Black oils Correlations Comparative Study

Similar documents
Psychrometric Applications

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O

Part I: Basic Concepts of Thermodynamics


CHEMICAL KINETICS

CHM Physical Chemistry I Chapter 1 - Supplementary Material

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Terminal Velocity and Raindrop Growth

PETE 310. Lecture # 15 Properties of Black Oils Definitions (pages )

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

Predicting the Dead Oil Viscosity of Reservoir Fluids: a case study of the Niger Delta

Applications of Bernoulli s theorem. Lecture - 7

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air

Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs

Estimation of Global Solar Radiation at Onitsha with Regression Analysis and Artificial Neural Network Models

AB Calculus Review Sheet

4. CHEMICAL KINETICS

( ) as a fraction. Determine location of the highest

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

MAT187H1F Lec0101 Burbulla

Predict Global Earth Temperature using Linier Regression

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

Effects of dry density on soil water characteristic curve of clay

The Thermodynamics of Aqueous Electrolyte Solutions

The Properties of Stars

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

1. a) Describe the principle characteristics and uses of the following types of PV cell: Single Crystal Silicon Poly Crystal Silicon

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE

13: Diffusion in 2 Energy Groups

3.1 Exponential Functions and Their Graphs

Driving Cycle Construction of City Road for Hybrid Bus Based on Markov Process Deng Pan1, a, Fengchun Sun1,b*, Hongwen He1, c, Jiankun Peng1, d

The Predom module. Predom calculates and plots isothermal 1-, 2- and 3-metal predominance area diagrams. Predom accesses only compound databases.

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Conservation Law. Chapter Goal. 5.2 Theory

Determination of the activation energy of silicone rubbers using different kinetic analysis methods

!"#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

5.7 Improper Integrals

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing

G. MATEESCU 1 A. MATEESCU 1 C. SAMOILĂ 2 D. URSUŢIU 2

SPE Improved Permeability Prediction Relations for Low Permeability Sands

Intro to Nuclear and Particle Physics (5110)

MULTIPHASE, MULTICOMPONENT COMPRESSIBILITY IN GEOTHERMAL RESERVOIR ENGINEERING. L. Macias-Chapa and H. J. Ramey, Jr.

MATH SS124 Sec 39 Concepts summary with examples

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

Research on the Quality Competence in Manufacturing Industry

PVT Concepts (Reservoir Fluids)

CBE 291b - Computation And Optimization For Engineers

Heat flux and total heat

MATH 144: Business Calculus Final Review

Effect of soil profile modulus distribution on pile head lateral stiffness

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Acceptance Sampling by Attributes

Measuring Electron Work Function in Metal

Vadose Zone Hydrology

Tests for the Ratio of Two Poisson Rates

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: JUNE 2007

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory 2. Diffusion-Controlled Reaction

Review of Calculus, cont d

Math& 152 Section Integration by Parts

13.4 Work done by Constant Forces

Thomas Whitham Sixth Form

A027 Uncertainties in Local Anisotropy Estimation from Multi-offset VSP Data

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

ME 309 Fluid Mechanics Fall 2006 Solutions to Exam3. (ME309_Fa2006_soln3 Solutions to Exam 3)

Math Calculus with Analytic Geometry II

Department of Physical Pharmacy and Pharmacokinetics Poznań University of Medical Sciences Pharmacokinetics laboratory

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x

Time Truncated Two Stage Group Sampling Plan For Various Distributions

LECTURE 14. Dr. Teresa D. Golden University of North Texas Department of Chemistry

AP Calculus. Fundamental Theorem of Calculus

Chapter 13 Lyes KADEM [Thermodynamics II] 2007

Modelling of chemical vapour deposition of carbon based on detailed surface chemistry

A formula sheet and table of physical constants is attached to this paper. Linear graph paper is available.

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Carbon foam impregnated with Phase Change Material (PCM) as a thermal barrier

Damage of Houses and Residential Areas by Niigata Prefecture Earthquakes (Part2)

4 The dynamical FRW universe

Math 116 Final Exam April 26, 2013

( ) where f ( x ) is a. AB/BC Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

Improved Dead Oil Viscosity Model

Sample Problems for the Final of Math 121, Fall, 2005

INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

du = C dy = 1 dy = dy W is invertible with inverse U, so that y = W(t) is exactly the same thing as t = U(y),

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

Mechanism of Roughness-induced CO 2 Microbubble Nucleation in Polypropylene Foaming

Shear Degradation and Possible viscoelastic properties of High Molecular Weight Oil Drag Reducer Polymers

Population Dynamics Definition Model A model is defined as a physical representation of any natural phenomena Example: 1. A miniature building model.

