ea, b 0, we obtain a x 2 j + b x j x j y j, j j j a x j + b j j j y j Put x n n j x j, y n n j y j, then the second equation is x a + b y, or x 2 + x b x y. Set u j x j x, then the first equation is a n x 2 j + x b n j By subtracting x 2 + x b x y, we have a n x j u j n j x j y j. j u j y j, hence by noting that j u j 0, a n j u jy j / n j x ju j n j u jy j / n j u2 j, b y x a. Nov. 9. Lagrange s multiplier method. Find the maximum and minimum distances from the origin to the curve 5x 2 +6xy+5y 2 8. 2. Assume a, b R, a, b > 0. a Find the extreme values of fx, y x a + y b on x2 + y 2. b Find the extreme values of fx, y x 2 + y 2 on x a + y b. 3. Find the nearest point from the origin to the curve of intersection of x 2 xy+y 2 z 2 0 and x 2 + y 2. Nov. 9. Line integrals. Compute the line integrals f dα j a fx, y x 2 2xy, y 2 2xy, αt t, t 2, t [, ]. b fx, y, z y 2 z 2, 2yz, x 2, αt t, t 2, t 3, t [, ]. c fx, y y, x, αt cos t, sin t, t [0, π] and βt t, t 2, t [, ]. 2. A wire has a shape x 2 + y 2 a 2, a > 0 with density ϕx, y x + y. Compute the mass. Nov. 9. Gradients and line integrals. Show that the following vector fields f are not gradient. Find a closed path α such that f dα 0. a fx, y, z y, x, x b fx, y, z xy, x 2 +, z 2 2. Show that, for a continuous function f, the vector field fx, y xf x 2 + y 2, yf x 2 + y 2 is a gradient. 3

3. Let S {x, y R 2, x, y 0, 0}, fx, y y, x 2 +y 2 a Show that 2 f f 2. x x 2 +y 2. b For αt cos t, sin t, t [0, 2π], show that f dα 2π, therefore, f is not a gradient on S. Nov. 6. Potentials. Determine whether the following vector fields f are a gradient. If so, find a potential. a fx, y e x 2y on R 2. e x +y 2 e x +y 2 b fx, y, z 2xyz + z 2 2y 2 +, x 2 z 4xy, x 2 y + 2xy 2 on R 3. c fx, y, z 2xz 3, x 2 z 3, 3x 2 yz 2. 2. Solve the following differential equations. a dy dx 3x2 +6xy 2 6x 2 y+4y 3. b y + 2xy 0. Nov. 6. Double integrals. Show that the function fx, y xy 3 on Q [0, ] [0, ] is integrable. 2. The following functions are integrable. Compute Q fx, ydxdy. a fx, y xyx + y, Q [0, ] [0, ]. b fx, y sinx + y, Q [0, π 2 ] [0, π 2 ]. c fx, y y 3 e x/y, Q [0, ] [, 2]. Nov. 23. Double integrals. Compute the following integrals. a Q x sin y yex dxdy, Q [, ] [0, π 2 ]. b Q y x 2 dxdy, Q [, ] [0, 2]. 2. Compute the integral S fdxdy. a fx, y x cosx + y, S {x, y : 0 x π, 0 y x}. b fx, y x 2 y 2, S {x, y : 0 x π, 0 y sin x}. c fx, y 3x + y, S {x, y : 4x 2 + 9y 2 36, x 0, y 0}. d fx, y y + 2x + 20, S {x, y : x 2 + y 2 6}. 3. Write S as a type II region. a S {x, y : 0 x, x 3 y x 2 }. b S {x, y : x e, 0 y log x}. 4. Find the centroid of S. a S {x, y : 0 x π 4, sin x y cos x}. b S {x, y : x e, 0 y log x}. 4

Nov. 30. Green s theorem. Compute the following line integrals. a C f dα, fx, y y 2, x and C is the boundary of [0, 2] [0, 2]. b C f dα, fx, y 3x 3y, 4y + x and αt cos t, sin t, t [0, 2π]. 2. With S {x, y R 2, x, y 0, 0}, fx, y y + y, 2x +, x show that x 2 +y 2 x 2 +y 2 C f dα, where αt a cos t, b sin t, t [0, 2π] does not depend on a, b > 0. Nov. 30. Change of coordinates. Find the corresponding region in the new coordinates. a S {x, y : 0 x, 0 y, x + y 2}, x 2 v u, y 2 v + u. b S {x, y : 0 x, x 2 + y 2 }, x r cos θ, y r sin θ. c S {x, y : x a 2 + y 2 a 2 }, x r cos θ, y r sin θ. 2. Computer the integrals in the new coordinages. a S ey x/y+x dxdy, S {x, y : 0 x, 0 y, x+y 2}, x 2 v u, y 2 v+u. b S x2 + y 2 dxdy, S {x, y : x a 2 + y 2 a 2 }, x r cos θ, y r sin θ. 3. Compute the volume of the sphere V {x, y, z : x 2 + y 2 + z 2 a 2 }. Dec. 4. Surface. Find a parametrization of the cylinder {x, y, z : x 2 + y 2 a 2, 0 z }. 2. Compute r u r v. a ru, v u + v, u v, 4v 2. b ru, v a sin u cosh v, b cos u cosh v, c sinh v. 3. Compute the area. a the intersection of x + y + z a, x 2 + y 2 a 2. Dec. 4. Surface integrals. Let S : x 2 + y 2 + z 2, z 0 and F x, y, z x, y, 0. Compute S F nds with the parametrization z x 2 y 2. 2. Let S be a triangle with vertices, 0, 0, 0,, 0, 0, 0, and F x, y, z x, y, z. Compute S F nds, where n has positive z-component. 3. Compute curl and div. a F x, y, z 2z 3y, 3x z, y 2x b F x, y, z e xy, cos xy, cos xz 2 5

Dec. 2. Stokes theorem. Let C be the curve of the intersection x 2 + y 2 + z 2 a 2, x + y + z 0. Compute F dα, where F x, y, z y, z, x. 2. Let F x, y, z e zy2, e yx2, e xz2, C be the boundary of the square which has the vertices 0, 0, 0,, 0, 0,,, 0, 0,, 0. Compute C F dα, where α is a parametrization of C going counterclockwise. Dec. 2. Gauss theorem. Let S be the surface of the unit cube V {x, y, z : 0 x, y, z }, n be the outgoing unit vector on S, F x, y, z x 2, y 2, z 2. Compute S F nds and V div F dxdydz. 2. Let F x, y, z x 3, y 3, z 3, S : {x, y, z : x 2 + y 2 + z 2 a 2 }, and n the outgoing normal unit vector on S at each point of S. Compute the surface integral F n ds. S 6