Polynomials with palindromic and unimodal coefficients

Similar documents
Linear transformations preserving the strong q-log-convexity of polynomials

UNIMODALITY OF PARTITIONS WITH DISTINCT PARTS INSIDE FERRERS SHAPES

A New Class of Refined Eulerian Polynomials

The Gaussian coefficient revisited

THE LOG-BEHAVIOR OF THE SEQUENCE FOR THE PARTIAL SUM OF A LOG-CONVEX SEQUENCE. 1. Introduction

arxiv: v2 [math.co] 31 Jul 2015

arxiv: v2 [math.co] 3 Jan 2019

Preservation of log-concavity on summation

arxiv: v1 [math.co] 28 Mar 2016

On the log-convexity of combinatorial sequences arxiv:math/ v3 [math.co] 27 Nov 2006

arxiv: v1 [math.co] 16 Feb 2018

An Involution for the Gauss Identity

A Characterization of (3+1)-Free Posets

Cyclic Derangements. Sami H. Assaf. Department of Mathematics MIT, Cambridge, MA 02139, USA

arxiv:math/ v1 [math.co] 10 Nov 1998

LOWER BOUNDARY HYPERPLANES OF THE CANONICAL LEFT CELLS IN THE AFFINE WEYL GROUP W a (Ãn 1) Jian-yi Shi

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002)

arxiv: v1 [math.co] 25 Nov 2018

SYMMETRIC CHAIN DECOMPOSITION FOR CYCLIC QUOTIENTS OF BOOLEAN ALGEBRAS AND RELATION TO CYCLIC CRYSTALS

arxiv: v1 [math.co] 10 Aug 2016

Nonsingularity and group invertibility of linear combinations of two k-potent matrices

EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS

Self-dual interval orders and row-fishburn matrices

ON THE BRUHAT ORDER OF THE SYMMETRIC GROUP AND ITS SHELLABILITY

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind

Research Statement. Edward Richmond. October 13, 2012

AN ELEMENTARY APPROACH TO THE MACDONALD IDENTITIES* DENNIS STANTON

The symmetric group action on rank-selected posets of injective words

DISCRIMINANTS, SYMMETRIZED GRAPH MONOMIALS, AND SUMS OF SQUARES

q xk y n k. , provided k < n. (This does not hold for k n.) Give a combinatorial proof of this recurrence by means of a bijective transformation.

Two-boundary lattice paths and parking functions

On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs

On a Balanced Property of Compositions

arxiv: v1 [math.nt] 23 Jan 2019

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

PARKING FUNCTIONS. Richard P. Stanley Department of Mathematics M.I.T Cambridge, MA

Zeros of Generalized Eulerian Polynomials

Newton, Fermat, and Exactly Realizable Sequences

On the adjacency matrix of a block graph

arxiv: v1 [math.ra] 11 Aug 2014

The cycle polynomial of a permutation group

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava

Radon Transforms and the Finite General Linear Groups

Unimodality via alternating gamma vectors

Maximum union-free subfamilies

Counting k-marked Durfee Symbols

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

Rings With Topologies Induced by Spaces of Functions

Bilateral truncated Jacobi s identity

On Tornheim's double series

RANK AND PERIMETER PRESERVER OF RANK-1 MATRICES OVER MAX ALGEBRA

On the expansion of Ramanujan's continued fraction of order sixteen

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS

A classification of sharp tridiagonal pairs. Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger

A Survey of Parking Functions

arxiv: v1 [math.co] 8 Dec 2013

arxiv:math/ v1 [math.co] 6 Dec 2005

A Hilton-Milner-type theorem and an intersection conjecture for signed sets

The Erdős-Moser Conjecture

arxiv: v1 [math.nt] 22 Jan 2019

CHRISTOS A. ATHANASIADIS, THOMAS BRADY, AND COLUM WATT

Hessenberg Pairs of Linear Transformations

arxiv:math/ v2 [math.co] 19 Sep 2005

Determinants of Partition Matrices

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

ACI-matrices all of whose completions have the same rank

Intrinsic products and factorizations of matrices

REPRESENTATION THEORY OF S n

Heights of characters and defect groups

On a perturbation method for determining group of invariance of hierarchical models

arxiv: v2 [math.fa] 27 Sep 2016

TRIANGLE CENTERS DEFINED BY QUADRATIC POLYNOMIALS

RESEARCH ARTICLE. An extension of the polytope of doubly stochastic matrices

arxiv: v1 [math.rt] 8 Oct 2017

ON REGULARITY OF FINITE REFLECTION GROUPS. School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Some new constructions of orthogonal designs

4-Shadows in q-series and the Kimberling Index

On Tornheim s double series

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China. Received 8 July 2005; accepted 2 February 2006

1. Introduction

Ramanujan-Slater Type Identities Related to the Moduli 18 and 24

A Questionable Distance-Regular Graph

UNIMODALITY OF EULERIAN QUASISYMMETRIC FUNCTIONS

= i 0. a i q i. (1 aq i ).