COMPARISON OF DIFFERENT PROCEDURES TO PREDICT UNSATURATED SOIL SHEAR STRENGTH. S.K. Vanapalli and D.G. Fredlund 1

MATHEMATICAL SIMULATION OF GEOTHERMAL HEAT TRANSFER IN HOT DRY ROCK UNDERGROUND HEAT EXCHANGERS

Vadose Zone Hydrology

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Transcription:

Reservoir Technologies Blck oils Correltions Comprtive Study Dr. Muhmmd Al-Mrhoun, Mnging Director Sturdy, 26 April, 2014 Copyright 2008, NExT, All rights reserved

Blck oils Correltions Introduction to correltions Types of correltions Evlution of empiriclly derived PVT properties for Middle Est crude oils 2

Introduction to correltions PVT properties re obtined from lbortory experiment using oil representtive smples However, vlues of reservoir liquid nd gs properties re often needed when lbortory detiled PVT dt re not vilble Therefore, correltions re used to estimte those properties Correltion re bsed on esily obtined dt like R s, g, P, T, API 3

Introduction to correltions PVT properties depend on pressure, temperture, nd chemicl compositions For the development of correltion, geologicl condition is considered importnt becuse the chemicl composition of crude oil differs from region to region To ccount for regionl chrcteristics, PVT correltions need to be modified for their ppliction by reclculting the correltion constnts for the region of interest 4

Why we need correltions? They re useful in mking estimtes for experimentl design s check ginst lbortory results In estimting properties when smpling is impossible or uneconomicl In generliztion of properties - it is impossible to run experiments on ll possible reservoir or surfce conditions 5

Types of correltions Grphs Nomogrphs Equtions 6

Grphs Correltion chrt for totl formtion volume fctor by Stnding 1947 7

Nomogrphs Nomogrph correltion for bubble point pressure by Al-Mrhoun 1988 8

Equtions Correltion for bubble point oil formtion volume fctor by Vsquez & Beggs 1980 B ob 1 3 1 R s s T 2 60 API / g T 60 / R API g 9

Blck-oil PVT correltions 1. Oil density 2. Bubble point pressure 3. Solution gs-oil rtio 4. Bubble point oil FVF 5. Totl FVF 6. Isotherml oil compressibility 7. Understurted oil viscosity 8. Bubble point oil viscosity 9. Ded oil viscosity 10.Surfce tension 10

Oil density The oil density is defined s the mss per unit volume t specified pressure nd temperture. o m v o o The reltive density of oil is defined s: o o w 11

Oil density The reltive density of oil t ny other temperture T could be clculted using ot 1 o 0.465791x10 3 ( T 60) In the petroleum industry, it is common to express grvity in terms of oil API grvity, or: pi 141.5 131.5 O 12

Oil density Oil density is required t vrious pressures nd t reservoir temperture for reservoir engineering clcultions. An eqution for oil density t Pb in eqution form is expressed s ob o 2.18x10 B ob 4 R s g 13

Oil density Above bubble point pressure, incresed pressure will compress the liquid nd increse its density. For the cse of P > P b, the oil density is clculted from Correltion for clculting verge oil compressibility C o t vrious conditions is presented lter o ob e c o (PP b ) 14

Reservoir Pressure Bubble point pressure Bubble point pressure is the pressure t which the first bubble of gs evolves s the pressure decreses 1-Phse 2-Phse 60% 40% CP 20% 0% 1-Phse Reservoir Temperture 15

Bubble point pressure. Stnding (1947) P b 1 R γ s g 2 e 3 T 4γ pi where 1 = 18 2 = 0.83 3 = 2.09535 E-3 4 = - 28.78231 E-3 16

Bubble point pressure.. Vsquez nd Beggs (1980) P b 1 R s g 2 e 3 pi ( T 460) where Coefficient pi 30 pi 30 1 20.7880 29.7818 2 0.9143 0.8425 3-23.5202-20.1609 17

Bubble point pressure Al-Mrhoun (1988) P b 1 R s g o T 5 2 3 4 460 where 1 = 5.38088 E-3 2 = 0.715082 3 = -1.87784 4 = 3.14370 5 = 1.32657 18

