Research Article Two Expanding Integrable Models of the Geng-Cao Hierarchy

Similar documents
Research Article Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems

Research Article A Note on Ergodicity of Systems with the Asymptotic Average Shadowing Property

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M

Review Article Incomplete Bivariate Fibonacci and Lucas p-polynomials

Research Article Approximate Riesz Algebra-Valued Derivations

Integrable Properties Associated with a Discrete Three-by-Three Matrix Spectral Problem

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Research Article Numerical Solution of Fractional Integro-Differential Equations by Least Squares Method and Shifted Chebyshev Polynomial

Research Article Carleson Measure in Bergman-Orlicz Space of Polydisc

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

Research Article Nonautonomous Discrete Neuron Model with Multiple Periodic and Eventually Periodic Solutions

Correspondence should be addressed to Wing-Sum Cheung,

Research Article Robust Linear Programming with Norm Uncertainty

Research Article Algebro-Geometric Solutions for a Discrete Integrable Equation

Research Article Powers of Complex Persymmetric Antitridiagonal Matrices with Constant Antidiagonals

Research Article Moment Inequality for ϕ-mixing Sequences and Its Applications

Exact Solutions of the Generalized Benjamin Equation and (3 + 1)- Dimensional Gkp Equation by the Extended Tanh Method

AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC MAPS

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

Research Article Quasiconvex Semidefinite Minimization Problem

Modified Logistic Maps for Cryptographic Application

Research Article Invariant Statistical Convergence of Sequences of Sets with respect to a Modulus Function

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

NEW IDENTIFICATION AND CONTROL METHODS OF SINE-FUNCTION JULIA SETS

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun

Research Article Skew Circulant Type Matrices Involving the Sum of Fibonacci and Lucas Numbers

Solution of Differential Equation from the Transform Technique

wavelet collocation method for solving integro-differential equation.

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS

Some Results on Certain Symmetric Circulant Matrices

Research Article On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables

Matrix representations of Fibonacci-like sequences

Citation Journal of Inequalities and Applications, 2012, p. 2012: 90

Uniform Strict Practical Stability Criteria for Impulsive Functional Differential Equations

A comparative study of a system of Lotka-Voltera type of PDEs through perturbation methods

Research Article The Arens Algebras of Vector-Valued Functions

Bounds for the Positive nth-root of Positive Integers

Research Article On q-bleimann, Butzer, and Hahn-Type Operators

Stability Analysis of the Euler Discretization for SIR Epidemic Model

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

COMPACT SCHEMES FOR KORTEWEG-DE VRIES EQUATION

Research Article On the Strong Laws for Weighted Sums of ρ -Mixing Random Variables

Numerical Solution of the Two Point Boundary Value Problems By Using Wavelet Bases of Hermite Cubic Spline Wavelets

Research Article Strong and Weak Convergence for Asymptotically Almost Negatively Associated Random Variables

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Research Article Finite Difference Method for Hyperbolic Equations with the Nonlocal Integral Condition

Record Values from T-X Family of. Pareto-Exponential Distribution with. Properties and Simulations

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations

Weakly Connected Closed Geodetic Numbers of Graphs

A NOTE ON SPECTRAL CONTINUITY. In Ho Jeon and In Hyoun Kim

A generalization of Morley s congruence

Poincaré Problem for Nonlinear Elliptic Equations of Second Order in Unbounded Domains

NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Generating Functions for Laguerre Type Polynomials. Group Theoretic method

ON SOME TRIGONOMETRIC POWER SUMS

Stopping oscillations of a simple harmonic oscillator using an impulse force

arxiv: v1 [math-ph] 5 Jul 2017

Some New Iterative Methods for Solving Nonlinear Equations

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan

The Choquet Integral with Respect to Fuzzy-Valued Set Functions

Average Number of Real Zeros of Random Fractional Polynomial-II

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Research Article Gaussian Fibonacci Circulant Type Matrices

The Differential Transform Method for Solving Volterra s Population Model

On Generalized Fibonacci Numbers

Research Article Filling Disks of Hayman Type of Meromorphic Functions

Application of Homotopy Perturbation Method for the Large Angle period of Nonlinear Oscillator

Factors of sums and alternating sums involving binomial coefficients and powers of integers

μ are complex parameters. Other

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

Research Article Laplace Transform Collocation Method for Solving Hyperbolic Telegraph Equation

Two-step Extrapolated Newton s Method with High Efficiency Index

THE CONSERVATIVE DIFFERENCE SCHEME FOR THE GENERALIZED ROSENAU-KDV EQUATION

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m "2 + V ( r,t) (1.

