Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002

Similar documents
Reversible dioxygen binding on asymmetric dinuclear rhodium centres

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Supporting Information for the Article Entitled

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Supporting Information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Supporting Information

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Supporting Information

Supporting Information

Supporting Information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

Supporting Information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Synthesis of Vinyl Germylenes

Supporting Information. for

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

College of Materials Science and Engineering, Nanjing Tech University, Nanjing , P. R. China

Synthesis of Tetra-ortho-Substituted, Phosphorus- Containing and Carbonyl-Containing Biaryls Utilizing a Diels-Alder Approach

Supporting Information

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

The oxide-route for the preparation of

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize.

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting information

Supporting Information

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

Supporting Information

Seth B. Harkins and Jonas C. Peters

Supporting information. Double Reformatsky Reaction: Divergent Synthesis of δ-hydroxy-β-ketoesters

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Combined Analysis of 1,3-Benzodioxoles by Crystalline Sponge X-ray Crystallography and Laser Desorption Ionization Mass Spectrometry

Supporting Information. Table of Contents

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

,

Supporting Information

Supplementary Information. Single Crystal X-Ray Diffraction

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supplementary Information

Supplementary Information

Supporting Information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Supporting Information

Supplementary Information

Supporting Information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Manganese-Calcium Clusters Supported by Calixarenes

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams

SUPPORTING INFORMATION. Stereomutation of Conformational Enantiomers of 9-Isopropyl-9-formyl fluorene and Related Acyl Derivatives.

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Supplementary Materials for

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Supporting Information

Electronic Supplementary Information

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Biasing hydrogen bond donating host systems towards chemical

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands

Supporting Information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Co(I)-Mediated Removal of Addends on the C60 Cage and Formation of Monovalent Cobalt Complex CpCo(CO)(η 2 -C60)

Electronic Supplementary Information

Supplemental Information

Supporting Information

SUPPLEMENTARY INFORMATION

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure

Electronic Supporting Information. for. Group 13 Complexes of Dipyridylmethane, a Forgotten Ligand in Coordination Chemistry

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Supporting Information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Supporting Information

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo

Supporting Information

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Supporting Information. Yu-Wu Zhong, Yutaka Matsuo,* and Eiichi Nakamura*

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Stereoselective Synthesis of (-) Acanthoic Acid

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

(1) Single Crystal XRD Data of 6b and 6c 2-3

[MnBrL(CO) 4 ] (L = Amidinatogermylene): Reductive Dimerization, Carbonyl Substitution, and Hydrolysis Reactions

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

High-Connected Mesoporous Metal Organic Framework

Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Transcription:

Supporting Information for Angew. Chem. Int. Ed. Z19280 Wiley-VCH 2002 69451 Weinheim, Germany

A New Method for Determining the Difference in Relative Apicophilicity of Carbon Substituents of 10-P-5 Phosphoranes: Disclosure of Solvent Effect on Apicophilicity and Novel Cocrystallization of Two Pseudorotamers in a Single Crystal** Shiro Matsukawa, Kazumasa Kajiyama, Satoshi Kojima, Shin-ya Furuta, Yohsuke Yamamoto, and Kin-ya Akiba* [*] Prof. Dr. K.-y. Akiba Advanced Research Center for Science and Engineering Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan Tel & Fax : (+81)3-5286-3165 E-mail : akibaky@waseda.jp S. Matsukawa, Dr. S. Kojima, S.-y. Furuta, Prof. Dr.Y. Yamamoto Department of Chemistry, Graduate School of Science Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan Dr. K. Kajiyama Department of Chemistry, School of Science Kitasato University 1-15-1 Kitasato, Sagamihara 228-8555, Japan