Sttisticl ccurcy of P b correltions ER EA E mx STD R Correltion Stnding (1947) -11.52 14.06 80.86 15.55 Vsquez & Beggs (1980) -17.24 19.15 103.90 16.41 Al-Mrhoun (1988) 1.85 7.81 59.03 11.04 Modified Correltion Stnding (1947) -0.81 8.89 53.87 12.59 0.9837 Vsquez & Beggs (1980) -0.85 9.09 56.25 12.85 0.9777 Al-Mrhoun (1988) -0.60 7.12 56.39 10.37 0.9887 19

Absolute Averge Percent Error Absolute error of P b correltions 20 16 19.2 Correltion Modified Correltion 12 14.1 8 4 8.9 9.1 7.8 7.1 0 Stnding Vsquez& Beggs Al-Mrhoun 20

Avg Absolute Reltive Error % Absolute error versus API grvity 40 30 20 Stnding corr Vsquez & Beggs corr Mrhoun corr Stnding modified Vsquez & Beggs modified Mrhoun modified 10 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (12) (48) (177) (191) (74) (28) 21

Solution GOR, SCF STB Solution gs-oil rtio Solution Gs- Oil Rtio is the rtio of gs evolves from solution to oil. It is usully expressed in units of scf/stb. 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 Pressure, psi Typicl solution GOR curve 22

Solution gs-oil rtio. Stnding (1947) R s γ 1 g P b 2 e 2 T 4γ pi where 1 = 30.7343 E-3 2 = 1.2048 3 = -2.5245 E-3 4 = 34.677 E-3 23

Solution gs-oil rtio.. Vsquez nd Beggs (1980) R s γ 1 g P b 2 e 3 pi ( T 460) where Coefficient pi 30 pi 30 1 0.0362 0.0178 2 1.0937 1.1870 3 25.7240 23.9310 24

Solution gs-oil rtio Al-Mrhoun (1988) R s 1 g b o T 5 2 P 3 4 460 where 1 = 1.49028 E+3 2 = 2.6260 3 = 1.39844 4 = -4.39628 5 = -1.8600 25

Sttisticl ccurcy of R s correltions ER EA E mx STD R Correltion Stnding (1947) 10.07 14.03 104.57 15.84 Vsquez & Beggs (1980) 14.66 17.67 94.35 15.46 Al-Mrhoun (1988) -2.37 12.29 237.68 24.64 Modified Correltion Stnding (1947) -1.11 9.96 123.01 16.5 0.9845 Vsquez & Beggs (1980) -1.153 10.11 91.94 16.10 0.9721 Al-Mrhoun (1988) -1.08 9.20 151.22 17.2 0.9857 26

Absolute Averge Percent Error Absolute error of R s correltions 20 Correltion 15 18 Modified Correltion 14 10 10 10 12 9 5 0 Stnding Vsquez& Beggs Al-Mrhoun 27

Avg Absolute Reltive Error % Absolute error versus API grvity 40 30 20 Stnding corr Vsquez & Beggs corr Mrhoun corr Stnding modified Vsquez & Beggs modified Mrhoun modified 10 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (12) (48) (177) (191) (74) (28) 28

Oil FVF Oil formtion volume fctor Oil Formtion Volume Fctor is the volume t reservoir conditions occupied by one stock tnk brrel of oil plus its solution gs. 1.4 1.3 1.2 1.1 1 0.9 0 500 1000 1500 2000 2500 3000 Pressure, psi Typicl oil FVF curve 29

Oil formtion volume fctor. Stnding (1947) B ob 1 R [ ( / ) 2 s g o 4 T ] 3 5 where 1 = 0.9759 2 = 0.00012 3 = 0.5 4 = 1.25 5 = 1.2 30

Oil formtion volume fctor.. Vsquez nd Beggs (1980) B ob 1 3 1 R s T 60 / s 2 pi g T 60 / R pi g where Coefficient pi 30 pi 30 1 0.4677 E-3 0.467 E-3 2 17.51 E-6 11.00 E-6 3-18.11 E-9 1.337 E-9 31

Oil formtion volume fctor Al-Mrhoun (1992) B ob 1 1 R s 2 R s g / o 3 R s T 601 T 60 o 4 where 1 = 0.177342 E-3 2 = 0.220163 E-3 3 = 4.292580 E-6 4 = 0.528707 E-3 32