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

New Results for the Fibonacci Sequence Using Binet s Formula

Several properties of new ellipsoids

The Solutions of Nonlinear Heat Conduction Equation via Fibonacci&Lucas Approximation Method. Zehra Pınar a. Turgut Öziş b.

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Dynamical Behavior of High-order Rational Difference System

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Research Article Convergence Theorems for Finite Family of Multivalued Maps in Uniformly Convex Banach Spaces

Research Article Norms and Spread of the Fibonacci and Lucas RSFMLR Circulant Matrices

NTMSCI 5, No. 1, (2017) 26

γ-max Labelings of Graphs

Scientific Review ISSN(e): , ISSN(p): Vol. 4, Issue. 4, pp: 26-33, 2018 URL:

Chapter 4. Fourier Series

ANTI-SYNCHRONIZING SLIDING CONTROLLER DESIGN FOR IDENTICAL PAN SYSTEMS

Research Article Existence and Boundedness of Solutions for Nonlinear Volterra Difference Equations in Banach Spaces

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

Transcription:

Abstract ad Applied Aalysis Volume 214, Article ID 86935, 7 pages http://d.doi.org/1.1155/214/86935 Research Article Two Epadig Itegrable Models of the Geg-Cao Hierarchy Xiurog Guo, 1 Yufeg Zhag, 2 ad Xupig Zhag 1 1 Departmet of Basic Courses, Shadog Uiversity of Sciece ad Techology, Tai a, Shadog 27119, Chia 2 College of Sciece, Chia Uiversity of Miig ad Techology, Xuzhou 221116, Chia Correspodece should be addressed to Xiurog Guo; sprigmig7@126.com Received 21 November 213; Accepted 13 Jauary 214; Published 27 February 214 Academic Editor: Tiecheg Xia Copyright 214 Xiurog Guo et al. This is a ope access article distributed uder the Creative Commos Attributio Licese, which permits urestricted use, distributio, ad reproductio i ay medium, provided the origial work is properly cited. As far as liear itegrable coupligs are cocered, oe has obtaied some rich ad iterestig results. I the paper, we will deduce two kids of epadig itegrable models of the Geg-Cao (GC) hierarchy by costructig differet 6-dimesioal Lie algebras. Oe epadig itegrable model (actually, it is a oliear itegrable couplig) reduces to a geeralized Burgers equatio ad further reduces to the heat equatio whose epadig oliear itegrable model is geerated. Aother oe is a epadig itegrable model which is differet from the first oe. Fially, the Hamiltoia structures of the two epadig itegrable models are obtaied by employig the variatioal idetity ad the trace idetity, respectively. 1. Itroductio Itegrable coupligs are a kid of epadig itegrable models of some kow itegrable hierarchies of equatios. Based o this theory, oe has obtaied some itegrable coupligs of the kow itegrable hierarchies [1 8]. These itegrable coupligs are all liear with respect to the coupled variables. That is, if we itroduce a evolutio equatio U t = K(u thecoupledvariablev satisfyig V t = S(u, V) is liear i V.ThereasoforthismaybegivebyspecialLiealgebras. That is, such a Lie algebra G ca be decomposed ito a sum of the two subalgebras G 1 ad G 2,whichmeets G=G 1 G 2, [G 1,G 2 ] G 2. (1) If the subalgebra G 2 is ot simple, the the itegrable couplig U t =K(u), V t =S(u, V) is liear with respect to the variable V, whichisobtaiedby itroducig La pairs through the Lie algebra G. However, it is more iterestig to seek for oliear itegrable coupligs because most of the coupled dyamics from physics, mechaics, ad so forth are oliear. Recetly, Ma ad Zhu [9] itroduced a kid of Lie algebra to deduce the (2) oliear itegrable coupligs of the oliear Schrödiger equatio ad so forth, the Lie subalgebras are simple ad are differet from the above. Based o this, Zhag [1] proposed a simple ad efficiet method for geeratig oliear itegrable coupligs ad obtaied the oliear itegrable coupligs of the Giachetti-Johso (GJ) hierarchy ad the Yag hierarchy, respectively. I additio, Zhag ad Ho [11] proposed aother Lie algebra which is differet from those i [9, 1] to deduce oliear itegrable coupligs. Wei ad Xia [12] alsoobtaiedsomeoliearitegrable coupligs of the kow itegrable hierarchies. Ithepaper,wewattostartfromaspectralproblem proposed by Geg ad Cao [13] todeduceaitegrable hierarchy (called the GC hierarchy) uder the frame of zero curvature equatios by the Tu scheme [14]ad obtai its ew Hamiltoia structure. The with the help of a 6-dimesioal Lie algebra, a oliear epadig itegrable model of the GC hierarchy is obtaied, whose Hamiltoia structure is geerated by the variatioal idetity preseted i [15]. The epadig itegrable model ca reduce to a geeralized Burgers equatio ad further reduce to the heat equatio. Aother ew 6-dimesioal Lie algebra is costructed for which the secod epadig itegrable model is produced by usig the Tu scheme whose Hamiltoia structure is derived from the trace idetity proposed by Tu [14]. We shall fid the two epadig itegrable models of the GC hierarchy are differet.

