SFN$303$No.19+28$ 2018/05/11

Similar documents
Infrared Dark Clouds seen by Herschel and ALMA

within entire molecular cloud complexes

GMC as a site of high-mass star formation

Deuterium Fractionation in Massive Star Forming Clumps in Infrared Dark Clouds

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University

Star Formation. Spitzer Key Contributions to Date

Frédérique Motte (AIM Paris-Saclay)

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Fragmentation of the Integral Shaped Filament as viewed by ALMA

The Red MSX Source Survey. Massive Star Formation in the Milky Way. Stuart Lumsden University of Leeds

Astrochemistry from a Sub-pc Scale to a kpc Scale. Satoshi Yamamoto Department of Physics and RESCUE The University of Tokyo

Filamentary Structures in the Galactic Plane Morphology, Physical conditions and relation with star formation

The ALMA SKA Synergy For Star and Stellar Cluster Formation

Initial conditions for massive star formation

Probing the embedded phase of star formation with JWST spectroscopy

arxiv: v1 [astro-ph.sr] 10 Mar 2015

Outflows in regions of massive star formation. Suzanne Ramsay (ESO), Watson Varricatt (UKIRT), Chris Davis (NSF)

Microwave emissions, critical tools for probing massive star formation

From Massive Cores to Massive Stars

The Lifetimes of Phases in High-Mass Star-Forming Regions

Galaxy Simulators Star Formation for Dummies ^

Understanding the tracers of star formation

NRAO Instruments Provide Unique Windows On Star Formation

21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO

arxiv: v1 [astro-ph.ga] 29 Oct 2018

How do high line-mass filaments fragment? Towards an evolutionary sequence with ALMA

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998:

- Strong extinction due to dust

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

An evolutionary sequence for high-mass stars formation

Unraveling the Evolution of Protostars in Diverse Environments: The Herschel Orion Protostar Survey

Molecular Clouds and Star Formation in the Magellanic Clouds and Milky Way

The Formation of Star Clusters

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

Global star formation in the Milky Way from the VIALACTEA Project

Anatomy of the S255-S257 complex - Triggered high-mass star formation

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China

Setting the stage for solar system formation

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

MASSIVE STAR FORMATION

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

The Competitive Accretion Debate

THE STAR FORMATION NEWSLETTER No February /5/29

Observed Relationships between Filaments and Star Formation

Fragmentation in Hi-GAL clumps

Disk+outflow system in G

Molecular line survey observations toward nearby galaxies with IRAM 30 m

Interstellar Medium. Alain Abergel. IAS, Université Paris-Sud, Orsay Cedex, France

THE STAR FORMATION NEWSLETTER No. 266 (#36-40) 17 Apr. 2015

The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks

Fractionation in Infrared Dark Cloud Cores

SOFIA/GREAT observations of LMC-N 11: Does [C ii] trace regions with a large H 2 fraction?

Cinthya Herrera (NAOJ)

Thomas Henning Max Planck Institute for Astronomy Heidelberg

arxiv: v1 [astro-ph] 27 Jun 2007

STAR FORMATION RATES observational overview. Ulrike Kuchner

Origin of high-mass protostars in Cygnus-X

The Class 0 Source Barnard 1c (most recent results ) Brenda Matthews Herzberg Institute of Astrophysics National Research Council of Canada

Zooming into high-mass star-forming regions

ALMA Science Cases with our Galaxy. SNU Town hall meeting for ALMA Cycle March 23 Woojin Kwon

Summary and Future work

The Interstellar Medium in Galaxies: SOFIA Science

ATLASGAL: APEX Telescope Large Area Survey of the Galaxy

Ionization Feedback in Massive Star Formation

Energy Sources of the Far IR Emission of M33

PoS(11th EVN Symposium)031

Low Mass Star Formation in the Diverse Environments of Orion: Results from the Herschel Orion Protostar Survey

Density. Red. Low high. Blue. Cluster galaxy population: passive and red Hogg et al. 2004

Masers in Regions of High-Masss Star Formation. Karl M. Menten

Chemical evolution in low-mass star formation. Kyung Hee University Jeong-Eun Lee

Interstellar Medium and Plasmas (IMP; pole 2)

ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

The Role of Magnetic Field in Star Formation in the Disk of Milky Way Galaxy Shu-ichiro Inutsuka (Nagoya University)

The Herschel Orion Protostar Survey: Luminosity and Envelope Evolution

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

arxiv: v1 [astro-ph.ga] 29 Apr 2011

Maria Cunningham, UNSW. CO, CS or other molecules?

