Cristaux dopés terres rares pour les mémoires quantiques

Similar documents
QuReP. Quantum Repeaters for Long Distance Fibre-Based Quantum Communication. Rob Thew. Coordinator: Nicolas Gisin

Efficient storage at telecom wavelength for optical quantum memory

Quantum Repeaters and Memories

PROJECT FINAL REPORT

Quantum computation and quantum information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 **

Quantum gates in rare-earth-ion doped crystals

Quantum applications and spin off discoveries in rare earth crystals

arxiv: v1 [quant-ph] 3 Oct 2008

Quantum Repeaters. Hugues de Riedmatten

Optical Rephasing Techniques with Rare Earth Ion Dopants for Applications in Quantum Information Science

Quantum Memory with Atomic Ensembles

Quantum Communication

Pulse techniques for decoupling qubits

arxiv: v2 [quant-ph] 26 Apr 2018

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Multimode quantum memory based on atomic frequency combs

Magnetic Resonance in Quantum Information

Initial experiments concerning quantum information processing in rare-earth-ion doped crystals

Ligand isotope structure of the optical 7 F 0 \ 5 D 0 transition in EuCl 3 6H 2 O

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Quantum memory development and new slow light applications in rare-earth-iondoped crystals

Distributing Quantum Information with Microwave Resonators in Circuit QED

Experimental Demonstration of Spinor Slow Light

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

arxiv: v3 [quant-ph] 10 Nov 2010

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Quantum Networks with Atomic Ensembles

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Quantum Communication with Atomic Ensembles

Differential Phase Shift Quantum Key Distribution and Beyond

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

Magnetic Resonance in Quantum

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum Information Storage with Slow and Stopped Light

9 Atomic Coherence in Three-Level Atoms

Zeeman-level lifetimes in Er 3+ :Y 2 SiO 5

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Content of the lectures

Optically-controlled controlled quantum dot spins for quantum computers

Quantum Information Processing with Semiconductor Quantum Dots

Side resonances and metastable excited state of NV - center in diamond

Superconducting Qubits Lecture 4

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Nuclear spin control in diamond. Lily Childress Bates College

NV Centers in Quantum Information Technology!

Experimental Quantum Computing: A technology overview

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Quantum Optics with Mesoscopic Systems II

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid

arxiv: v1 [quant-ph] 7 May 2012

Quantum Feedback Stabilized Solid-State Emitters

Linear and nonlinear spectroscopy

Lecture 8, April 12, 2017

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Quantum Computation with Neutral Atoms Lectures 14-15

Short Course in Quantum Information Lecture 8 Physical Implementations

Manipulating Single Atoms

Rydberg atoms: excitation, interactions, trapping

Problem Set: TT Quantum Information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

Quantum Computation with Neutral Atoms

Elements of Quantum Optics

Quantum information processing with trapped ions

ELECTRON PARAMAGNETIC RESONANCE

Ion trap quantum processor

Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko

Microwave Control of the Interaction Between Two Optical Photons. David Szwer 09/09/ / 40

Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal

Axion Detection With NMR

Driving Qubit Transitions in J-C Hamiltonian

arxiv:quant-ph/ v3 17 Nov 2003

Molecular spectroscopy

NMR: Formalism & Techniques

Supported by NSF and ARL

Remote entanglement of transmon qubits

QUANTUM CONTROL OF COLD ATOMS USING MICROWAVES

Lecture 11, May 11, 2017

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Ion crystallisation. computing

Transcription:

Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N 1> Classical system 0> Or 1> Quantum system 0> a 0> + b 1>

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Optical coherence Lambda system e> g> g'> Ground state Nuclear spin states

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> Hyperfine coherence g> g'> Ground state Nuclear spin states

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Lambda system e> g> g'> Ground state Nuclear spin states

Quantum Memory? Storage and retrieval of single photon quantum state RE:Crystal g... g j... g N g... e j... g g... 1 g j... g 1 1 N N Review W. Tittel et al. Laser & Photon. Rev., 1 (2009) Quantum memory requirement: High Efficiency (>90%) Lambda system Long storage time (ms) = long coherence time Multimode (increase transmission rate) Large bandwidth (~100 MHz) 69 % Sellars et al. Nature 465 1052 (2011) 3s Sellars PRL 95, 063601 (2005) 1060 modes 1GHz Best results : T. Chanelière New Journal of Physics 13 (2011) 013013

Why Quantum Memory? Quantum Repeaters 1000 km Transmission in telecom fibers = 10-20 EDFA will not preserve quantum states cannot be used with quantum information Quantum Repeaters : extend the maximum distance for secure communication Quantum Memory Bell Measurement Quantum Memory Spontaneous Parametric Down Conversion Entangled Photon pair source Beam splitter Entangled Photon pair source http://quantumrepeaters.eu/ N. Sangourd et al. Rev. Modern Physics 83 33 2011

Quantum Repeaters Bob Alice QM QM QM QM QM QM S S S S S S Bob Alice Quantum channel

