Coronae of stars with supersolar elemental. abundances. Peretz 1 U., Behar 1 E., Drake 2 S.A. August 18, 2015

Similar documents
The XMM-Newton view of stellar coronae: Flare heating in the coronae of HR 1099

arxiv: v1 [astro-ph.sr] 2 May 2012

arxiv: v1 [astro-ph.sr] 14 Jan 2010

X-ray emission processes in stars and their immediate environment

EPIC OBSERVATIONS OF BRIGHT BL LAC OBJECTS: WHAT CAN WE LEARN FROM THE X-RAY SPECTRA ABOUT THE ISM

arxiv:astro-ph/ v1 21 Sep 2004

J. Sylwester, B. Sylwester, Ken Phillips b, A. Kępa

Neon and oxygen in stellar coronae

Solar Orbiter/SPICE: composition studies

A CHANDRA/LETGS SURVEY OF MAIN SEQUENCE STARS

Janusz Sylwester & Barbara Sylwester Space Research Centre Polish Academy of Sciences, Wrocław, Poland

Outline. Great X-Ray Observatories. a ThousandPictures. CCD Spectral Resolution & Discerning Orders. X-Ray Grating Spectrometers

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

DENSITIES OF STELLAR FLARES FROM SPECTRAL LINES

Chandra-HETGS Observations of LMC X-1. Michael Nowak, Ron Remillard, Norbert Schulz (MIT-Kavli) & Jörn Wilms (University of Bamberg)

Where are oxygen synthesized in stars?

What drives the solar wind and where does the coronal magnetic field originate from?

X-ray emission and variability of young, nearby stars

Stellar coronae and the Sun

arxiv:astro-ph/ v1 4 Oct 2006

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster

Benchmark Exercises for stellar X-ray Spectroscopy Testing (BEXST): Initial Results

Observable consequences

Plumes as seen in the Ultraviolet

High Resolution X-Ray Spectra A DIAGNOSTIC TOOL OF THE HOT UNIVERSE

DETERMINATION OF THE FORMATION TEMPERATURE OF Si IV IN THE SOLAR TRANSITION REGION

Randall Smith (CfA) Collaborators: N. Brickhouse, A. Foster, H. Yamaguchi (CfA), J. Wilms (Erlangen), Li Ji (PMO)

arxiv:astro-ph/ v1 10 Apr 2000

Who s Afraid of a Stellar Superflare?

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy?

Fe XIII coronal line emission in cool M dwarfs. B. Fuhrmeister, J. H. M. M. Schmitt, and R. Wichmann

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

Measuring stellar distances.

arxiv: v1 [astro-ph.sr] 26 Mar March 2019

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

LINE INTENSITY RATIOS IN THE EIS RANGE SENSITIVE TO ELECTRON DENSITIES IN 10 7 K PLASMAS

TESTING EUV/X-RAY ATOMIC DATA FOR THE SOLAR DYNAMICS OBSERVATORY

Supporting Calculations for NASA s IRIS Mission. I. Overview

Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

v Characteristics v Possible Interpretations L X = erg s -1

Extinction & Red Clump Stars

arxiv: v1 [astro-ph.sr] 3 Mar 2015

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

PLASMA DIAGNOSTICS OF THE LARGE-SCALE CORONA WITH SUMER. I. MEASUREMENTS AT THE WEST LIMB

A Cluster of Galaxies, Abell 496

Effect of iron ionization balance on X-ray spectral analysis

Characteristic temperatures

WHAT DO X-RAY OBSERVATIONS

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Calibration Activities the MOS perspective

High-temperature solar flare plasma behaviour from crystal spectrometer observations

physical and chemical inhomogeneities in the Vela SNR

Coronal Dynamo Spectroscopy. Rachel Osten STScI X-ray Vision Workshop Oct. 8, 2015

Element abundances in solar energetic particles: two physical processes, two abundance patterns

(High Resolution) (X-ray) Spectroscopy of Supernova Remnants. Jacco Vink Utrecht University

1. INTRODUCTION 2. OBSERVATIONS AND DATA REDUCTION. The Astrophysical Journal, 502:L85 L90, 1998 July 20

Characteristics of the Re-calculated Yohkoh/SXT Temperature Response

NEON AND OXYGEN ABSOLUTE ABUNDANCES IN THE SOLAR CORONA

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

X-ray Observations of Nearby Galaxies

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

X-ray spectral Analysis

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

Response of Hinode XRT to quiet Sun, active region and flare plasma. B. O Dwyer, G. Del Zanna, and H. E. Mason

Random Walk on the Surface of the Sun

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

arxiv:astro-ph/ v2 22 Oct 2002

Molecular hydrogen in the chromosphere IRIS observations and a simple model

X-ray Photoionized Models of Emission Spectra Tim Kallman NASA/GSFC. Why Models Emission vs. absorpeon An example ImplicaEons for lab astro

Next quiz: Monday, October 24

Recent Highlights on Solar Coronal Abundances from Hinode

What can we learn from the AGN radio quiet continuum with SIMBOL-X?