The influence of cosmic rays on the chemistry in Sagittarius B2(N)

The Center for Astrochemical Studies at MPE

The Formation of Massive Stars

Earliest phases of high mass star formation in the Galactic Plane

CCAT: Key Science Goals. Jonas Zmuidzinas and the CCAT Science Steering Committee

Extended Star Formation in the Sgr B2 cloud

the Solar Neighborhood

Protoplanetary Disk * ELT *

Gamma-Rays and the ISM (Mopra, ATCA, ASKAP... and others)

arxiv: v1 [astro-ph] 11 Sep 2008

Star Formation: How my knowledge has been shaped by observations taken by the James Clerk Maxwell Telescope

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks

Transitional disks and their host stars

Early Phases of Star Formation

H I in Galactic Disks

FORMATION OF PRIMORDIAL STARS

THE FORMATION OF MASSIVE STARS. η Carina (NASA, ESA, N. Smith)

Cold Cores of Molecular Clouds. Mika Juvela, Department of physics, University of Helsinki

Transcription:

SFN$303$No.19+28$ 2018/05/11 19. Inside+Out$Planet$Formation.$IV.$Pebble$Evolution$and$Planet$Formation$Timescales 20. The$Herschel+PACS$legacy$of$low+mass$protostars:$Properties$of$warm$and$hot$gas$and$its$ origin$in$far+uv$illuminated$shocks 21. Core$Emergence$in$a$Massive$Infrared$Dark$Cloud:$A$Comparison$Between$Mid+IR$ Extinction$and$1.3$mm$Emission 22. Characterization$of$methanol$as$a$magnetic$field$tracer$in$star+forming$regions 23. Near+infrared$study$of$new$embedded$clusters$in$the$Carina$complex 24. The$physical$and$chemical$structure$of$Sagittarius$B2.$III.$Radiative$transfer$simulations$of$ the$hot$core$sgrb2(m)$for$methyl$cyanide 25. Seeds$of$Life$in$Space$(SOLIS).$III.$Zooming$into$the$methanol$peak$of$the$pre+stellar$core$ L1544 26. Spiral$density$waves$and$vertical$circulation$in$protoplanetary$discs 27. Study$of$the$filamentary$infrared$dark$cloud$G192.76+00.10$in$the$S254+S258$OB$ complex 28. Orbital$Motion$of$Young$Binaries$in$Ophiuchus$and$Upper$Centaurus+Lupus

#21 Core%Emergence%in%a%Massive%Infrared%Dark%Cloud:%A%Comparison% Between%Mid=IR%Extinction%and%1.3%mm%Emission% ALMA mm ALMA 10 5 Mo IRDC G28.37%+%0.07 12m array 86 IRDC

MIREX ALMA Σ>0.2-g-cm12 Spitzer-IRAC-8μm dark-region MIREX Σ ALMA Σ ALMA pre1stellar-core- massivepre1stellar-core ALMA FIg. 1 :MIREX ALMA 1.3-mm Contours:-ALMA-1.3-mm-continuum-mosaic. The-two-red-contours-highlight-SNR-=-3-and-10.

Fig.%2 Σ ALMA1.3%mm / / IRDC Σ Fig.%4

1.3mm protostellar-cmf pre1 stellar-cmf fdg 50 fdg ε* 5 8 1.3mm protostellar-cores IRDC εff McKee Tan 2003 1 (ε core ) 50 ε ff fdg 10

#25 Seeds%of%Life%in%Space%(SOLIS).%III.%Zooming%into%the%methanol% peak%of%the%pre;stellar%core%l1544 Introduction (CH 3 OH) cold%dense%clouds CO L1544 pre;stellar%core(n~2x10^6%cm^;3) Observation NOEMA beam%:5.71 x3.86 20 IRAM%30m NOEMA (CH 3 OH) Fig.%1 IRAM%30m color%scale%:ch3oh 250%µm%dust%continuum

Results Fig.22 The2white2contours2:21.22mm2dust2continuum2emission The2yellow2cross2shows2the2dust2emission2peak. Fig.23 NOEMA+30m NOEMA (FIg.2) NOEMA+30m (Fig.23)

Results Fig."4 Velocity"dispersions"of"theA+methanol"line. Fig."7 Fig."13 7"km"s&1"pc&1 (Fig."7) (Fig."4) pre&stellar"core Herschel FIg."13 2 2 L1544 CH3OH

Fig.%14 LTE non-lte Bizzocchi 2 3 30m LTE non-lte (MONACO%code) 1 (fig.%14)