Rare Earth Doped Crystals Rare earth ions provide a quantum light matter interface through optical transitions Weak interaction with crystal enviroment Long optical coherence times (T < 4K) 10 µs Energy (cm -1 ) 10 4 10 µs - 1 ms Long hyperfine coherence times (T < 4K) 100 µs 100 µs - 10 ms 10-4 0 Hyperfine levels qubit

Absorption Rare Earth Doped Crystals Rare earth ions provide a quantum light matter interface through optical transitions Weak interaction with crystal enviroment Long optical coherence times (T < 4K) 10 µs Long hyperfine coherence times (T < 4K) 100 µs Large inhomogeneous broadening 100 MHz 10 GHz GHz Y 2 SiO 5 : 0.1 Eu % 1.7 GHz (0.019 nm) Frequency

Rare Earth Doped Crystals Rare earth ions provide a quantum light matter interface through optical transitions Weak interaction with crystal enviroment Long optical coherence times (T < 4K) 10 µs Long hyperfine coherence times (T < 4K) 100 µs Large inhomogeneous broadening 100 MHz 10 GHz Several systems l (nm) = 606 880 580 1550 790 Y 2 SiO 5 YVO 4 Y 2 SiO 5 Y 2 SiO 5 Y 3 Al 5 O 12 Y 2 SiO 5 La 2 (WO 4 ) 3 Y 3 Al 5 O 12 LiNbO 3 :Ti

How to extend the hyperfine T 2? Dynamical decoupling in Pr:LaWO

Two Pulse Photon Echo Excitation of an inhomogeneously broadened line Rephasing Echo : coherent collective emission separated from laser pulses T 2 determination Basic storage scheme /2 1> z z z Time z z y /2 y y y 0> x x x x

Why µs range for the hyperfine T 2? Pr : LaWO Fluctuation of the spin bath = Relaxation c n x c c : correlation time of fluctuation : standard deviation

How to extend the hyperfine T 2? Pr : LaWO Fluctuation of the spin bath c n x c c : correlation time of fluctuation : standard deviation Control of the decoherence : Application of an external magnetic field Dynamical decoupling 1s storage with EIT (Longdell PRL 2005 )

How to extend the hyperfine T 2? /2 Dynamical Decoupling : Bang Bang Phase Time Time

How to extend the hyperfine T 2? Dynamical Decoupling : Bang Bang /2 Phase Time Time

How to extend the hyperfine T 2? Dynamical Decoupling : Bang Bang /2 Phase Time Phase cor Time Time

How to extend the hyperfine T 2? /2 Phase Dynamical Decoupling : Bang Bang Time Phase cor Time Phase Time Time

How to extend the hyperfine T 2? Dynamical Decoupling : Bang Bang /2 Phase Time Time A sequence of -pulses refocuses the coupling to the environment. What happens with photon echo based protocols and larger bandwidths? Optimal RF sequence?

How to extend the hyperfine T 2? Dynamical decoupling in Pr:LaWO

La 2 (WO4) 3 :Pr 3+ I=5/2 (100 % abundance) Low site symmetry Ground state hyperfine transitions: T1 = 16 s T2 (hyperfin) = 250 µs EIT, Spin Hamiltonian, ZEFOZ effect shown/determined P. Goldner et al. PRB 2007, 2009, 2011, PRA 2009, J.Phys. B 2012 25

Photon Echo Memory Extending storage time in the ms range Excitation pulse Rephasing pulse Photon echo Excitation pulse Transfer pulses Time Rephasing pulse Photon echo Dynamical decoupling Time RF rephasing pulses 26

RF Sequences? Compensate for slow changes in the environment z z z Series of π pulses CP sequence y y y Pulse errors x x z z z x Series of π-δ pulses loss of coherence y y y x x x z z z Series of ±(π-δ) pulses coherence preserved CPMG2 sequence y y y x x x 27

Studied RF Sequences 2 RF pulses sequence: τ/2 - π - τ - π - τ/2 CP sequence: [τ/2 - π - τ - π - τ/2] N CPMG2 sequence: [τ/2 - π - τ - (-π) - τ/2] N Preserving arbitrary initial phases KDD sequence: [KDD 0 KDD π/2 - KDD 0 - KDD π/2 ] N KDD φ = [τ/2 - π π/6+ φ - τ - π φ - τ - π π/2+φ - τ - π φ - τ - π π/6+ φ - τ/2 ] 28 Souza et al, PRL 2011

Optical to Spin Transfer in Pr 3+ :La2(WO4)3 Input: 500 ns Transfer: 1 µs RF pulses: 5 µs Rephasing RF pulses Output Rephasing Input Transfer Transfer Detection gate 29

Storage Times 30 µs Retrieval efficiency 30 10-1 10-2 10-3 10-4 Storage time CPMG2 T2 = 8.8 ms KDD T2 = 1.3 ms 2 RF T2 = 250 µs 0 2 4 6 8 10 12 14 16 18 20 Storage time (ms)