Supporting Information NMR measurements 1 H NMR (400 MHz), 19 F NMR (376 MHz), and 31 P NMR (162 MHz) spectra were recorded on a JEOL EX-400 spectrometer. 1 H NMR chemical shifts (δ) are given in ppm downfield shift from Me4Si, determined by residual chloroform (δ = 7.26). 19 F NMR chemical shifts (δ) are given in ppm downfield shift from external CFCl3. 31 P NMR chemical shifts (δ) are given in ppm downfield shift from external 85% H3PO4. 1a 1 H NMR (CDCl 3, δ) 9.45 (br s, 1H), 8.16-8.11 (m, 1H), 7.81-7.75 (m, 4H), 7.38-7.33 (m, 1H), 7.27-7.12 (m, 3H), 2.57 (d, 3H, 2 JP-H = 13.7 Hz), 1.46 (d, 3H, 2 JP-H = 5.9 Hz); 19 F NMR (CDCl3, δ) -72.8 (q, 3F, 4 JF-F = 8.5 Hz), -76.3 (q, 3F, 4 JF-F = 9.7 Hz), -76.7 (q, 3F, 4 JF-F = 9.7 Hz), -77.0 (q, 3F, 4 JF-F = 8.5 Hz); 31 P NMR (CDCl3, δ) -34.8. 1b 1 H NMR (CDCl 3, δ) 9.99 (1bB, br s, 1H), 9.61 (1bA, br s, 1H), 8.21-8.16 (1bB, m, 1H), 8.08-8.02 (1bA, m, 1H), 7.83-7.71 (m, 4.0H), 7.40-7.32 (m, 1.0H), 7.26-7.19 (m, 1.2H), 7.12 (1bA, ddd, 1H, J = 9.7, 8.0, 1.5 Hz), 3.26-3.12 (1bA, m, 1H), 2.91-2.79 (1bA, m, 1H), 2.59 (1bB, d, 3H, 2 JP-H = 13.3 Hz), 2.53-2.06 (1bB, m, 1H), 1.97-1.90 (1bB, m, 1H), 1.47 (1bA, d, 3H, 2 JP-H = 5.8 Hz), 1.03 (1bA, dt, 3H, 3 JP-H = 27.0 Hz, 3 JH-H = 7.7 Hz), 0.84 (1bB, dt, 3H, 3 JP-H = 14.8 Hz, 3 JH-H = 6.8 Hz); 19 F NMR (CDCl3, δ) -72.8 (1bA, m, 3F), -73.0 (1bB, m, 3F), -75.9 (1bB, q, 3F, 4 JF-F = 9.8 Hz), -76.1 (1bB, q, 3F, 4 JF-F = 9.8 Hz), -76.3 (1bA, q, 3F, 4 JF-F = 8.5 Hz), -76.6 (1bA, m, 6F), -77.0 (1bB, m, 3F); 31 P NMR (CDCl3, δ) -21.9 (1bA), -25.3 (1bB). 1c 1 H NMR (CDCl 3, δ) 10.01 (1cB, br s, 1H), 9.67 (1cA, br s, 1H), 8.20-8.14 (1cB, m, 1H), 8.07-8.01 (1cA, m, 1H), 7.85-7.72 (m, 4.0H), 7.40-7.19 (m, 2.2H), 7.11 (1cA, dd, 1H, J = 20.6, 8.2 Hz), 3.16-3.05 (1cA, m, 1H), 2.83-2.73 (1cA, m, 1H), 2.60 (1cB, d, 3H, 2 JP-H = 13.3 Hz), 2.07-1.98 (1cB, m, 1H), 1.91-1.82 (1cB, m, 1H), 1.52-1.39 (m, 1.0H), 1.48 (1cA, d, 3H, 2 JP-H = 6.0 Hz), 1.23-1.10 (m, 1