#27 Study&of&the&filamentary&infrared&dark&cloud&G192.76+00.10&in& the&s254>s258&ob&complex Introduction Andre& et&al 2014 D&=&1.78&+&0.12kpc S254>S258 G192.76&+&00.10 Fig.&1 H&II S254 S258 62 YSOs 1Myr YSOs (Klessen&et& al. 2004

Table&1 9.3&km&/&s Fig.&3 PV&diagrams&in&the&lines13CO(2 1)&(top),13CO(1 0)& (middle)&and&cs&(bottom). Fig.&2 13CO(150) 13CO 2 13CO 2kms51

Fig.%6 13CO(2B1) H2 Fig.%7 The%profiles%of%the%H2column%density morphology H2 fig.%6 main%filament mait 12 CO NH 3 10~35K S258%HII 5.1 10 22 cm B2 800Mo. 7pc 115Mo/%pc 1%pc 6 CS 2B1 30 160Mo 0.16 0.78

#19 Inside-Out'Planet'Formation.'IV.'Pebble'Evolution'and'Planet' Formation'Timescales Systems'with'tightly-packed'inner'planets'(STIPs)'are'very'common.'Chatterjee&Tan'proposed'Inside-Out' PlanetFormation'(IOPF),'anin'situformation'theory,'to'explain'these'planets.'IOPF'involves'sequential'planet' formationfrom'pebble-rich'rings'that'are'fed'from'the'outer'disk'and'trapped'at'the'pressure'maximum'associated'with' thedead'zone'inner'boundary'(dzib).'planet'masses'are'set'by'their'ability'to'open'a'gap'and'cause'the'dzib'to' retreatoutwards.'we'present'models'for'the'disk'density'and'temperature'structures'that'are'relevant'to'the'conditions' ofiopf.'for'a'wide'range'of'dzib'conditions,'we'evaluate'the'gap'opening'masses'of'planets'in'these'disks'that' areexpected'to'lead'to'truncation'of'pebble'accretion'onto'the'forming'planet.'we'then'consider'the'evolution'of' dustand'pebbles'in'the'disk,'estimating'that'pebbles'typically'grow'to'sizes'of'a'few'cm'during'their'radial'drift' fromseveral'tens'of'au'to'the'inner,< 1'AU-scale'disk.'A'large'fraction'of'the'accretion'flux'of'solids'is'expected'to'be' insuch'pebbles.'this'allows'us'to'estimate'the'timescales'for'individual'planet'formation'and'entire'planetary' systemformation'in'the'iopf'scenario.'we'find'that'to'produce'realistic'stips'within'reasonable'timescales'similar'to' disklifetimes'requires'disk'accretion'rates'of 10 9M yr 1and'relatively'low'viscosity'conditions'in'the'DZIB'region,i.e.,' Shakura-Sunyaev'parameter'ofα 10 4.

#20 The&Herschel8PACS&legacy&of&low8mass&protostars:&Properties&of& warm&and&hot&gas&and&its&origin&in&far8uv&illuminated&shocks Recent&observations&from&Herschel&allow&the&identification&of&important&mechanisms&responsible&for&the&heating&of& gassurrounding&low8mass&protostars&and&its&subsequent&cooling&in&the&far8infrared&(fir).&shocks&are&routinely&invokedto& reproduce&some&properties&of&the&far8ir&spectra,&but&standard&models&fail&to&reproduce&the&emission&from&keymolecules,& e.g.&h2o.&here,&we&present&the&herschel8pacs&far8ir&spectroscopy&of&90&embedded&low8mass&protostars(class&0/i).&the& Herschel8PACS&spectral&maps&covering 55 210μm&with&a&field8of8view&of 50PPare&used&to&quantifythe&gas&excitation& conditions&and&spatial&extent&using&rotational&transitions&of&h2o,&high8jco,&and&oh,&as&well&as&[oi]&and&[c&ii].&we&confirm& that&a&warm&( 300&K)&CO&reservoir&is&ubiquitous&and&that&a&hotter&component&(760 170K)&is&frequently&detected& around&protostars.&the&line&emission&is&extended&beyond 1000&AU&spatial&scales&in&40/90objects,&typically&in&molecular& tracers&in&class&0&and&atomic&tracers&in&class&i&objects.&high8velocity&emission&(> 90km&s 1)&is&detected&in&only&10& sources&in&the&[o&i]&line,&suggesting&that&the&bulk&of&[o&i]&arises&from&gas&that&is&movingslower&than&typical&jets.&line&flux& ratios&show&an&excellent&agreement&with&models&of&c8shocks&illuminated&by&uvphotons&for&pre8shock&densities& of 105cm 3and&UV&fields&0.1 10&times&the&interstellar&value.&The&far8IR&molecularand&atomic&lines&are&a&unique& diagnostic&of&feedback&from&uv&emission&and&shocks&in&envelopes&of&deeply&embeddedprotostars.