Magnetic Activity and Flares in the Near-UV of Exoplanet Host Stars

Temperature Reconstruction from SDO:AIA Filter Images

arxiv: v1 [astro-ph] 28 Oct 2008

SISD Training Lectures in Spectroscopy

X-ray spectroscopy of the cluster of galaxies Abell 1795 with XMM-Newton

STRINGENT X-RAY CONSTRAINTS ON MASS LOSS FROM PROXIMA CENTAURI Bradford J. Wargelin and Jeremy J. Drake

Measurement of Accelerated Particles at the Sun

AtomDB: X-ray Diagnostics of Astrophysical Plasmas

arxiv:astro-ph/ v1 24 Mar 2005

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Cosmic rays in the local interstellar medium

Artep, Inc., at Naval Research Laboratory, 4555 Overlook Avenue, SW, Code 7600A, Washington, DC 20375; and K. P.

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Absorption models in SPEX. Katrien C. Steenbrugge St John s College, University of Oxford

The Magnificent Seven Similarities and Differences

Quantum Mechanics and Stellar Spectroscopy.

Appendix 1: List of symbols

VERITAS detection of VHE emission from the optically bright quasar OJ 287

Comparison of F 10.7 and Coronal EUV Emission using DEMs

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times

Chandra Observation of Point Sources in the X-Ray Elliptical Galaxy NGC 1407

High-resolution spectroscopy of the low-mass X-ray binary EXO

Transcription:

Peretz 1 U., Behar 1 E., Drake 2 S.A. 1 Department of Physics, Technion, Haifa 32000, Israel 2 USRA/CRESST & NASA/GSFC, Greenbelt, Maryland 20771, USA August 18, 2015

1 2 Spectra Main results FIP Bias 3 4

of the First Ionization Potential effect Initial FIP effect discovery. Taken from Feldman (1992). Schematic representation of the solar FIP. Meyer (1985)

The FIP effect - more history Newer FIP trends. Brinkman et al. (2001) Telleschi et al. (2005)

Motivation The physics driving the FIP effect is still unclear Much of the FIP analysis is done assuming stellar/solar within examined stars Stars with super-solar are the best candidates for observing FIP dependency in varying compositions They are also the best candidates for testing the solar assumption

of what we did Spectra Main results FIP Bias Measure coronal of three high metallicity stars previously not measured. Collect additional data of previously measured, but not analyzed high metallicity stars. Determine the FIP trends. Compare conclusions based on solar rather than real photospheric measurements.

11LMi spectra ph s 1 Å 1 cm 2 8 10 4 6 10 4 4 10 4 2 10 4 11 LMi ph s 1 Å 1 cm 2 10 4 5 10 5 11 LMi Spectra Main results FIP Bias ph s 1 Å 1 cm 2 0 2 10 4 0 2 10 4 ph s 1 Å 1 cm 2 0 2 10 5 10 5 0 10 5 10 15 20 25 30 35 10 15 20 25 30 35 Wavelength (Å) Wavelength (Å) 11LMi RGS and EPIC-pn spectra

ι Horologii and HR 7291 spectra Spectra Main results FIP Bias ph s 1 Å 1 cm 2 0 5 10 5 10 4 1.5 10 4 2 10 4 10 20 30 Wavelength (Å) ph s 1 Å 1 cm 2 0 10 5 2 10 5 3 10 5 4 10 5 10 20 30 Wavelength (Å) ι Horologii and HR 7291 EPIC-pn spectra

Abundance - Emission Measure degeneracy Spectra Main results FIP Bias Example contour plots fortifying claim absolute may be derived. Parameter: norm 1.2 10 4 1.3 10 4 1.4 10 4 1.5 10 4 1.6 10 4 1.7 10 4 + HR 7291 0.9 1 1.1 1.2 1.3 Parameter: Fe Parameter: norm Parameter: norm 7.5 10 4 8 10 4 8.5 10 4 9 10 4 9.5 10 4 7 10 4 8 10 4 9 10 4 11 LMi + 0.9 0.95 1 1.05 1.1 Parameter: Fe iota Horologii + 1.6 1.8 1.2 1.4 2 Parameter: Fe

FIP trends Spectra Main results FIP Bias Abundance 0 1 2 3 Ni Si Mg Fe 7 8 9 alpha Centauri B C O N 11 12 13 14 15 Ne 21 22

The FIP bias Spectra Main results FIP Bias FB = log ( A corona/a photo ) low ( A corona /A photo ) high

Summary of FIP bias measures Spectra Main results FIP Bias Table: FIP bias measures (uncertainties) Reference Object Photospheric Solar Wood10 1 11LMi 0.08(0.38) 0.00(0.43) 0.08(0.44) ι Horologii 0.38(0.20) 0.31(0.18) 0.54(0.18) HR 7291 0.50(0.41) 0.32(0.17) 0.92(0.17) τ Boo 0.42(0.75) 0.23(0.54) 0.28(0.38) α Centauri A 0.45(0.22) 0.37(0.17) 0.65(0.16) α Centauri B 0.34(0.20) 0.28(0.16) 0.42(0.18) 1 Wood & Linsky (2010), A Fe / < A C, A O, A N, A Ne >