1.0H), 0.98 (1cA, td, 3H, 3 JH-H = 7.0 Hz, 4 JP-H = 2.9 Hz), 0.92 (1cB, t, 3H, 3 JH-H = 6.8 Hz); 19 F NMR (CDCl 3, δ) -72.7 (1cA, q, 3F, 4 JF-F = 8.5 Hz), -72.9 (1cB, m, 3F), -75.9 (1cB, q, 3F, 4 J F-F = 9.8 Hz), -76.1 (1cB, q, 3F, 4 JF-F = 9.8 Hz), -76.4 (1cA, q, 3F, 4 JF-F = 8.5 Hz), -76.6 (1cA, m, 6F), -77.0 (1cB, m, 3F); 31 P NMR (CDCl3, δ) -24.5 (1cA), -26.5 (1cB). 1d 1 H NMR (CDCl 3, δ) 10.00 (1dB, br, 1H), 9.67 (1dA, br s, 1H), 8.19-8.13 (1dB, m, 1H), 8.07-8.02 (1dA, m, 1H), 7.82-7.80 (m, 5.0H), 7.38-7.29 (m, 1.0H), 7.14-7.07 (m, 1.0H), 3.14-3.06 (1dA, m, 1H), 2.83-2.74 (1dA, m, 1H), 2.60 (1dB, d, 3H, 2 JP-H = 13.7 Hz), 2.08-1.99 (1dB, m, 1H), 1.91-1.83 (1dB, m, 1H), 1.48 (1dA, d, 3H, 2 JP-H = 5.9 Hz), 1.38-0.86 (m, 4.0H), 0.85-0.78 (m, 3.0H); 19 F NMR (CDCl 3, δ) -72.7 (1dA, q, 3F, 4 JF-F = 8.6 Hz), -73.0 (1dB, m, 3F), -75.8 (1dB, q, 3F, 4 J F-F = 8.6 Hz), -76.1 (1dB, q, 3F, 4 JF-F = 8.6 Hz), -76.4 (1dA, q, 3F, 4 JF-F = 8.6 Hz), -76.6 (1dA, m, 6F), -77.0 (1dB, m, 3F); 31 P NMR (CDCl3, δ) -24.2 (1dA), -26.2 (1dB). 1e 1 H NMR (CDCl 3, δ) 8.91 (1eB, br s, 1H), 8.27-8.22 (1eB, m, 1H), 8.13-8.12 (1eA, m, 1H), 7.85-7.74 (m, 4H), 7.41-7.37 (m, 1H), 7.26-7.12 (m, 2H), 5.19 (1eA, dd, 1H, 2 JP-H = 3.9 Hz, 2 JH-H = 12.6 Hz), 4.63 (1eA, d, 1H, 2 JH-H = 12.6 Hz), 3.97 (1eB, dd, 1H, 2 JP-H = 3.1 Hz, 2 JH-H = 12.6 Hz), 3.39 (1eB, s, 3H), 3.27 (1eA, s, 3H), 2.93 (1eB, d, 1H, 2 JH-H = 12.6 Hz), 2.64 (1eB, d, 3H, 2 J P-H = 14.5 Hz), 1.60 (1eA, d, 3H, 2 JP-H = 7.0 Hz); 19 F NMR (CDCl3, δ) -72.8 (1eA, br s, 3F), -73.0 (1eB, m, 3F), -75.8 (1eA, q, 3F, 4 JF-F = 9.8 Hz), -76.2 (1eB, q, 3F, 4 JF-F = 8.5 Hz), -76.4 (1eB, q, 3F, 4 JF-F = 8.5 Hz), -76.5 (1eA, q, 3F, 4 JF-F = 9.8 Hz), -76.8 (1eA, m, 3F), -76.8 (1eB, q, 3F, 4 JF-F = 8.5 Hz), 31 P NMR (CDCl3, δ) -25.7 (1eA), -35.5 (1eB). 1f 1 H NMR (CDCl 3, δ) 7.99-7.19 (m, 14H), 2.75 (d, 3H, 2 JP-H = 13.7 Hz); 19 F NMR (CDCl3, δ) - 72.6 (br s, 3F), -76.0 (q, 6F, 4 JF-F = 8.6 Hz), -77.1 (br s, 3F); 31 P NMR (CDCl3, δ) -22.5. 1g 2

1 H NMR (CDCl 3, δ) 9.91 (1gA, br s, 1H), 9.56 (1gB, br s, 1H), 8.38-8.33 (1gB, m, 1H), 7.92-7.76 (m, 3.2H), 7.63-7.56 (m, 1.5H), 7.52-7.33 (m, 1.5H), 7.23-7.18 (m, 0.8H), 7.09 (1gA, dd, 1H, J = 20.3, 8.1 Hz), 6.93 (1gA, d, 2H, J = 7.3 Hz), 6.82 (1gB, d, 2H, J = 7.8 Hz), 6.61 (1gA, dd, 2H, J = 8.1, 3.2 Hz), 6.15 (1gB, d, 2H, J = 6.8 Hz), 4.81 (1gA, dd, 1H, 2 JP-H = 19.8 Hz, 2 JH-H = 14.9 Hz), 4.43 (1gA, dd, 1H, 2 JP-H = 22.5 Hz, 2 JH-H = 14.9 Hz), 3.59 (1gB, dd, 1H, 2 JP-H = 9.8 Hz, 2 JH-H = 12.7 Hz), 3.19 (1gB, dd, 1H, 2 JP-H = 5.1 Hz, 2 JH-H = 12.7 Hz), 2.63 (1gB, d, 3H, 2 JP-H = 13.4 Hz), 2.27 (1gA, d, 3H, 7 JP-H = 3.4 Hz), 2.23 (1gB, s, 3H), 1.17 (1gA, d, 3H, 2 JP-H = 6.3 Hz); 19 F NMR (CDCl3, δ) -72.6 (1gA, m, 3F;), -73.2 (1gB, qq, 3F, 4 JF-F = 8.5 Hz, 9 JF-F = 4.3 Hz), -75.4 (1gA, q, 3F, 4 JF-F = 9.2 Hz), -76.1 (1gB, q, 3F, 4 JF-F = 8.5 Hz), -76.2 (1gA, q, 3F, 4 JF-F = 8.5 Hz) -76.6 (1gA, m, 3F), -76.8 (1gB, qq, 3F, 4 JF-F = 8.5 Hz, 9 JF-F = 4.3 Hz), -77.4 (1gB, q, 3F, 4 JF-F = 8.5 Hz); 31 P NMR (CDCl3, δ) -25.2 (1gA), -34.2 (1gB). 1h 1 H NMR (CDCl 3, δ) 9.86 (1hA, br s, 1H), 9.48 (1hB, br s, 1H), 8.40-8.35 (1hB, m, 1H), 7.90 (1hA br s, 1H), 7.84-7.62 (m, 2.0H), 7.61-7.34 (m, 3.0H), 7.25-6.90 (m, 5.0H), 6.74 (1hA, d, 2H, JH-H = 7.0 Hz), 6.27 (1hB, d, 2H, JH-H = 7.0 Hz), 4.85 (1hA, dd, 1H, 2 JP-H = 19.8 Hz, 2 JH-H = 14.9 Hz), 4.47 (1hA, dd, 1H, 2 JP-H = 22.2 Hz, 2 JH-H = 14.9 Hz), 3.64 (1hB, dd, 1H, 2 JP-H = 9.5 Hz, 2 JH- H = 12.8 Hz), 3.22 (1hB, dd, 1H, 2 JP-H = 5.5 Hz, 2 JH-H = 12.8 Hz), 2.64 (1hB, d, 3H, 2 JP-H = 13.7 Hz), 1.17 (1hA, d, 3H, 2 JP-H = 6.4 Hz); 19 F NMR (CDCl3, δ) -72.7 (1hA, m, 3F), -73.2 (1hB m, 3F), -75.4 (1hA, q, 3F, 4 JF-F = 9.7 Hz), -76.1 (1hB, q, 3F, 4 JF-F = 9.7 Hz), -76.2 (1hA, q, 3F, 4 J F-F = 8.6 Hz), -76.6 (1hA, m, 3F), -76.8 (1hB, m, 3F), -77.4 (1hB, q, 3F, 4 JF-F = 8.6 Hz); 31 P NMR (CDCl3, δ) -25.7 (1hA), -35.2 (1hB). 1i 1 H NMR (CDCl 3, δ) 9.77 (1iA, br s, 1H), 9.39 (1iB, br s, 1H), 8.36-8.31 (1iB, m, 1H), 7.91-7.73 (m, 3.6H), 7.66-7.56 (m, 1.5H), 7.52-7.32 (m, 1.8H), 7.24-7.20 (m, 0.7H), 7.09 (1iA, dd, 1H, J = 20.3, 7.3 Hz), 6.83 (1iA, m, 2H), 6.74-6.69 (m, 2.0H), 4.82 (1iA, dd, 1H, 2 JP-H = 19.8 Hz, 2 JH-H = 15.1 Hz), 4.42 (1iA, dd, 1H, 2 JP-H = 22.2 Hz, 2 JH-H = 15.1 Hz), 3.61 (1iB, dd, 1H, 2 JP-H = 10.3 Hz, 2 JH-H = 12.7 Hz), 3.18 (1iB, dd, 1H, 2 JP-H = 4.9 Hz, 2 JH-H = 12.7 Hz), 2.63 (1iB, d, 3H 3