Commuting nilpotent matrices and pairs of partitions

IRREDUCIBLE REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS. Contents

A talk given at the University of California at Irvine on Jan. 19, 2006.

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

The cocycle lattice of binary matroids

ON PERMUTATION POLYNOMIALS OF PRESCRIBED SHAPE

Journal of Inequalities in Pure and Applied Mathematics

Appendix to: Generalized Stability of Kronecker Coefficients. John R. Stembridge. 14 August 2014

The cancellable range of rings

arxiv: v3 [math.ra] 10 Jun 2016

The Hilbert functions which force the Weak Lefschetz Property

Turán s problem and Ramsey numbers for trees. Zhi-Hong Sun 1, Lin-Lin Wang 2 and Yi-Li Wu 3

On Arithmetic Properties of Bell Numbers, Delannoy Numbers and Schröder Numbers

Quadratic Forms and Congruences for l-regular Partitions Modulo 3, 5 and 7. Tianjin University, Tianjin , P. R. China

LEVEL MATRICES G. SEELINGER, P. SISSOKHO, L. SPENCE, AND C. VANDEN EYNDEN

Efficient algorithms for finding the minimal polynomials and the

Transcription:

Polynomials with palindromic and unimodal coefficients arxiv:60.05629v [math.co] 2 Jan 206 Hua Sun, Yi Wang, Hai-Xia Zhang School of Mathematical Sciences, Dalian University of Technology, Dalian 6024, PR China Abstract Let f(q) = a r q r + +a s q s, with a r 0 and a s 0, be a real polynomial. It is a palindromicpolynomial of darganif r+s = n and a r+i = a s i for all i. Polynomials of darga n forms a linear subspacep n (q) of R(q) n+ of dimension +. We give transition matrices between two bases { q j (+q + +q n 2j ) }, { q j (+q) n 2j} and thestandard basis { q j (+q n 2j ) } of P n (q). We present some characterizations and sufficient conditions for palindromic polynomials that can be expressed in terms of these two bases with nonnegative coefficients. We also point out the link between such polynomials and rank-generating functions of posets. MSC: 05A20; 05A5; 5A03; 06A07 Keywords: Unimodal sequence; Palindromic sequence; Linear space; Poset Introduction Let a 0,a,...,a n be a sequence of real numbers. It is palindromic (or symmetric) with center of symmetry at n/2 if a i = a n i for all i. It is unimodal if a 0 a m a m a m+ a n for some m. Let f(q) = a r q r + +a s q s, with a r 0 and a s 0, be a real polynomial. Following Zeilberger [7], the darga of f(q), denoted by darf, is defined to be r+s, i.e., the sum of its lowest and highest powers. For example, dar(+q) = and dar(q) = 2. We say that the polynomial f(q) is palindromic (unimodal, resp.) if the sequence a r,a r+,...,a s,a s has the corresponding property. Following Brenti [4], we say that a polynomial with nonnegative coefficients is a Λ-polynomial if it is both palindromic and unimodal. Partially supported by the National Natural Science Foundation of China (Grant Nos. 07030, 37078) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200040039). Corresponding Author. Email address: wangyi@dlut.edu.cn (Y. Wang)