2 Abstract ad Applied Aalysis 2. The GC Itegrable Hierarchy ad Its Hamiltoia Structure We have kow that h=( 1 1 1 e=( f=( 1 (3) the oe gets [h, e] = 2e, [h, f] = 2f, [e, f] =h. (4) It is well kow that spa{h, e, f} = A 1 is a Lie algebra. A loop algebra of A 1 is give by A 1 = spa {h (),e(),f()}, (5) h () =h() λ, e() =e() λ, h () =h() λ, Z. By usig the loop algebra A 1, itroduce a isospectral problem [13]: (6) λ λu U=( )= h(1) +ue(1) + Vf (). (7) V λ V=V 1 h () +V 2 e () +V 3 f (), (8) V i = V im h ( m), i = 1,2,3. (9) m The statioary equatio V =[U,V]admits that a solutio for the V is as follows: which gives rise to (V 1m ) =uv 3m VV 2m, (V 2m ) = 2V 2,m+1 2uV 1,m+1, (V 3m ) =2V 3,m+1 +2VV 1,m+1, (1) (V 1,m+1 ) = 1 2 u(v 3m) 1 2 V(V 2m). (11) V 1, =V 2, =V 3, =, V 1,1 =α; (12) from (1)ad(11)wehave deote by V () = We have (V 1m h ( m) +V 2m e ( m) +V 3m f ( m)). m= (14) V () +[U,V () ]=(2V 2,+1 +2uV 1,+1 )e(1) 2(V 3,+1 +2V 1,+1 )f(). The compatibility of the followig La pair V () = gives rise to U= h(1) +ue(1) + Vf () (15) (V 1m h ( m) +V 2m e ( m) +V 3m f ( m)) m= (16) ( u V ) t =( 2V 2,+1 2uV 1,+1 2V 3,+1 +2VV 1,+1 )=( (V 2) (V 3 ) ) =( )(V 3 V 2 )=J( V 3 V 2 (17) J=( ) (18) is a Hamiltoia operator. By the trace idetity preseted i [14], we have u =λv 3, V =λv 2, λ = 2λV 1 +uv 3. Substitutig the above results to the trace idetity yields (19) w ( 2λV 1 +uv 3 )=λ γ λ λγ ( λv 3 (2) λv 2 w = ( u, V ) T. (21) Comparig the coefficiets of λ of both sides i (2)gives w ( 2V 1,+1 +uv 3,+1 )=( +1+γ)( λv 3 λv 2 ). (22) V 2,1 = αu, V 3,1 = αv, V 1,2 = α 2 uv, V 2,2 = α 2 (u +u 2 V), V 3,2 = α 2 ( V +uv 2... (13) It is easy to see γ= 1.Thus,wehave ( λv 3 λv 2 )= u (2V 1,+1 uv 3,+1 )= H u, (23)