2 J P-H = 13.4 Hz), 1.18 (1iA, d, 3H, 2 JP-H = 8.3 Hz); 19 F NMR (CDCl3, δ) -72.7 (1iA, q, 3F, 4 JF- F = 8.5 Hz), -73.3 (1iB, m, 3F), -75.4 (1iA, q, 3F, 4 JF-F = 8.5 Hz), -76.1 (1iB, q, 3F, 4 JF-F = 8.5 Hz), -76.2 (1iA, q, 3F, 4 JF-F = 8.5 Hz), -76.6 (1iA, q, 3F, 4 JF-F = 8.5 Hz), -76.7 (1iB, m, 3F), -77.4 (1iB, q, 3F, 4 JF-F = 8.5 Hz), -114.8 (1iA, br s, 1F), -117.3 (1iB, br s, 1F); 31 P NMR (CDCl3, δ) - 26.7 (1iA, br s), -34.2 (1iB, 6 JP-F = 3.7 Hz). F 3 C CF 3HO CF 3 O CF3 P R Me A F 3 C CF 3HO CF 3 O CF3 P Me B R Chemical shifts (δ, ppm : upper values) and coupling constants ( 2 J P-H, ppm : lower values in parentheses) of the methyl groups in 1 H NMR. R CDCl 3 A B C 6 D 6 A B THF-d 8 A B Acetone-d 6 A B CD 3 CN A B 1a 1b 1c 1d 1e 1f 1g 1h 1i Me Et n-pr n-bu CH 2 OMe Ph CH 2 C 6 H 4 (p-me) CH 2 Ph CH 2 C 6 H 4 (p-f) 1.46 (5.9) 1.47 (5.8) 1.48 (6.0) 1.48 (5.9) 1.60 (7.0) ( ) 1.17 (6.3) 1.17 (6.4) 1.18 (8.3) 2.57 (13.7) 2.59 (13.3) 2.60 (13.3) 2.60 (13.7) 2.64 (14.5) 2.75 (13.7) 2.63 (13.4) 2.64 (13.7) 2.63 (13.4) 0.88 (6.3) 0.92 (5.8) 0.99 (5.8) 1.05 (7.5) 1.33 (7.0) ( ) 0.98 (6.5) 0.94 (6.3) 0.86 (6.3) 2.24 (13.7) 2.30 (13.1) 2.33 (13.1) 2.35 (13.1) 2.62 (14.3) 2.60 (13.8) 2.42 (13.3) 2.40 (13.5) 2.32 (13.3) 1.50 (6.6) 1.51 (5.8) 1.52 (6.3) 1.52 (6.3) 1.61 (5.8) ( ) 1.22 (6.3) 1.23 (6.0) 1.25 (8.2) 2.53 (14.0) 2.55 (13.5) 2.56 (13.5) 2.57 (13.3) 2.52 (14.5) 2.72 (11.8) 2.62 (13.8) 2.64 (14.0) 2.63 (13.8) 1.60 (6.8) 1.60 (6.5) 1.61 (6.5) 1.62 (6.5) 1.66 (7.3) ( ) 1.29 (6.8) 1.29 (7.0) 1.32 (6.8) 2.57 (14.0) 2.60 (13.5) 2.61 (13.5) 2.61 (13.6) 2.56 (14.5) 2.74 (14.7) 2.66 (14.0) 2.68 (13.8) 2.67 (13.8) 1.50 (6.8) 1.51 (5.8) 1.55 (5.8) 1.52 (6.8) 1.59 (7.3) ( ) 1.25 (6.3) 1.22 (7.0) 1.22 (6.3) 2.50 (13.8) 2.54 (13.3) 2.56 (13.3) 2.53 (13.5) 2.53 (14.5) 2.69 (13.8) 2.61 (12.9) 2.60 (13.5) 2.58 (12.7) 4