Coherent Raman Scattering Initial coherence created by a RF pulse 31

Relative Optical Phase 1 CP 3ms 1 a 1 b T T T RF rephasing pulses Time 32 M. Lovric et al arxiv:1302.3358

Relative Optical Phase 1 1 a +2 b 2 CP 3ms 2 1b a T T T Time RF rephasing pulses 33 M. Lovric et al arxiv:1302.3358

Relative Optical Phase 1 1 a +2 b 2 CP 3ms 2 1b a T T T Time RF rephasing pulses Relative optical phase (degrees) 34 M. Lovric et al arxiv:1302.3358

Conclusion Extension of hyperfine T 2 by Dynamical Decoupling on two different systems Tm : YAG (B 0) Dynamical decoupling increase spin coherence lifetime from 1.1ms up to 230 ms nearly 220 times Model with good agreement with experiment Pr: LAWO (B=0) 20 ms storage time achieved on a 2 MHz absorption line Dynamical decoupling increases storage time by nearly 40 times Relative optical phases preserved 35

Thank you for your attention! LAC LCMCP Funding: ANR (RAMACO), EU (QUREP, CIPRIS) 36

QM QM QM QM QM QM S S S S S S

Quantum Memories Requirements High fidelity released photon quantum state identical to stored one decoherence, added noise High efficiency probability of releasing a photon after storage 1 reabsorption Long storage time 1 10 ms (only secret key transmission: 1 b/s) Large bandwidth high rate photon pair sources (100 MHz) Multimode storage storing and measuring many photons improves data rate

Spectral Tailoring Long population lifetimes for hyperfine levels (16 s) "permanent" structure Signal absorption 2 MHz 41

Transfer efficiency OTSS 97.5% compared to TPPE OTSS 0.45 % compared to input pulse 42

Storage Times 30 µs Storage time CPMG2 T2 = 8.8 ms CP T2 = 8.8 ms KDD T2 = 1.3 ms 2 RF T2 = 250 µs 45

Dynamical Decoupling, Theory Vs Experiment CPMG

Minimize ihn? Magnetic Field M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (2012) Spin sublevel splitting per Tesla Maximum or minimum?

Minimize ihn? Magnetic Field Spin sublevel splitting Rabi frequency Vs B [100] =54.8 et =45

Minimize ihn? Magnetic Field =54.8 et =45 Bext = 1T Expected : Γ Inh spin ~15kHz Γ Inh spin ~100kHz

c c Transmission I max 50 % I max 0 t M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (2012)

c c Transmission Pompage optique I max 50 % I max 0 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (2012)

c c Transmission I max 50 % I max Pulse RF 0 /2 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (201

c c Transmission I max 50 % I max Pulse RF 0 /2 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (201

c c Transmission Population probe I max 50 % I max 0 Pulse RF /2 /2 M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (201

Dynamical decoupling in Tm:YAG 3 H 4 (0) m I =1/2 m I =-1/2 Large oscillator strength Well known crystal growth 793 nm 27 Al 3+ nuclear spin 3.64 3 H 6 (0) B=0 B 0 m I =1/2 m I =-1/2 large anisotropy of magnetic gyromagnetic tensor xx = zz =20 MHz/T yy = 400Mhz/T Γ Inh spin ~500kHz M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (2012)

Spin echo RF Pulse /2 /2 Theoritical model c t >> c c = 172 µs = 3 khz T 2 =1.01ms

How to extend the hyperfine T 2? Dynamical decoupling in Pr:LaWO Dynamical decoupling in Tm:YAG

Dynamical decoupling in Tm:YAG M.F. Pascual-Winter et al. PHYSICAL REVIEW B 86, 184301 (2012) CPMG T 2 =230 ms 220 time increase T 2 =1.01 ms

Long optical storage in a rare earth doped crystal using dynamical decoupling Marko Lovrić 1, Dieter Suter 1, Alban Ferrier 2, Philippe Goldner 2 1 Technische Universität Dortmund Fachbereich Physik Dortmund, Germany 2 Condensed Matter Chemistry Laboratory Chimie-Paristech CNRS UPMC Paris, France LPHYS 2012, 23-27 July 2012, Calgary, Canada

Rare Earth Doped Crystals Energy (cm -1 ) 10 4 10-4 0 10 µs - 1 ms 100 µs - 10 ms Hyperfine levels Rare earth ions provide a quantum light matter interface through optical transitions Optical coherence can be transferred to nuclear spins (I 0 - hyperfine levels) Hyperfine T2 longer Long storage time for quantum memories 61

Storage times of Optical Memories Pr 3+ :Y2SiO5 EIT: several seconds!! (Longdell et al, PRL 2005, G. Heinze et al. CIPRIS meeting 2012: 7.5 s) Hyperfine T2: 500 µs Spins decoupled by magnetic field (static) + RF pulses (dynamic) Low bandwidth (10 khz) AFC: 20 µs (M. Afzelius et al. PRL 2010) No hyperfine rephasing Larger bandwidth (2 MHz) What happens with photon echo based protocols allowing larger bandwidths? Optimal dynamical decoupling? 62