Sttisticl ccurcy of B ob correltions ER EA E mx STD R Correltion Stnding (1947) -0.68 1.39 11.79 2.02 Vsquez & Beggs (1980) 1.00 1.60 16.80 2.03 Al-Mrhoun (1992) -0.18 0.72 16.82 1.28 Modified Correltion Stnding (1947) -0.02 0.96 9.11 1.31 0.9928 Vsquez & Beggs (1980) 0.082 1.10 10.13 1.49 0.9801 Al-Mrhoun (1992) 0.06 0.72 14.33 1.21 0.9912 33

Absolute Averge Percent Error Absolute error of B ob correltions 1.6 1.2 1.4 1.6 Correltion Modified Correltion 0.8 1.0 1.1 0.7 0.7 0.4 0.0 Stnding Vsquez& Beggs Al-Mrhoun 34

Avg Absolute Reltive Error % Absolute error versus API grvity 5 4 3 Stnding corr Vsquez & Beggs corr Mrhoun corr Stnding modified Vsquez & Beggs modified Mrhoun modified 2 1 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (12) (48) (177) (191) (74) (28) 35

Physicl trends of correltions Trend tests re to check whether the performnce of correltion follows physicl behvior or not: Trend tests on predicted vlues 36

Oil FVF Correltion with two equtions Modeling physicl properties with two equtions might produce non-physicl trend 1.35 1.30 Stnding Mrhoun 1.25 Vsquez & Beggs 10 20 30 40 50 60 Oil API Grvity 37

Oil FVF Correltion with non-physicl constrint Restriction of correltion model gives non-physicl trend 1.45 Stnding 1.4 Mrhoun Vsquez & Beggs 1.35 1.3 1.25 1.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Gs Reltive Density (Air=1.0) 38

Pb, psi Correltion with limited dt Correltion development for limited dt will give good fit, but might led to non-physicl trend 2500 2000 Stnding Vzquez Mrhoun Dokl & Osmn 1500 1000 60 80 100 120 140 160 180 200 220 240 260 280 Reservoir Temperture deg F 39

Bo, Bt Two-phse formtion volume fctor The two-phse formtion volume fctor is the volume of oil plus the volume of gs evolved converted to reservoir conditions per stock tnk brrel. B t B o P b B t =B o Reservoir Pressure Typicl totl FVF curve B t B o B g ( R R sb s ) 40

Totl formtion volume fctor. Stnding (1947) log F C B t log( 1 R T s 2.9x10 4 3 2 g 5 0.00027 F R s C o ) 7 6 log P where 1 = -5.262 5 = -0.3 2 = -47.4 6 = 96.8 3 = -22.32 7 = 6.604 4 = 0.5 41

Totl formtion volume fctor.. Glso (1980) ln B t 1 2 ln F 3 ln F 2 F R T s 4 g 5 P 6 C o C 2.9x10 0.00027 R s where 1 = 0.184518 4 = 0.5 2 = 0.47257 5 = -0.3 3 = 75.354436 E-3 6 = -1.1089 42

Totl formtion volume fctor Al-Mrhoun (1992) nd d B B ( p / p ) t 4 1 ( T ln o ob 460) 5 ( p / p 2 b ) b ln g 6 d ln( 3 p o / p b ) where 1 = -0.352796 E-3 4 = 1.64925964 2 = -0.35328914 5 = 0.36432305 3 = -0.24964270 6 = 0.08685097 43

Sttisticl ccurcy of B t correltions ER EA E mx STD R Correltion Stnding (1947) -9.69 13.60 182.07 20.79 Glso (1980) 12.45 18.98 128.97 20.01 Al-Mrhoun (1992) 1.92 3.68 87.49 6.69 Modified Correltion Stnding (1947) -2.88 12.83 216.28 20.05 0.9866 Glso (1980) -1.06 8.70 195.90 17.06 0.9657 Al-Mrhoun (1992) -0.21 3.13 84.82 6.44 0.8707 44

Absolute Averge Percent Error Absolute error of B t correltions 20 15 19.0 Correltion Modified Correltion 13.6 12.8 10 8.7 5 0 3.7 3.1 Stnding Glso Al-Mrhoun 45

Avg Absolute Reltive Error % Absolute error versus API grvity 40 30 20 Glso corr Mrhoun corr Glso modified Mrhoun modified 10 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (93) (363) (1918) (1810) (860) (294) 46