F 3 C CF 3HO CF 3 O CF3 P R Me A F 3 C CF 3HO CF 3 O CF3 P Me R B Chemical shifts (δ, ppm) of 31 P NMR in various solvents. 1a 1b 1c 1d 1e 1f 1g 1h 1i R Me Et n-pr n-bu CH 2 OMe Ph CH 2 C 6 H 4 (p-me) CH 2 Ph CH 2 C 6 H 4 (p-f) CDCl 3 C 6 D 6 THF-d 8 Acetone-d 6 CD 3 CN A B A B A B A B A B -34.8-34.5-29.7-28.0-26.6-21.9-24.5-24.2-25.7-25.2-25.7-26.7-25.3-26.5-26.2-35.5-22.5-34.2-35.2-36.8-21.4-24.5-24.2-25.4-25.4-25.9-26.5-24.8-26.6-26.3-35.1-21.9-33.5-34.5-35.9-17.0-20.1-19.7-22.6-20.6-20.6-21.6-20.4-21.7-21.4-33.6-21.1-27.9-28.8-30.0-15.3-18.3-17.9-21.5-19.6-20.2-20.5-18.3-19.8-19.4-32.9-19.5-26.8-27.8-28.9-13.6-16.7-16.6-18.1-16.3-17.9-20.4-32.2-17.9-18.2-26.0-18.7-27.0-18.9-28.1 5

X-ray structural determinations of 1a - 1i. Crystals suitable for X-ray structural determination were mounted on a Mac Science DIP2030 imaging plate diffractometer and irradiated with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) for data collection. Unit cell parameters were determined by autoindexing several images in each data set separately with the DENZO program (Mac Science). For each data set, rotation images were collected in 3 increments with a total rotation of 180 about the φ axis. Data were processed by using SCALEPACK. The structure was solved by a direct method with the SIR-92 program. Refinement of F was carried out by full-matrix least-squares. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in the refinement with isotropic thermal parameters. The crystallographic data were summarized in Table S1. 6

Table S1. Crystallographic data Compound 1a 1b 1c Formula C20H15F12O2P C21H17F12O2P C22H19F12O2P Mot wt 546.29 560.32 574.35 Cryst syst Orthorhombic Monoclinic Monoclinic Space group Pna21 P21/n P21/n Color colorless colorless colorless Habit prism plate prism Cryst dimens, mm 0.30 x 0.25 x 0.20 0.65 x 0.35 x 0.05 0.20 x 0.20 x 0.10 a, Å 17.9640(6) 10.4300(2) 10.5720(3) b, Å 10.1010(3) 18.0140(4) 18.0290(5) c, Å 11.9380(4) 12.4740(3) 12.8920(3) α, deg 90 90 90 β, deg 90 102.795(1) 100.561(1) γ, deg 90 90 90 V, Å 3 2166.2(2) 2285.49(9) 2415.6(1) Z 4 4 4 Dcalc, g cm -3 1.675 1.628 1.579 Abs coeff, mm -1 0.246 0.235 0.225 F(000) 1096 1128 1160 Radiation; λ, Å Mo Kα; 0.71073 Mo Kα; 0.71073 Mo Kα; 0.71073 Temp, K 298 298 298 Data collcd +h, +k, +l +h, +k, ±l +h, +k, ±l Total data collcd, 2951 5670 6006 unique, 2951 5487 5812 obsd 2430 (I > 3σ(I)) 4749 (I > 3σ(I)) 4809 (I > 3σ(I)) Rint 0.000 0.000 0.000 No of params refined 316 325 334 R 0.0576 0.0650 0.0848 Rw 0.0798 0.1453 0.2044 GOF 1.016 1.362 1.979 Max shift in final cycle 0.0073 0.0001 0.0002 Final diff map, max, e/å 0.30 0.17 0.32 Solv for crystallization CH3CN CH3CN CH3CN Function minimized was sum [w( Fo 2 Fc 2 ) 2 ] where w = 1.0/[(sigma Fo 2 + 0.0007 Fo 2 ]. R = sum[ Fo Fc )/sum Fo. Rw = [sumw( Fo Fc ) 2 /sum Fo 2 ] 1/2. 7