Abstract ad Applied Aalysis 3 H = 2V 1,+1 uv 3,+1 (24) are Hamiltoia coserved desities of the La itegrable hierarchy (17). Therefore, we get a Hamiltoia form of the hierarchy (17) as follows: ( u V ) =J H t u. (25) Let us cosider the reduced cases of (17). Whe =1,weget that u t1 = αu, V t1 = αv. (26) Takig =2, oe gets a geeralized Burgers equatio: u t2 = α 2 u +αuu V + α 2 u2 V, V t2 = α 2 V + α 2 u V 2 +αuvv. (27) Remark 1. The Hamiltoia structure (23) is differet from thati [14].We call (17) the GC hierarchy. 3. The First Epadig Itegrable Model of the GC Hierarchy Zhag ad Tam [16] proposed a few kids of Lie algebras to deduce oliear itegrable coupligs. I the sectio we will chooseoeofthemtoivestigatetheoliearitegrable couplig of the hierarchy (17). Cosider the followig Lie algebra: F=spa {f 1,...,f 6 }, (28) f 1 =( e 1 f e 2 =( e 2 f 1 e 3 =( e 3 2 e 3 f 4 =( e 1 e 1 f 5 =( e 2 e 2 f 6 =( e 3 e 3 e 1 =( 1 1 e 2 =( 1 e 3 =( 1 ). (29) Defie [a, b] = ab ba, a, b F. (3) It is easy to compute that [f 1,f 2 ]=2f 2, [f 1,f 3 ]= 2f 3, [f 2,f 3 ]=f 1, [f 1,f 4 ]=, [f 1,f 5 ]=2f 5, [f 1,f 6 ]= 2f 6, [f 2,f 4 ]= 2f 5, [f 2,f 5 ]=, [f 2,f 6 ]=f 4, [f 3,f 4 ]=2f 6, F 1 = spa {f 1,f 2,f 3 }, F 2 = spa {f 4,f 5,f 6 }; (32) we have F 1 =F 1 F 2, [F 1,F 2 ] F 2 ; (33) F 1 ad F 2 are all simple Lie-subalgebras of the Lie algebra F. The correspodig symmetric costat matri M appearig i the variatioal idetity is that 2η 1 2η 2 η 1 η 2 ( η 1 η 2 ). 2η 2 2η 2 (34) η 2 η 2 ( η 2 η 2 ) A loop algebra correspodig to the Lie algebra F is defied by F =spa {f 1 (),...,f 6 ()}, f i () =f i λ, [f i (m),f j ()] =[f i,f j ]λ m+, 1 i, j 6,m, Z. (35) We use the loop algebra F to itroduce a La pair: U= f(1) +uf 2 (1) + Vf 3 () +u 1 f 5 (1) +u 2 f 6 (), V= (V 1m f 1 (1 m) +V 2m f 2 (1 m) +V 3m f 3 ( m) m +V 4m f 4 (1 m) +V 5m f 5 (1 m) +V 6m f 6 ( m)). (36) The statioary equatio V =[U,V]is equivalet to (V 1m ) =uv 3m VV 2m, (V 2m ) = 2V 2,m+1 2uV 1,m+1, (V 3m ) =2V 3,m+1 +2VV 1,m+1, (V 4m ) =u 1 V 3m u 2 V 2m (V +u 2 )V 5m +(u+u 1 )V 6m, (V 5m ) = 2V 5,m+1 2u 1 V 1,m+1 2(u+u 1 )V 4,m+1, (V 6m ) =2V 6,m+1 +2u 2 V 1,m+1 +2(V +u 2 )V 4,m+1 (37) from which we have (V 1,m+1 ) = 1 2 u(v 3m) 1 2 V(V 2m), [f 3,f 5 ]= f 4, [f 3,f 6 ]=, [f 4,f 5 ]=2f 5, (V 4,m+1 )= 1 2 u 1(V 3m ) + 1 2 u 2(V 2m ) (38) [f 4,f 6 ]= 2f 6, [f 5,f 6 ]=f 4. (31) + 1 2 (u + u 2)(V 5m ) + 1 2 (u + u 1)(V 6m ).