The FIP Bias - continued Spectra Main results FIP Bias Wood & Linsky (2010); Wood et al. (2012); Wood & Laming (2013)

We measured the FIP effect in six high metallicity stars High depletion regardless of FIP Dependence on Spectral type consistent with Wood & Laming (2013) True have major implication on FIP research

Looking ahead More observations Highest metallicity stars Larger sample Can be done with a CCD spectrometer Aim: measuring true FIP trends normalized counts s 1 kev 1 cm 2 0 5 10 4 10 3 0.5 1 1.5 Energy (kev)

Bibliography References Extras Brinkman, A. C. et al. 2001, A&A, 365, 324 Uri Feldman, 1992, Physica Scripta, 46, 202 Meyer, J. P. 1985, ApJS, 57, 173 Telleschi, A., Güdel, M., Briggs, K., Audard, M., Ness, J.-U., & Skinner, S. L. 2005, ApJ, 622, 653 Wood, B. E. & Linsky, J. L. 2010, ApJ, 717, 1279 Wood, B. E., Laming, J. L., & Karovska, M. 2012, ApJ, 753, 76 Wood, B.E. & Laming, J.M. 2013, ApJ, 768, 122

11 LMi References Extras Tables FBST More results Modeling details Table: 11 LMi Summary of Fitted Parameters Parameter EPIC-pn Value Uncertainty RGS Value Uncertainty 1σ 1σ χ 2 273 5375 DOF 265 5002 kt 1 [kev] 0.23 0.22-0.24 0.14 0.11-0.19 kt 2 [kev] 0.57 0.55-0.60 0.38 0.34-0.41 kt 3 [kev] 0.69 0.57-0.83 C [solar] 0.1 0.0-4.2 1.1 0.6-1.9 N [solar] 1.5 1.0-3.8 0.6 0.2-1.2 O [solar] 0.4 0.3-0.8 0.8 0.6-1.0 Ne [solar] 0.9 0.5-2.0 0.8 0.6-1.0 Mg [solar] 0.9 0.7-1.5 Si [solar] 0.6 0.4-0.9 Fe [solar] 1.0 0.8-1.5 1.0 fixed Ni [solar] 4.4 2.0-7.1 0.8 0.0-1.9

ι Horologii and HR 7291 References Extras Tables FBST More results Modeling details Table: ι Horologii and HR 7291 Summary of Fitted Parameters ι Horologii HR7291 Parameter Value Uncertainty Value Uncertainty 1σ 1σ Avg. χ 2 122 117 Avg. DOF 116 118 kt 1 [kev] 0.26 0.23-0.30 kt 2 [kev] 0.75 0.68-0.81 O [solar] 0.4 0.3-0.5 0.25 0.2-0.3 Ne [solar] 1.1 0.9-1.3 0.4 0.3-0.5 Mg [solar] 1.9 1.7-2.2 0.9 0.8-1.0 Si [solar] 1.5 1.2-1.7 0.3 0.2-0.4 Fe [solar] 1.3 1.2-1.4 0.8 0.7-0.9

Wood & Laming (2013) trend References Extras Tables FBST More results Modeling details FIP Bias ( Fe / < C, N, O, Ne > ) 0 0.5 1 HR 7291 alpha Centauri A iota Horologii tau Boo 11 LMi alpha Centauri B F5 G0 G5 K0 K5 Spectral Type using the Wood & Laming (2013) FB. Grey lines represent the observed trend therein.

FIP trends References Extras Tables FBST More results Modeling details Abundance 0 1 2 3 Ni Si Mg Fe 7 8 9 iota Hotologii C O 11 12 13 14 15 Ne 21 22

FIP trends - continued References Extras Tables FBST More results tau Boo Modeling details Abundance 0 1 2 3 Ni Fe Si Mg 7 8 9 C O N 11 12 13 14 15 Ne 21 22

Detailed balance equations in detail References Extras Tables FBST More results Modeling details In general for a given ion, consider the population density in upper line j, with only electronic processes dominant: dn j dt = n e α I+1n I I+1 + S I I 1n I 1 + Q I ij ni I + Qijn I i I... + i>j i<j + A jk n k A ij n j + k>j i<j If we consider equilibrium, and invoke additional coronal assumptions: 0 = Q gj n e n g i<j A ij n j n j = Q gjn e n g i<j A ij

Theoretical spectrum References Extras Tables FBST More results Modeling details Define the power spectrum as the total photon density emitted per element ion per energy transition, P ij = A ij n j = n e n g Q gj = n e n H n Z n H n ion n Z n g n ion Q gj A ij k<j A kj = A ij k<j A kj Define the branching ratio, the abundance A Z, and G(T), to obtain: P ij = n e n H A Z G(T )BR ij Integrating over the volume of the source we finally get ph s.