Table S1 (continued). Compound 1d 1e 1f Formula C23H21F12O2P C21H17F12O2P C25H17F12O2P Mot wt 588.37 640.38 608.36 Cryst syst Monoclinic Monoclinic Orthorhombic Space group P21/n P21 P212121 Color colorless colorless colorless Habit plate prism plate Cryst dimens, mm 0.50 x 0.40 x 0.05 0.65 x 0.35 x 0.15 0.85 x 0.40 x 0.15 a, Å 10.6230(6) 9.0890(1) 9.8750(3) b, Å 17.804(1) 25.8410(5) 14.5480(2) c, Å 13.4070(5) 10.9370(2) 17.6650(5) α, deg 90 90 90 β, deg 98.981(2) 113.921(1) 90 γ, deg 90 90 90 V, Å 3 2504.6(2) 2348.12(7) 2537.78(9) Z 4 4 4 Dcalc, g cm -3 1.560 1.630 1.592 Abs coeff, mm -1 0.219 0.234 0.219 F(000) 1192 1160 1224 Radiation; λ, Å Mo Kα; 0.71073 Mo Kα; 0.71073 Mo Kα; 0.71073 Temp, K 298 298 298 Data collcd +h, +k, ±l +h, +k, ±l +h, +k, +l Total data collcd, 5655 5185 3236 unique, 5655 5169 3236 obsd 3316 (I > 3σ(I)) 4935 (I > 3σ(I)) 3132 (I > 3σ(I)) Rint 0.000 0.000 0.000 No of params refined 344 667 361 R 0.0752 0.0539 0.0623 Rw 0.1283 0.0843 0.0876 GOF 1.291 1.058 1.108 Max shift in final cycle 0.0018 0.0076 0.0201 Final diff map, max, e/å 0.40 0.15 0.26 Solv for crystallization CH3CN CH3CN CH3CN 8

Table S1 (continued). Compound 1g 1h 1i Formula C27H21F12O2P C26H19F12O2P C26H18F13O2P Mot wt 636.42 622.39 640.38 Cryst syst Triclinic Triclinic Monoclinic Space group P-1 P-1 P21/c Color colorless colorless colorless Habit prism plate plate Cryst dimens, mm 0.40 x 0.30 x 0.20 0.40 x 0.40x 0.20 0.20 x 0.20 x 0.05 a, Å 9.4340(5) 11.7550(4) 16.611(1) b, Å 10.8630(5) 12.5610(8) 10.6280(7) c, Å 14.4460(6) 18.904(1) 17.0740(7) α, deg 88.814(3) 93.532(2) 90 β, deg 86.530(3) 102.047(3) 119.205(3) γ, deg 67.657(2) 100.279(4) 90 V, Å 3 1366.8(1) 2671.8(2) 2631.1(3) Z 2 4 4 Dcalc, g cm -3 1.546 1.547 1.617 Abs coeff, mm -1 0.207 0.210 0.221 F(000) 644 1256 1228 Radiation; λ, Å Mo Kα; 0.71073 Mo Kα; 0.71073 Mo Kα; 0.71073 Temp, K 298 298 298 Data collcd +h, ±k, ±l +h, ±k, ±l +h, +k, ±l Total data collcd, 5775 11220 5841 unique, 5775 11220 5841 obsd 4403 (I > 3σ(I)) 7190 (I > 3σ(I)) 3385 (I > 3σ(I)) Rint 0.000 0.000 0.000 No of params refined 379 740 379 R 0.0591 0.0658 0.0696 Rw 0.1119 0.1320 0.1316 GOF 1.126 1.767 1.632 Max shift in final cycle 0.0010 0.0020 0.0000 Final diff map, max, e/å 0.21 0.43 0.31 Solv for crystallization CH3CN CH3CN CH3CN 9