Λ-polynomials arise often in algebra, analysis, and combinatorics. Two most wellknown Λ-polynomials are + q + +q n and ( + q) n = n n ( i) q i. Another famous Λ-polynomial is the Gaussian polynomial defined by = (qn )(q n ) (q n i+ ). i (q i )(q i ) (q ) q The symmetry of the Gaussian polynomial follows immediately by definition. But the unimodality of the Gaussian polynomial is not so easy to prove. The first proof of the unimodality was given by Sylvester [6] in 878 using the classical theory of invariants. Then there have been several different proofs based on methods of Lie algebras, linear algebra, algebraic geometry or Pólya theory []. In 990, K. O Hara [9] gave her celebrated constructive proof, which, roughly speaking, is to decompose the Gaussian polynomial into a finite sum of suitable palindromic polynomials of the same darga [8]. To prove the unimodality of a polynomial is often a very difficult task. The case for palindromic polynomials is somewhat different. Λ-polynomials have much better behavior than unimodal polynomials. For example, the product of two unimodal polynomials is not unimodal in general; however, the product of two Λ-polynomials is still a Λ-polynomial [2, Theorem ]. This is the motivation for us to study palindromic polynomials. The object of the present paper is to explore such a topic from a viewpoint of linear algebra. The organization of the paper is as follows. We first study algebraic properties of palindromic polynomials in the next section. Palindromic polynomials of darga n form a linear space of dimension +. We give transition matrices between the bases {q j (+q + +q n 2j )},{q j (+q) n 2j } and the standard basis {q j (+q n 2j )}. Then in Section 3 we study palindromic polynomials that can be expressed in terms of the first two bases with nonnegative coefficients respectively. Certain known results can be obtained and extended in a unified approach. Finally in Section 4 We point out the link between palindromic polynomials and rank-generating functions of posets. Throughoutthispaperallpolynomialsconsideredarereal. Asusual, denotebyr[q] n+ the set of real polynomials of degree at most n, and let the binomial coefficient ( n i) = 0 unless 0 i n. For the sake of convenient, denote n = and 0 is viewed as a palindromic polynomial (of any darga). 2 Palindromic polynomials We study algebraic properties of palindromic polynomials in this section. Some of them are obvious and have occurred in the literature. Let f(q) be a polynomial of darga n. The reciprocal polynomial f of f is defined by ( ) f (q) = q n f. q 2

In other words, if f(q) = a r q r + + a s q s, where a r 0,a s 0 and r + s = n, then f (q) = a s q r + +a r q s. The following characterization for palindromic polynomials is direct. Proposition 2.. A polynomial f(q) is palindromic if and only if f (q) = f(q). Corollary 2.2. Suppose that a R, f(q) and g(q) are two palindromic polynomials of darga n. Then af(q) and f(q)+g(q) are palindromic polynomials of darga n. It is clear that [f(q)g(q)] = f (q)g (q). So the following result is immediate. Corollary 2.3. Let f(q) and g(q) be two palindromic polynomials of darga n and m respectively. Then (i) f(q)g(q) is a palindromic polynomial of darga n + m; in particular, q j f(q) is a palindromic polynomial of darga n + 2j. (ii) If g(q) f(q) and f(q) = g(q)h(q), then h(q) is also palindromic. Let f(q) be a palindromic polynomial. If z 0 0 is a zero of f(q), then /z 0 is also a zero of f(q) and has the same multiplicity. On the other hand, the complex zeros of a real polynomial occur in conjugate pairs. So a irreducible palindromic polynomial must be linear, quadratic or quartic. Proposition 2.4. Let f(q) R + [q]. Then f(q) is palindromic if and only if k f(q) = aq r (+q) e [(+r i q)(r i +q)] e i i= where r i and b 2 j < 4c j. l [ (+bj q +c j q 2 )(c j +b j q +q 2 ) ] δ j, Corollary 2.5. Let f(q) R + [q]. (i) If f(q) is a palindromic polynomial of odd dagar, then (+q) f(q). (ii) If the modulus of each zero of f(q) is, then f(q) is palindromic. Definition 2.6. We say that {f j (q)} j 0 is a sequence of basic palindromic polynomials if f j (q) is a palindromic polynomial of dagar j with nonzero constant term. Example 2.7. Three sequences of basic palindromic polynomials: (i) S 0 (q) = and S j (q) = +q j for j. j= (ii) A 0 (q) = and A j (q) = +q + +q j for j. (iii) B 0 (q) = and B j (q) = (+q) j for j. Let P n (q) denote the set of palindromic polynomials of darga n. Then P n (q) forms a linear subspace by Corollary 2.2. A sequence of basic palindromic polynomials can induce a basis of P n (q). More precisely, we have the following. 3