Isotherml oil compressibility It is defined s the unit chnge of volume with pressure t constnt temperture. C o is used in the clcultion of oil density nd FVF bove Pb s shown. c o 1 V V P T op ob e c o (PP b ) B o B ob e c o (P b P) Typicl C o curve bove P b 47

Isotherml oil compressibility To clculte understurted oil density or FVF bove bubble point pressure the verge oil compressibility is used C o c o p 1 p b P P b c o (p)dp To void the clcultion involved, C o cn be clculted t verge pressure P s follows: c o c where P o P ( P) 2 P b 48

Isotherml oil compressibility. Vsquez & Beggs (1980) C O ( 2 Rs 3 T 4 g 5 1 pi ) / p where 1 = -14.33 E-3 2 = 50 E-6 3 = 0.172 E-3 4 = -11.80 E-3 5 = 0.1261 E-3 49

Isotherml oil compressibility.. Petrosky & Frshd (1993) C o R 1 s 2 g 3 4 pi T 5 P 6 where 1 = 0.1705 E-6 4 = 0.3272 2 = 0.69357 5 = 0.6729 3 = 0.1885 6 = -0.5906 50

Isotherml oil compressibility Al-Mrhoun (2003) ln c / ( P P ) / /( T o 1 2 ob 3 b ob 4 nd ob ( 4 o 2.18x 10 R ) / where 1 = -14.1042 2 = 2.7314 3 = -56.0605 E-6 4 = -580.8778 s g B ob 3 460) 51

Sttisticl ccurcy of C o correltions ER EA E mx STD R Correltion Vsquez & Beggs (1980) 11.56 43.42 429.76 57.96 Petrosky & Frshd (1993) 6.13 25.45 138.08 31.74 Al-Mrhoun (2003) -0.25 5.46 26.87 7.06 Modified Correltion Vsquez & Beggs (1980) 17.84 34.53 244.77 40.33 0.3506 Petrosky & Frshd (1993) -0.73 9.47 73.18 12.12 0.9222 Al-Mrhoun (2003) -0.25 5.46 26.87 7.06 0.9829 52

Absolute Averge Percent Error Absolute error of C o correltions 45 30 43 35 Correltion Modified Correltion 25 15 0 Vsquez & Beggs Petrosky & Frshd 9 5 5 Al-Mrhoun 53

Avg Absolute Reltive Error % Absolute error versus API grvity 80 60 40 Vsquez & Beggs corr Petrosky & Frshd corr Vsquez & Beggs modified Petrosky & Frshd modified Mrhoun correltion 20 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (60) (312) (1066) (1260) (535) (179) 54

Oil compressibility below P b It is defined s the unit chnge of volume with pressure t constnt temperture Below bubble point, volume occupied by gs evolved from the oil during differentil chnge in pressure must be tken into ccount in the clcultion of oil compressibility The defining eqution is: c o Typicl C o curve below P b 1 B o B p o T B g R p s T 55

Oil compressibility below P b. McCin, Rollins nd Villen (1988) ln c o 1 2 ln P 3 ln P b 4 ln T 5 ln pi 6 ln R sb where 1 = -7.573 4 = 1.402 2 = -1.450 5 = 0.256 3 = -0.383 6 = 0.449 56

Oil compressibility below P b.. Al-Mrhoun (2009) Al-Mrhoun (2003) developed n eqution to estimte co bove Pb ln c / ( P P ) / /( T 460) 3 o 1 2 ob 3 b ob 4 This eqution cn be used for one point estimtion of co t ny sturtion pressure provided oil reltive density is correct: 4 o 2.18x10 Rs g ln c / ob ob 5 2 ob B ob 57

Oil compressibility below P b.. Any point below the originl P b is new sturtion pressure for new fluid of different composition, then ln c / op 5 2 op op o 2.18x10 B op 4 R s g By combining equtions, the co t sturtion pressure cn be clculted in term of co t the originl Pb nd reltive live oil densities s follows: 1 1 ln ln ( ) 2 = 2.7314 cop cob 2 op ob 58

Oil Viscosity Oil viscosity Oil viscosity is mesure of the resistnce to flow exerted by fluid. In eqution form, reltion between sher stress nd rte of ngulr deformtion of flow of fluids Four viscosity types Ded Oil Viscosity Oil Viscosity below P b Oil Viscosity t P b Oil Viscosity bove P b o dv / dy Pressure P b Typicl viscosity curve 59