Figure S1. ORTEP drawing of 1a (30% thermal ellipsoids). O(1) O(2) C(1) P(1) C(10) C(20) C(19) Selected bond distances (Å) and angles (deg) for 1a; P(1) O(1), 2.030(2); P(1) C(1), 1.832(4); P(1) C(10), 1.853(4); P(1) C(19), 1.856(4); P(1) C(20), 1.818(5); O(1) P(1) C(1), 81.8(1); O(1) P(1) C(10), 82.6(1); O(1) P(1) C(19), 176.6(2); O(1) P(1) C(20), 86.7(2); C(1) P(1) C(10), 113.9(2); C(1) P(1) C(19), 101.2(2); C(1) P(1) C(20), 113.4(2); C(10) P(1) C(19), 94.6(2); C(10) P(1) C(20), 129.1(2); C(19) P(1) C(20), 93.7(3). 10

Figure S2. ORTEP drawing of 1b (30% thermal ellipsoids). O(1) O(2) C(1) P(1) C(10) C(20) C(19) Selected bond distances (Å) and angles (deg) for 1b; P(1) O(1), 2.120(2); P(1) C(1), 1.824(3); P(1) C(10), 1.849(3); P(1) C(19), 1.855(3); P(1) C(20), 1.838(3); O(1) P(1) C(1), 80.5(1); O(1) P(1) C(10), 80.20(10); O(1) P(1) C(19), 175.2(1); O(1) P(1) C(20), 86.1(1); C(1) P(1) C(10), 112.5(1); C(1) P(1) C(19), 102.8(2); C(1) P(1) C(20), 112.9(1); C(10) P(1) C(19), 95.3(1); C(10) P(1) C(20), 129.3(1); C(19) P(1) C(20), 95.8(1). 11

Figure S3. ORTEP drawing of 1c (30% thermal ellipsoids). O(1) C(1) O(2) C(20) P(1) C(10) C(19) Selected bond distances (Å) and angles (deg) for 1c; P(1) O(1), 2.104(3); P(1) C(1), 1.820(5); P(1) C(10), 1.850(4); P(1) C(19), 1.857(5); P(1) C(20), 1.829(5); O(1) P(1) C(1), 80.5(2); O(1) P(1) C(10), 81.7(2); O(1) P(1) C(19), 175.3(2); O(1) P(1) C(20), 86.7(2); C(1) P(1) C(10), 113.7(2); C(1) P(1) C(19), 103.0(3); C(1) P(1) C(20), 113.7(2); C(10) P(1) C(19), 93.9(3); C(10) P(1) C(20), 128.3(2); C(19) P(1) C(20), 94.7(3). 12

Figure S4. ORTEP drawing of 1d (30% thermal ellipsoids). O(1) C(1) O(2) P(1) C(10) C(20) C(19) Selected bond distances (Å) and angles (deg) for 1d; P(1) O(1), 2.069(3); P(1) C(1), 1.824(5); P(1) C(10), 1.847(4); P(1) C(19), 1.861(6); P(1) C(20), 1.838(5); O(1) P(1) C(1), 80.6(2); O(1) P(1) C(10), 82.9(1); O(1) P(1) C(19), 176.7(2); O(1) P(1) C(20), 86.0(2); C(1) P(1) C(10), 113.0(2); C(1) P(1) C(19), 102.0(3); C(1) P(1) C(20), 114.8(2); C(10) P(1) C(19), 94.2(2); C(10) P(1) C(20), 128.1(2); C(19) P(10) C(20), 94.6(3). 13

Figure S5. ORTEP drawings of 1e (30% thermal ellipsoids). O(1) O(2) C(1) C(10) C(20) P(1) C(19) O(3) Selected bond distances (Å) and angles (deg) for the 1st molecule of 1e; P(1) O(1), 1.976(3); P(1) C(1), 1.830(4); P(1) C(10), 1.858(3); P(1) C(19), 1.885(5); P(1) C(20), 1.820(4); O(1) P(1) C(1), 83.0(2); O(1) P(1) C(10), 84.2(1); O(1) P(1) C(19), 174.9(2); O(1) P(1) C(20), 87.4(2); C(1) P(1) C(10), 113.8(2); C(1) P(1) C(19), 101.2(2); C(1) P(1) C(20), 114.9(2); C(10) P(1) C(19), 91.5(2); C(10) P(1) C(20), 129.0(2); C(19) P(1) C(20), 93.3(2). 14

O(5) O(4) C(31) C(22) P(2) C(42) C(40) O(6) Selected bond distances (Å) and angles (deg) for the 2nd molecule of 1e; P(2) O(4), 1.990(3); P(2) C(22), 1.830(4); P(2) C(31), 1.854(4); P(2) C(40), 1.889(4); P(2) C(42), 1.811(4); O(4) P(2) C(22), 82.6(2); O(4) P(2) C(31), 83.5(1); O(4) P(2) C(40), 173.5(2); O(4) P(2) C(42), 88.2(2); C(22) P(2) C(31), 114.6(2); C(22) P(2) C(40), 102.1(2); C(22) P(2) C(42), 113.7(2); C(31) P(2) C(40), 90.4(2); C(31) P(2) C(42), 129.3(2); C(40) P(2) C(42), 93.9(2). 15