#22 Characterization)of)methanol)as)a)magnetic)field)tracer)in)star; forming)regions Magnetic)fields)play)an)important)role)during)star)formation.)Direct)magnetic)field)strength)observations)have) provenparticularly)challenging)in)the)extremely)dynamic)protostellar)phase.)because)of)their)occurrence)in)the)densest) partsof)star;forming)regions,)masers,)through)polarization)observations,)are)the)main)source)of)magnetic)field) strengthand)morphology)measurements)around)protostars.)of)all)maser)species,)methanol)is)one)of)the)strongest)and) mostabundant)tracers)of)gas)around)high;mass)protostellar)disks)and)in)outflows.)however,)as)experimental) determinationof)the)magnetic)characteristics)of)methanol)has)remained)largely)unsuccessful,)a)robust)magnetic)field) strength)analysisof)these)regions)could)hitherto)not)be)performed.)here,)we)report)a)quantitative)theoretical)model)of) the)magneticproperties)of)methanol,)including)the)complicated)hyperfine)structure)that)results)from)its)internal) rotation.)we)showthat)the)large)range)in)values)of)the)land)g)factors)of)the)hyperfine)components)of)each)maser)line) lead)to)conclusionsthat)differ)substantially)from)the)current)interpretation)based)on)a)single)effective)g)factor.)these) conclusions)aremore)consistent)with)other)observations)and)confirm)the)presence)of)dynamically)important)magnetic) fields)aroundprotostars.)additionally,)our)calculations)show)that)(nonlinear))zeeman)effects)must)be)taken)into)account) to)furtherenhance)the)accuracy)of)cosmological)electron;to;proton)mass)ratio)determinations)using)methanol.

#23 NearAinfrared#study#of#new#embedded#clusters#in#the#Carina# complex We#analyse#the#nature#of#a#sample#of#stellar#overdensities#that#we#found#projected#on#the#Carina#complex.#This#studyis# based#on#2mass#photometry#and#involves#the#photometry#decontamination#of#field#stars,#elaboration#of#intrinsiccoloura magnitude#diagramsj (J Ks),#colourAcolour#diagrams#(J H) (H Ks)#and#radial#density#profiles,#inorder#to#determine# the#structure#and#the#main#astrophysical#parameters#of#the#best#candidates.#the#verification#ofan#overdensity#as#an# embedded#cluster#requires#a#cmd#consistent#with#a#pms#content#and#ms#stars,#if#any.#fromthese#results,#we#are#able#to# verify#if#they#are,#in#fact,#embedded#clusters.#the#results#were,#in#general,#rewarding:in#a#sample#of#101#overdensities,# the#analysis#provided#15#candidates,#of#which#three#were#previously#catalogued#asclusters#(cccpacl16,#treasure#chest# and#fsr1555),#and#the#12#remaining#are#discoveries#that#provided#significantresults,#with#ages#not#above#4.5myr#and# distances#compatible#with#the#studied#complex.#the#resulting#values#for#thedifferential#reddening#of#most#candidates# were#relatively#high,#confirming#that#these#clusters#are#still#(partially#or#fully)embedded#in#the#surrounding#gas#and#dust,# as#a#rule#within#a#shell.#histograms#with#the#distribution#of#the#masses,ages#and#distances#were#also#produced,#to#give# an#overview#of#the#results.#we#conclude#that#all#the#12#newly#foundembedded#clusters#are#related#to#the#carina# complex.