4 Abstract ad Applied Aalysis V 1, =V 2, =V 3, =V 4, =V 5, =V 6, =, we obtai from (37) V 1,1 =α; (39) itegrable model of the geeralized Burgers equatio (27)as follows: u t2 = α 2 u +αuu V + α 2 u2 V, V t2 = α 2 V + α 2 u V 2 +αuvv, V 3,1 = αv, V 2,1 = αu, V 4,1 =, V 4,1 = αu 1, V 6,1 = αu 2, V 1,2 = α 2 uv, V 4,2 = α 2 (u 1V +uv 2 +u 1 u 2 V 5,2 = α 2 (u 1+u 1 uv +(u+u 1 )(u 1 V +uu 2 +u 1 u 2 )), V 6,2 = α 2 ( u 2+u 2 uv +(V +u 2 )(u 1 V +uu 2 +u 1 u 2 )... (4) u 1t2 u 2t2 = α 2 (u 1 +u 1 uv +u 1 (uv) +(u+u 1 ) (u 1 V +uu 2 +u 1 u 2 ) +(u+u 1 )(u 1 V +uu 2 +u 1 u 2 ) = α 2 ( u 2 +u 2 uv +u 2 (uv) +(V +u 2 ) (u 1 V +uu 2 +u 1 u 2 ) +(V +u 2 )(u 1 V +uu 2 +u 1 u 2 ) ). (45) Note V () = (V 1m f 1 (1+ m) +V 2m f 2 (1+ m) m= +V 3m f 3 ( m) +V 4m f 4 (1+ m) adirectcalculatioyields V () +[U,V () ] +V 5m f 5 (1+ m) +V 6m f 6 ( m)); = 2(V 3,+1 + VV 1,+1 )f 3 () +(2V 2,+1 +2uV 1,+1 )f 2 (1) 2((V +u 2 )V 4,+1 +u 2 )V 1,+1 +V 6,+1 f 6 () +2((u+u 1 )V 4,+1 +u 1 )V 1,+1 +V 5,+1 f 5 (1) = (V 3 ) f 3 () (V 2 ) f 2 (1) (V 6 ) f 6 () (V 5 ) f 5 (1). Therefore, zero curvature equatio (41) (42) U t V + [U, V() ] = (43) Obviously, the coupled equatios are oliear with respect to the coupled variables u 1 ad u 2. Therefore, the hierarchy (44) is a oliear epadig itegrable model of the itegrable system (17); actually, it is a oliear itegrable couplig. The oliear epadig itegrable model (45) ca be writteastwoparts,oeisjustright(27); aother oe is the latter two equatios i (45 which ca be regarded as a coupled oliear equatio with variable coefficiets u, V, ad their derivatives i the variable,thefuctiosu, V satisfy (27).Iparticular,wetakeatrivialsolutioof(27) to be u=v =;the(45) reduces to the followig equatios: u 1t2 = α 2 [u 1, +(u 2 1 u 2) ], u 2t2 = α 2 [ u 2, +(u 2 2 u 1) ]. (46) Whe we set u 2 =,theaboveequatiosreducetothewellkow heat equatio. I order to deduce Hamiltoia structure of the oliear itegrable couplig (44 we defie a liear fuctioal [11]: {a, b} =a T Mb, (47) a=(a 1,...,a 6 ) T, b=(b 1,...,b 6 ) T. It is easy to see that the Lie algebra F is isomorphic to the Lie algebra R 6 if equipped with a commutator as follows: admits that u (V 2 ) V (V ( )=( 3 ) ). (44) u 1 (V 5 ) u 2 (V 6 ) [a, b] T =(a 2 b 3 a 3 b 2,2a 1 b 2 2a 2 b 1,2a 3 b 1 2a 1 b 3,a 2 b 6 a 6 b 2 +a 5 b 3 a 3 b 5 +a 5 b 6 a 6 b 5,2a 1 b 5 2a 5 b 1 +2a 4 b 2 2a 2 b 4 +2a 4 b 5 2a 5 b 4,2a 3 b 4 2a 4 b 3 +2a 6 b 1 u 1 = u 2 =,(44) reduces to the itegrable hierarchy (17). Whe we take = 2, we get a epadig oliear 2a 1 b 6 +2a 6 b 4 2a 4 b 6 ). (48)