Figure S6. ORTEP drawing of 1f (30% thermal ellipsoids). O(1) O(2) C(1) C(25) P(1) C(10) C(19) Selected bond distances (Å) and angles (deg) for 1f; P(1) O(1), 2.042(2); P(1) C(1), 1.837(3); P(1) C(10), 1.855(3); P(1) C(19), 1.870(3); P(1) C(25), 1.826(3); O(1) P(1) C(1), 81.2(1); O(1) P(1) C(10), 81.08(10); O(1) P(1) C(19), 178.1(1); O(1) P(1) C(25), 84.9(1); C(1) P(1) C(10), 112.2(1); C(1) P(1) C(19), 100.7(1); C(1) P(1) C(25), 114.1(1); C(10) P(1) C(19), 98.2(1); C(10) P(1) C(25), 128.5(1); C(19) P(10) C(25), 94.3(1). 16

Figure S7. ORTEP drawing of 1g (30% thermal ellipsoids). O(1) O(2) C(1) C(20) P(1) C(10) C(19) Me Selected bond distances (Å) and angles (deg) for 1g; P(1) O(1), 2.124(2); P(1) C(1), 1.824(3); P(1) C(10), 1.861(3); P(1) C(19), 1.849(3); P(1) C(20), 1.844(3); O(1) P(1) C(1), 80.5(1); O(1) P(1) C(10), 81.28(9); O(1) P(1) C(19), 175.9(1); O(1) P(1) C(20), 84.2(1); C(1) P(1) C(10), 111.0(1); C(1) P(1) C(19), 102.6(1); C(1) P(1) C(20), 114.7(1); C(10) P(1) C(19), 95.0(1); C(10) P(1) C(20), 128.7(1); C(19) P(10) C(20), 96.9(1). 17

Figure S8. ORTEP drawings of 1h (30% thermal ellipsoids). O(1) O(2) C(1) C(20) P(1) C(10) C(19) Selected bond distances (Å) and angles (deg) for the 1st molecule of 1h (1hA); P(1) O(1), 2.078(3); P(1) C(1), 1.809(5); P(1) C(10), 1.850(4); P(1) C(19), 1.853(5); P(1) C(20), 1.865(4); O(1) P(1) C(1), 81.1(2); O(1) P(1) C(10), 80.9(1); O(1) P(1) C(19), 174.3(2); O(1) P(1) C(20), 85.9(2); C(1) P(1) C(10), 114.1(2); C(1) P(1) C(19), 102.9(2); C(1) P(1) C(20), 112.5(2); C(10) P(1) C(19), 93.6(2); C(10) P(1) C(20), 128.5(2); C(19) P(1) C(20), 96.3(2). 18

O(3) O(4) C(27) P(2) C(36) C(52) C(45) Selected bond distances (Å) and angles (deg) for the 2nd molecule of 1h (1hB); P(2) O(3), 2.043(3); P(2) C(27), 1.844(5); P(2) C(36), 1.858(4); P(2) C(45), 1.892(5); P(2) C(52), 1.819(5); O(3) P(2) C(27), 81.3(2); O(3) P(2) C(36), 83.8(2); O(3) P(2) C(45), 179.5(2); O(3) P(2) C(52), 85.7(2); C(27) P(2) C(36), 111.6(2); C(27) P(2) C(45), 98.2(2); C(27) P(2) C(52), 117.7(2); C(36) P(2) C(45), 96.2(2); C(36) P(2) C(52), 127.0(2); C(45) P(2) C(52), 94.7(2). 19

Figure S9. ORTEP drawing of 1i (30% thermal ellipsoids). O(1) O(2) C(1) P(1) C(10) C(26) C(19) F Selected bond distances (Å) and angles (deg) for 1i; P(1) O(1), 2.060(4); P(1) C(1), 1.832(5); P(1) C(10), 1.854(5); P(1) C(19), 1.916(6); P(1) C(26), 1.800(6); O(1) P(1) C(1), 80.9(2); O(1) P(1) C(10), 83.0(2); O(1) P(1) C(19), 178.4(2); O(1) P(1) C(26), 85.6(2); C(1) P(1) C(10), 112.6(2); C(1) P(1) C(19), 99.5(2); C(1) P(1) C(26), 115.5(2); C(10) P(1) C(19), 95.4(2); C(10) P(1) C(26), 127.8(2); C(19) P(10) C(26), 95.6(3). 20