Oil viscosity bove P b. Bel (1946) ob ( P P )( 2 4 b 1 ob 3 ob ) where 1 = 24 E-6 2 = 1.60 3 = 38 E-6 4 = 0.56 60

Oil viscosity bove P b.. Lbedi (1992) o m p p ob b ln m ln ln p 1 2 pi 3 od 4 b where 1 = -5.728832 2 = -45.360926 E-3 3 = 0.9036 4 = -0.3849 61

Oil viscosity bove P b Al-Mrhoun (2004) ln o ln ob 2 ob p p b nd ob ( 4 o 2.18x 10 R ) / s g B ob where α = 0.151292 E-3 62

Sttisticl ccurcy of correltions ER EA E mx STD R Correltion Bel (1946) 2.53 3.54 41.81 4.81 Lbedi (1992) -3.59 4.36 76.78 6.03 Al-Mrhoun (2003) 0.36 1.75 27.21 2.87 Modified Correltion Bel (1946) -1.48 2.49 25.13 3.18 0.9981 Lbedi (1992) -0.02 2.61 48.89 4.40 0.9970 Al-Mrhoun (2003) 0.36 1.75 27.21 2.87 0.9979 63

Absolute Averge Percent Error Absolute error of correltions 5 4 4.4 Correltion Modified Correltion 3 3.6 2 2.5 2.6 1 1.8 1.8 0 Bel Lbedi Al-Mrhoun 64

Avg Absolute Reltive Error % Absolute error versus API grvity 10 Bel corr Lbedi Corr 8 Bel modified Lbedi modified 6 Mrhoun correltion 4 2 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (26) (225) (727) (839) (292) (107) 65

Oil viscosity t P b. Chew nd Connlly (1959) ob nd 1 4 2 5 od e e 3 6 R s R s where 1 = 0.2 4 = 0.43 2 = 0.8 5 = 0.57 3 = -1.86509 E-3 6 = -1.65786 E-3 66

Oil viscosity t P b.. Beggs nd Robinson (1975) ob where od 1 4 ( R s ( R s 2 5 ) ) 3 6 where 1 = 10.715 4 = 5.44 2 = 100 5 = 150 3 = -0.515 6 = -0.338 67

Oil viscosity t P b Lbedi (1992) ln ob ln pi 1 2 3 od 4 ln p b where 1 = 5.397259 2 = -0.081557 3 = 0.6447 4 = -0.426 68

Sttisticl ccurcy of ob correltions ER EA E mx STD R Correltion Chew & Connlly (1959) -25.76 26.27 333.97 25.92 Beggs & Robinson (1975) 9.78 16.50 248.25 21.37 Lbedi (1992) -46.77 47.90 420.39 41.70 Modified Correltion Chew & Connlly (1959) 4.49 15.71 236.55 22.85 0.9809 Beggs & Robinson (1975) -8.83 14.04 240.13 21.15 0.9804 Lbedi (1992) -1.77 14.57 182.45 20.90 0.9666 69

Absolute Averge Percent Error Absolute error of ob correltions 45 Correltion 48 Modified Correltion 30 26 15 16 17 14 15 0 Chew & Connlly Beggs & Robinson Lbedi 70

Avg Absolute Reltive Error % Absolute error versus API grvity 120 90 60 Chew & Connlly corr Beggs & Robinson corr Lbedi corr Chew & Connlly modified Beggs & Robinson modified Lbedi modified 30 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (4) (29) (90) (115) (42) (16) 71

Ded oil viscosity. Beggs nd Robinson (1975) ln(ln( 1)) ln od 1 2 pi 3 T where 1 = 7.816432 2 = -0.04658 3 = -1.163 72

Ded oil viscosity.. Glso (1980) ln od 1 2 ln T 3 ln(ln pi ) 4 (ln T)ln(ln pi ) where 1 = 54.56805426 2 = -7.179530398 3 = -36.447 4 = 4.478878992 73

Ded oil viscosity Lbedi (1992) ln ln od 1 2 pi 3 ln T where 1 = 21.23904 2 = -4.7013 3 = -0.6739 74

Sttisticl ccurcy of od correltions ER EA E mx STD R Correltion Beggs & Robinson (1975) -23.02 45.87 444.80 64.86 Glso (1980) 23.24 24.75 86.44 17.59 Lbedi (1992) -8.87 32.47 222.83 45.04 Modified Correltion Beggs & Robinson (1975) -1.48 16.14 83.63 22.25 0.7411 Glso (1980) -2.64 16.06 92.62 22.32 0.7623 Lbedi (1992) -4.18 20.68 128.70 28.67 0.7125 75