Abstract ad Applied Aalysis 5 Thus, uder the Lie algebra R 6,theLapair(36) cabe writte as U = ( λ, uλ, V,,u 1,λ,u 2 ) T, (49) V=(V 1 λ, V 2 λ, V 3,V 4 λ, V 5 λ, V 6 ) T. I terms of (48)ad(49)weobtaithat u }=(η 1V 3 +η 2 V 6 )λ, V }=(η 1V 2 +η 2 V 5 )λ, u 1 }=(η 2 V 3 +η 2 V 6 )λ, u 2 }=(η 2 V 2 +η 2 V 5 )λ, λ }= 2η 1V 1 +(η 1 u+η 2 u 1 )V 3 (5) 2η 2 V 4 +(η 2 u+η 2 u 1 )V 6. Substitutig the above results ito the variatioal idetity yields w ( 2η 1 V 1 +(η 1 u+η 2 u 1 )V 3 +η 2 (u + u 1 )V 6 )d (η 1 V 3 +η 2 V 6 )λ (51) =λ γ (η λ λγ ( 1 V 2 +η 2 V 5 )λ (η 2 V 3 +η 2 V 6 )λ (η 2 V 2 +η 2 V 5 )λ w = ( T u, V,, ). (52) u 1 u 2 Comparig the coefficiets of λ o both sides i (51)gives w ( 2η 1 V 1,+1 +(η 1 u+η 2 u 1 )V 3,+1 +2η 2 V 4,+1 +η 2 (u + u 1 )V 6,+1 )d η 1 V 3 +η 2 V 6 η =( +1+γ)( 1 V 2 +η 2 V 5 ). η 2 V 3 +η 2 V 6 η 2 V 2 +η 2 V 5 From (37)we have γ= 1.Thus,we get that (53) η 1 V 3 +η 2 V 6 η ( 1 V 2 +η 2 V 5 H )= +1 η 2 V 3 +η 2 V 6 u, (54) η 2 V 2 +η 2 V 5 H +1 = (2η 1 V 1,+1 (η 1 u+η 2 u 1 )V 3,+1 1/ +2η 2 V 4,+1 η 2 (u + u 1 )V 6,+1 )d. (55) Therefore, we obtai the Hamiltoia structure of the oliear itegrable couplig (44) as follows: w ( 2η 1 V 1,+1 +(η 1 u+η 2 u 1 )V 3,+1 u V W t =( ) u 1 u 2 2η 2 V 4,+1 +η 2 (u + u 1 )V 6,+1 )d, t = ( ( η 1 V 3 +η 2 V 6 η ( 1 V 2 +η 2 V 5 ) η 2 V 3 +η 2 V 6 η 2 V 2 +η 2 V 5 η 1 V 3 +η 2 V 6 η =J( 1 V 2 +η 2 V 5 )=J η 2 V 3 +η 2 V 6 η 2 V 2 +η 2 V 5 J is obviously Hamiltoia. η 1 ( )η 2 H +1 u, η 1 ( )η 2 ) ) 4. The Secod Epadig Itegrable Model of the GC Hierarchy (56) I this sectio we costruct a ew 6-dimesioal Lie algebra to discuss the secod itegrable couplig of the GC hierarchy. It is easy to see that h 1 =f 1, h 2 =f 2, h 3 =f 3, h j =( e (57) j 3 e j 3 ), j = 4, 5, 6. [h 1,h 2 ]=2h 2, [h 1,h 3 ]= 2h 3, [h 2,h 3 ]=h 1, [h 1,h 4 ]=, [h 1,h 5 ]=2h 5, [h 1,h 6 ]= 2h 6, [h 2,h 4 ]= 2h 5, [h 2,h 5 ]=, [h 2,h 6 ]=h 4, [h 3,h 4 ]=2h 6, [h 3,h 5 ]= h 4, [h 3,h 6 ]=, [h 4,h 5 ]=2h 2, [h 4,h 6 ]= 2h 3, [h 5,h 6 ]=h 1. (58)