Theorem 2.8. Let {f j (q)} j 0 be a sequence of basic palindromic polynomials. Assume that f(q) is a real polynomial of darga n. Then f(q) is palindromic if and only if f(q) can be written as c j q j f n 2j (q), c j R. () In other words, P n (q) is a linear space of dimension n+, with a basis F n = { q j f n 2j (q) : j = 0,,...,n }. Proof. The if partfollowsfromcorollary2.2sincealltermsq j f n 2j (q)inthesummation () are palindromic polynomials with the same darga n. We next prove the only if part by induction on darf. We may assume, without loss of generality, that all f j are monic. Let f(q) = a r q r + +a s q s be a palindromic polynomial of darga n, where a r = a s 0 and r+s = n. Define g(q) = f(q) a rq r f s r (q). q Then g(q) is a palindromic polynomial of darga n 2. By the induction hypothesis, n g(q) = b j q j f n 2 2j (q), b j R. Hence n f(q) = a r q r f s r (q)+ b j q j+ f n 2 2j (q) = where c j R for all j. This completes the proof. c j q j f n 2j (q), We next consider the transition matrix between two bases of the linear space P n (q). Theorem 2.9. Let {f j (q)} j 0 and {g j (q)} j 0 be two sequences of basic palindromic polynomials. Suppose that g j (q) = j/2 t(j,k)q k f j 2k (q). Then the transition matrix from the basis F n = {q j f n 2j (q)} n of P n(q) to the basis G n = {q j g n 2j (q)} n is the (n+) (n+) lower triangle matrix M(F n,g n ) = t(n,0) 0 0 0 t(n,) t(n 2,0) 0 0 t(n,2) t(n 2,) t(n 4,0) 0..... t(n,n) t(n 2,n ) t(n 4,n 2) t(n 2n,0) where the (i,j) entry of M(F n,g n ) is t(n 2j,i j) for 0 j i n., 4

Proof. Note that q j g n 2j (q) = (n 2j)/2 t(n 2j,k)q j+k f n 2j 2k (q) = t(n 2j,i j)q i f n 2i (q) i=j for j = 0,,...,n. Hence the statement follows immediately. Let us examine transition matrices between the following three bases induced by sequences of basic palindromic polynomials in Example 2.7: (i) S = {q j S n 2j (q)} n, where S 0 (q) = and S j (q) = +q j for j. (ii) A = {q j A n 2j (q)} n, where A 0(q) = and A j (q) = +q + +q j for j. (iii) B = {q j B n 2j (q)} n, where B 0(q) = and B j (q) = (+q) j for j. Corollary 2.0. The transition matrices O M(S,A) =..... and M(S,B) = (b i,j ) (n+) (n+) = ( n ) O ( n ( n 2 ) 2)...... ) ( n 2 ) ( n 4 n n 2 n 3) ( n ( n 2 ) ( n 4 ) ( n) n 2n+2 ) ( n n n 2, respectively, where b i,j = 0 for i < j and b i,j = ( ) n 2j i j for 0 j i n. Proof. Note that and +q + +q n = (+q n )+q(+q n 2 )+q 2 (+q n 4 )+ (+q) n = (+q n )+ q(+q n 2 )+ Hence the statement follows from Theorem 2.9. q 2 (+q n 4 )+. 2 5

Other transition matrices between these three bases can be deduced from M(S, A) and M(S, B). For example, O M(A,S) = M (S,A) = 0,........ 0 0 and M(A,B) = M(A,S)M(S,B) = (d i,j ) (n+) (n+), where d i,j = 0 for i < j and d i,j = b i,j b i,j = ( n 2j i j not difficult to verify that all d i,j are positive for 0 j i n. We can also obtain M(B,S) by another approach. ) ( n 2j i j ) for 0 j i n. It is Corollary 2.. Let M(B,S) = (c i,j ) (n+) (n+). Then c i,j = 0 for i < j and ( ) c i,j = ( ) i j n 2j n i j n i j i j for 0 j i n. Proof. Recall the classical Chebyshev inversion relation where x n = y n 2i y n = i C(n,i)x n 2i, (2) ( ) C(n,i) = ( ) i n n i n i i for 0 i n (see Riordan [2, p.54] for instance). Now which can be rewritten as So by (2), i.e., B n (q) = q n/2 B n (q) = q n/2 S n (q) = S n (q) = q i S n 2i (q), i q (n 2i)/2 S n 2i (q). i q (n 2i)/2 B n 2i (q), i C(n,i)q i B n 2i (q). 6