Absolute Averge Percent Error Absolute error of od correltions 45 46 Correltion Modified Correltion 30 32 15 16 25 16 21 0 Beggs & Robinson Glso Lbedi 76

Avg Absolute Reltive Error % Absolute error versus API grvity 125 100 75 50 Beggs & Robinson corr Glso corr Lbedi corr Beggs & Robinson modified Glso modified Lbedi modified 25 0 API<20 20<API<25 25<API<30 30<API<35 35<API<40 API>40 (4) (29) (90) (115) (42) (16) 77

Interfcil tension pure substnce The force exerted on the boundry lyer between liquid phse nd vpor phse per unit length Sugden (1924) P ch L v M P ch ( L M = Surfce tension for pure substnces = Prchor = Density of the liquid = Density of the vpor = Moleculr mss V ) 4 78

Prchor, P Interfcil tension prchors Prchor is function expressing the reltionship between the surfce tension, density, nd moleculr mss. 600 400 200 0 0 50 100 150 200 Moleculr Weight Prchors for computing interfcil tension of norml prffin hydrocrbons 79

Interfcil tension hydrocrbon mixture Ktz et l. (1943) 1 A 4 n o 62.4M ( Pch ) i ( Axi By i ) i1 L B g 62.4M o = density of oil phse, lb/ft 3 M L = pprent moleculr mss of oil phse g = density of gs phse, lb/ft 3 M g = pprent moleculr mss of gs phse x i = mole frction of component i in oil phse y i = mole frction of component i in gs phse n = totl number of component in the system g 80

References 1. Stnding, M.B.: A Pressure-Volume-Temperture Correltion for Mixtures of Cliforni Oils nd Gses, Drill. & Prod. Prct, API (1947), pp 275-287. 2. Vsquez, M.E. nd Beggs, H.D.: Correltions for Fluid Physicl Property Prediction, JPT (June 1980) 968-970. 3. Al-Mrhoun, M.A.: PVT Correltions for Middle Est Crude Oils, JPT (My 1988) 650-666. 4. Al-Mrhoun, M.A.: New Correltion for Formtion Volume Fctor of Oil nd Gs Mixtures, JCPT (Mrch 1992) 22-26. 5. Glso, O.: Generlized Pressure-Volume Temperture Correltions, JPT (My 1980), 785-795. 6. Petrosky, G.E. Jr. nd Frshd, F.F.: Pressure-Volume-Temperture Correltions for Gulf of Mexico, pper SPE 26644, presented t the 1993 SPE Annul Technicl Conference nd Exhibition, Houston, Oct. 3-6. 7. Al-Mrhoun, M.A.: The Coefficient of Isotherml Compressibility of Blck Oils, pper SPE 81432 presented t the 2003 SPE Middle Est Oil Show nd Conference, Bhrin, June 9-12. 81

References 8. Bel, C.: The Viscosity of Air, Wter, Nturl Gs, Crude Oil nd its Associted Gses t Oil Field Temperture nd Pressures, Trns., AIME (1946) 165, pp 94-112. 9. Lbedi, R.: Improved Correltions for Predicting the Viscosity of Light Crudes, J. Pet. Sce. Eng. (Aug. 1992) 221-234. 10. Al-Mrhoun, M.A.: "Evlution of empiriclly derived PVT properties for Middle Est crude oils, Journl of Petroleum Science nd Engineering, 42 (2004) 209-221. 11. Chew, J. nd Connlly, C.A. Jr.: A Viscosity Correltion for Gs-Sturted Crude Oils, Trns., AIME (1959) 216, pp 23-25. 12. Beggs, H.D. nd Robinson, J.R.: Estimting the Viscosity of Crude Oil System, JPT (Sept. 1980) 1140-41. 13. McCin. W.D. Jr., Rollins, J.B., nd Villen. A.J.: The Coefficient of Isotherml Compressibility of Blck Oils t Pressures below the Bubblepoint, SPEFE (Sept. 1988) 659-62; Trns., AIME. 285. 14. Al-Mrhoun, M.A.: The Oil Compressibility below Bubble Point Pressure Revisited Formultions nd Estimtions, pper SPE 120047 presented t 16th SPE Middle Est Oil Show & Conference, Bhrin, 15 18 Mrch 2009. 82