6 Abstract ad Applied Aalysis If we set G=spa{h 1,...,h 6 }, G 1 = spa{h 1,h 2,h 3 },adg 2 = spa{h 4,h 5,h 6 },thewehavethat G=G 1 +G 2, [G 1,G 2 ] ot i G 2. (59) Hece, the itegrable coupligs of the GC hierarchy caot be geerated by the Lie algebra G as above uder the frame of the Tu scheme. I what follows, we will deduce a oliear epadig itegrable model of the GC hierarchy. U= h 1 (1) +uh 2 (1) + Vh 3 () +w 1 h 5 (1) +w 2 h 6 (), V= (V 1m h 1 (1 m) +V 2m h 2 (1 m) +V 3m h 3 ( m) m +V 4m h 4 (1 m) +V 5m h 5 (1 m) +V 6m h 6 (1 m) h i (m) = h i λ m, i = 1, 2, 3, 4, 5, 6. Solvig the statioary zero curvature equatio gives rise to (6) V = [U, V] (61) (V 1m ) =uv 3m VV 2m w 2 V 5m +w 1 V 6m, (V 2m ) = 2V 2,m+1 2uV 1,m+1 2w 1 V 4,m+1, (V 3m ) =2V 3,m+1 +2VV 1,m+1 +2w 2 V 4,m+1, (V 4m ) =uv 6m VV 5m +w 1 V 3m w 2 V 2m, (V 5m ) = 2V 5,m+1 2uV 4,m+1 2w 1 V 1,m+1, (V 6m ) =2V 6,m+1 +2VV 4,m+1 +2w 2 V 1,m+1. (62) Let V 2,1 = αu, V 3,1 = αv, V 5,1 = αw 1,adV 6,1 =αw 2 ; the oe gets from (62)that V 1,2 = α 2 uv, V 2,2 = α 2 (u +u 2 V V 3,2 = α 2 ( V +uv 2 ), V 4,1 =, V 4,2 = α 2 (uw 2 w 1 V V 5,2 = α 2 (w 1, u 2 w 2 +w 1 uv V 6,2 = α 2 (w 2, + V 2 w 1... (63) Notig V () + = m= (V 1mh 1 (1+ m)+v 2m h 2 (1+ m)+ V 3m h 3 ( m)+v 4m h 4 (1+ m)+v 5m h 5 (1+ m)+v 6m h 6 ( m)) = λ V V (),oeifersthat V() +, +[U,V() + ] = (2V 2,+1 + 2uV 1,+1 +2w 1 V 4,+1 )h 2 (1) 2(V 3,+1 +VV 1,+1 +w 2 V 4,+1 )h 3 ()+ (2V 5,+1 +2uV 4,+1 +2w 1 V 1,+1 )h 5 (1) 2(V 6,+1 + VV 4,+1 + w 2 V 1,+1 )h 6 (). V () =V () +,byemployigthezerocurvatureequatio U t V () + [U, V () ] = (64) we have u V u t = ( ) w 1 w 2 t Whe =2, α=2,(65)reducesto 2V 2,+1 2uV 1,+1 2w 1 V 4,+1 2V = ( 3,+1 +2VV 1,+1 +2w 2 V 4,+1 ). 2V 5,+1 2uV 4,+1 2w 1 V 1,+1 2V 6,+1 +2VV 4,+1 +2w 2 V 1,+1 u t2 =u +(u 2 V), V t2 = V +(uv 2 ), w 1,t2 =w 1, (u 2 w 2 ) +(w 1 uv), w 2,t2 =w 2, +(V 2 w 1 ). (65) (66) It is remarkable that (66) is liear with respect to the variables w 1, w 2 ;however,itisoliear. Equatio (6)cabewritteas By computig that λ uλ w 1 λ V λ w U=( 2 w 1 λ λ uλ w 2 V λ V 1 λ V 2 λ V 4 λ V 5 λ V V=( 3 V 4 λ V 1 λ V 5 λ V 6 V 1 λ V 4 λ ). V 2 λ V 6 V 4 λ V 3 V 1 λ λ u =( λ 1 =( w 2 1 thus, we have u =2λV 3, V, w 1 =2λV 6, λ =( w 1 λ V =( 1 1 (67) 1 u w 1 λ =( 1 w 1 1 u 1 (68) V =2λV 2, V, w 2 =2λV 5, λ = 4λV 1 +2uV 3 +2w 1 V 6. (69)