#24 The#physical#and#chemical#structure#of#Sagittarius#B2.#III.# Radiative#transfer#simulations#of#the#hot#core#SgrB2(M)#for# methyl#cyanide We#model#the#emission#of#methyl#cyanide#(CH3CN)#lines#towards#the#massive#hot#molecular#core#SgrB2(M).#Weaim#at# reconstructing#the#ch3cn#abundance#field#and#investigating#the#gas#temperature#distribution#as#well#as#thevelocity#field.# SgrB2(M)#was#observed#with#the#ALMA#in#a#spectral#line#survey#from#211#to#275#GHz.#This#frequencyrange#includes# several#transitions#of#ch3cn#(including#isotopologues#and#vibrationally#excited#states).#we#employ#thethreem dimensional#radiative#transfer#toolbox#pandora#in#order#to#retrieve#the#velocity#and#abundance#field#by# modelingdifferent#ch3cn#lines.#for#this#purpose,#we#base#our#model#on#the#results#of#a#previous#study#that#determined# thephysical#structure#of#sgrb2(m),#i.e.#the#distribution#of#dust#dense#cores,#ionized#regions#and#heating#sources.# Themorphology#of#the#CH3CN#emission#can#be#reproduced#by#a#molecular#density#field#that#consists#of#a# superpositionof#cores#with#modified#plummermlike#density#profiles.#the#averaged#relative#abundance#of#ch3cn#with# respect#to#h2ranges#from#4 10 11to#2 10 8in#the#northern#part#of#SgrB2(M)#and#from#2 10 10to#5 10 7in#the# southern#part.in#general,#we#find#that#the#relative#abundance#of#ch3cn#is#lower#at#the#center#of#the#very#dense#and#hot# cores,#causingthe#general#morphology#of#the#ch3cn#emission#to#be#shifted#with#respect#to#the#dust#continuum#emission.# The#dusttemperature#calculated#by#the#radiative#transfer#simulation#based#on#the#available#luminosity#reaches#values#up# to#900k.#however,#in#some#regions#vibrationally#excited#transitions#of#ch3cn#are#underestimated#by#the#model,# indicatingthat#the#predicted#gas#temperature,#which#is#assumed#to#be#equal#to#the#dust#temperature,#is#partly# underestimated.the#determination#of#the#velocity#component#along#the#line#of#sight#reveals#that#a#velocity#gradient# from#the#north#tothe#south#exists#in#sgrb2(m).

#26 Spiral'density'waves'and'vertical'circulation'in'protoplanetary' discs Spiral'density'waves'dominate'several'facets'of'accretion'disc'dynamics' planet5disc'interactions'and' gravitationalinstability'(gi)'most'prominently.'though'they'have'been'examined'thoroughly'in'two5dimensional' simulations,their'vertical'structures'in'the'non5linear'regime'are'somewhat'unexplored.'this'neglect'is'unwarranted' given'thatany'strong'vertical'motions'associated'with'these'waves'could'profoundly'impact'dust'dynamics,'dust' sedimentation,planet'formation,'and'the'emissivity'of'the'disc'surface.'in'this'paper'we'combine'linear'calculations'and' shearingbox'simulations'in'order'to'investigate'the'vertical'structure'of'spiral'waves'for'various'polytropic'stratifications andwave'amplitudes.'for'sub5adiabatic'profiles'we'find'that'spiral'waves'develop'a'pair'of'counter5rotating'poloidalrolls.' Particularly'strong'in'the'nonlinear'regime,'these'vortical'structures'issue'from'the'baroclinicity'supported'bythe' background'vertical'entropy'gradient.'they'are'also'intimately'connected'to'the'disk s'g5modes'which'appearto'interact' nonlinearly'with'the'density'waves.'furthermore,'we'demonstrate'that'the'poloidal'rolls'are'ubiquitousin' gravitoturbulence,'emerging'in'the'vicinity'of'gi'spiral'wakes,'and'potentially'transporting'grains'offthe'diskmidplane.' Other'than'hindering'sedimentation'and'planet'formation,'this'phenomena'may'bear'on'observations'ofthe'disk s' scattered'infrared'luminosity.'the'vortical'features'could'also'impact'on'the'turbulent'dynamo'operatingin'young' protoplanetary'discs'subject'to'gi,'or'possibly'even'galactic'discs.

#28 Orbital#Motion#of#Young#Binaries#in#Ophiuchus#and#Upper# Centaurus<Lupus We#present#measurements#of#the#orbital#positions#and#flux#ratios#of#17#binary#and#triple#systems#in#the#Ophiuchus# starforming#region#and#the#upper#centaurus<lupus#cluster#based#on#adaptive#optics#imaging#at#the#keck#observatory.# Wereport#the#detection#of#visual#companions#in#MML#50#and#MML#53#for#the#first#time,#as#well#as#the#possible# detectionof#a#third#component#in#wsb#21.#for#six#systems#in#our#sample,#our#measurements#provide#a#second#orbital# positionfollowing#their#initial#discoveries#over#a#decade#ago.#for#eight#systems#with#sufficient#orbital#coverage,#we# analyze#therange#of#orbital#solutions#that#fit#the#data.#ultimately,#these#observations#will#help#provide#the#groundwork# towardmeasuring#precise#masses#for#these#pre<main#sequence#stars#and#understanding#the#distribution#of#orbital# parametersin#young#multiple#systems.