Abstract ad Applied Aalysis 7 Substitutig the above cosequeces ito the trace idetity proposed by Tu [14]yieldsthat 2λV 3 u ( 4λV 1 +2uV 3 +2w 1 V 6 )=λ γ 2λV λ λγ ( 2 ). (7) 2λV 6 2λV 5 Comparig the coefficiets of λ gives u ( 4V 1, +2uV 3, 1 +2w 1 V 6, 1 ) 2V 3 2V 2 =( +1+γ)( ). 2V 6 2V 5 (71) Isertig the iitial values i (62)gives γ= 1. Therefore, we obtai that 2V 3 2V ( 2 )= 2V 6 u (4V 1 2uV 3, 1 2w 1 V 6, 1 ) H u, 2V 5 (72) H = (1/)(4V 1 2uV 3, 1 2w 1 V 6, 1 ) are coserved desities of the epadig itegrable model (65). Thus, (65) cabewritteasthehamiltoiastructure u V u t =( ) w 1 w 2 t =J H u, (73) J = (1/2)( = /,isahamiltoia operator. Coflict of Iterests The authors declare that there is o coflict of iterests regardig the publicatio of this paper. [3] W.-X. Ma, X.-X. Xu, ad Y. Zhag, Semi-direct sums of Lie algebras ad cotiuous itegrable coupligs, Physics Letters A,vol.351,o.3,pp.125 13,26. [4] Y. Zhag, A geeralized multi-compoet Glachette-Johso (GJ) hierarchy ad its itegrable couplig system, Chaos, Solitos ad Fractals,vol.21,o.2,pp.35 31,24. [5] Y.F.ZhagadH.Q.Zhag, Adirectmethodforitegrable coupligs of TD hierarchy, Joural of Mathematical Physics,vol. 43, o. 1, pp. 466 472, 22. [6] T.C.XiaadF.C.You, Multi-compoetDiracequatiohierarchy ad its multi-compoet itegrable coupligs system, Chiese Physics B,vol.16,o.3,p.65,27. [7] Y.F.ZhagadF.K.Guo, MatriLiealgebrasaditegrable coupligs, Commuicatios i Theoretical Physics, vol. 46, o. 5, pp. 812 818, 26. [8] E.FaadY.Zhag, Asimplemethodforgeeratigitegrable hierarchies with multi-potetial fuctios, Chaos, Solitos ad Fractals,vol.25,o.2,pp.425 439,25. [9] W.-X. Ma ad Z.-N. Zhu, Costructig oliear discrete itegrable Hamiltoia coupligs, Computers & Mathematics with Applicatios,vol.6,o.9,pp.261 268,21. [1] Y. F. Zhag, Lie algebras for costructig oliear itegrable coupligs, Commuicatios i Theoretical Physics, vol. 56, p. 85, 211. [11] Y. F. Zhag ad Y. C. Ho, Some evolutio hierarchies derived from self-dual Yag-Mills equatios, Commuicatios i Theoretical Physics,vol.56,p.856,211. [12] H. Y. Wei ad T.C. Xia, Noliear itegrable coupligs of super Kaup-Newell hierarchy ad its super Hamiltoia structures, Acta Physica Siica, vol. 62, Article ID 1222, 213. [13] X. G. Geg ad C. W. Cao, Quasi-periodic solutios of the 2+ 1 dimesioal modified Korteweg-de Vries equatio, Physics Letters A,vol.261,o.5-6,pp.289 296,1999. [14] G. Z. Tu, The trace idetity, a powerful tool for costructig the Hamiltoia structure of itegrable systems, Joural of Mathematical Physics, vol. 3, o. 2, pp. 33 338, 1989. [15] W.-X. Ma ad M. Che, Hamiltoia ad quasi-hamiltoia structures associated with semi-direct sums of Lie algebras, Joural of Physics A,vol.39,o.34,pp.1787 181,26. [16] Y.-F. Zhag ad H. Tam, A few ew higher-dimesioal Lie algebras ad two types of couplig itegrable coupligs of the AKNS hierarchy ad the KN hierarchy, Commuicatios i Noliear Sciece ad Numerical Simulatio, vol.16,o.1,pp. 76 85, 211. Ackowledgmets This work was supported by the Natural Sciece Foudatio of Chia (11371361) ad the Natural Sciece Foudatio of Shadog Provice (ZR212AQ11, ZR212AQ15). Refereces [1] W. X. Ma ad B. Fuchssteier, Itegrable theory of the perturbatio equatios, Chaos, Solitos ad Fractals,vol.7,o. 8, pp. 1227 125, 1996. [2] W.-X. Ma, Itegrable coupligs of solito equatios by perturbatios I. A geeral theory ad applicatio to the KdV hierarchy, Methods ad Applicatios of Aalysis,vol.7,o.1,pp. 21 55, 2.

Advaces i Operatios Research http://www.hidawi.com Volume 214 Advaces i Decisio Scieces http://www.hidawi.com Volume 214 Joural of Applied Mathematics Algebra http://www.hidawi.com http://www.hidawi.com Volume 214 Joural of Probability ad Statistics Volume 214 The Scietific World Joural http://www.hidawi.com http://www.hidawi.com Volume 214 Iteratioal Joural of Differetial Equatios http://www.hidawi.com Volume 214 Volume 214 Submit your mauscripts at http://www.hidawi.com Iteratioal Joural of Advaces i Combiatorics http://www.hidawi.com Mathematical Physics http://www.hidawi.com Volume 214 Joural of Comple Aalysis http://www.hidawi.com Volume 214 Iteratioal Joural of Mathematics ad Mathematical Scieces Mathematical Problems i Egieerig Joural of Mathematics http://www.hidawi.com Volume 214 http://www.hidawi.com Volume 214 Volume 214 http://www.hidawi.com Volume 214 Discrete Mathematics Joural of Volume 214 http://www.hidawi.com Discrete Dyamics i Nature ad Society Joural of Fuctio Spaces http://www.hidawi.com Abstract ad Applied Aalysis Volume 214 http://www.hidawi.com Volume 214 http://www.hidawi.com Volume 214 Iteratioal Joural of Joural of Stochastic Aalysis Optimizatio http://www.hidawi.com http://www.hidawi.com Volume 214 Volume 214