Thus by Theorem 2.9, c i,j = 0 for i < j and ( ) c i,j = C(n 2j,i j) = ( ) i j n 2j n i j n i j i j for 0 j i n. This completes our proof. Remark 2.2. Note that C(n,i) = ( ) i [( n i i ) ( n i + i )]. Hence all C(n,i) are integers, and so are all c i,j. Thus M(B,S) is an integer matrix. 3 Λ-polynomials Let F be a basis of P n (q) and f(q) P n (q). We say that f(q) is F-positive if f(q) can be expressed in terms of the basis F with nonnegative coefficients. Clearly, the set of all F-positive polynomials forms a convex cone of P n (q). Our concern in this section is A- positive polynomials and B-positive polynomials. A B-positive polynomial is usually said to have nonnegative γ-vector and a A-positive polynomial is precisely a Λ-polynomial. Theorem 3.. Let f(q) be a palindromic polynomial of nonnegative coefficients. Then f(q) is A-positive if and only if f(q) is unimodal, i.e., f(q) is a Λ-polynomial. Proof. Let f(q) be a palindromic polynomial of darga n. Assume that f(q) = a j q j (+q n 2j ) = c j q j (+q+ +q n 2j ). Then c 0 = a 0 and c j = a j a j for j n by the transition matrix M(A,S). Thus c j is nonnegative if and only if a j is nondecreasing for 0 j n. In other words, f(q) is A-positive if and only if f(q) is unimodal. The following result is an immediate consequence of Corollary 2. Theorem 3.2. Let f(q) = n a jq j be a palindromic polynomial of darga n and f(q) = b i q i (+q) n 2i. (i) For 0 i n, we have b i = i ( ) i j n 2j n i j ( n i j i j ) a j. 7

(ii) If all a j are integers, then so are all b i. (iii) A palindromic polynomial f(q) = n a jq j is B-positive if and only if for all 0 i n. i ( ) i j n 2j n i j ( n i j i j ) a j > 0 Clearly, if all elements of a certain transition matrix from the basis F to the basis F are nonnegative, then a F -positive polynomial must be F-positive. In particular, if f(q) is B-positive, then it is a Λ-polynomial. Let {f j (q)} j 0 be a sequence of basic palindromic polynomials. Then F n = { q j f n 2j (q) : j = 0,,...,n } isabasisofp n (q)bytheorem2.8. Foranyi,j 0, theproductf i (q)f j (q)isapalindromic polynomial of darga i+j, and so it can be expressed in terms of the basis F i+j. We say that the sequence {f j (q)} j 0 is self-positive if f i (q)f j (q) is F i+j -positive for any i,j 0. Example 3.3. Let us examine the self-positivity of three sequences of basic palindromic polynomials in Example 2.7. The sequences {S j (q)} and {B j (q)} are obviously selfpositive. Note that A i (q)a j (q) = (+q + +q i )(+q + +q j ) = Hence the sequence {A j (q)} is also self-positive. (i+j)/2 q k (+q + +q i+j 2k ). Proposition 3.4. Let {f j (q)} j 0 be a self-positive sequence of basic palindromic polynomials. Suppose that f(q) and g(q) are F n -positive and F m -positive respectively. Then f(q)g(q) is F n+m -positive. Proof. By the self-positivity of {f j (q)} j 0, we have f n 2i (q)f m 2j (q) = (n+m 2i 2j)/2 a k q k f n+m 2i 2j 2k (q), a k 0. Now suppose that and f(q) = g(q) = m/2 b i q i f n 2i (q), b i 0 c j q j f m 2j (q), c j 0. 8

Then f(q)g(q) = = m/2 m/2 (n+m 2i 2j)/2 (n+m)/2 r=i+j a k b i c j q i+j+k f n+m 2i 2j 2k (q) a r i j b i c j q r f n+m 2r (q). Thus f(q)g(q) is F n+m -positive, and the proof is therefore complete. In particular, taking f j (q) = A j (q) in Proposition 3.4, we obtain a result due to Andrews [2, Theorem ]. Corollary 3.5. The product of Λ-polynomials is a Λ-polynomial. Remark 3.6. Let f(q) = a i q i (+q) n 2i and g(q) = m/2 b j q j (+q) m 2j. Then f(q)g(q) = (n+m)/2 c k q k (+q) n+m 2k, where c k = i+j=k a ib j. In other words, {c k } is the convolution of {a i } and {b j }. This result also holds for the product of arbitrary finite such polynomials. A concept closely related to unimodality is log-concavity. Let {a i } n be a sequence of nonnegative numbers with no internal zeros, i.e., there are no three indices i < j < k such that a i,a k 0 and a j = 0. It is log-concave if a i a i+ a 2 i for 0 < i < n. Clearly, the sequence is log-concave if and only if a i a j+ a i a j for 0 < i j < n. Thus a log-concave sequence is unimodal. A basic approach for attacking unimodality and logconcavity is to utilize the Newton s inequality: If the polynomial f(q) = n a iq i has only real zeros, then a 2 i a i a i+ ( + i )( + ), i =,2,...,n n i (see Hardy, Littlewood and Pólya [6, p. 04]). It follows that if all a i are nonnegative, then f(q) is log-concave and therefore unimodal. So, if f(q) is a palindromic polynomial with nonnegative coefficients and with only real zeros, then it is a Λ-polynomial. Brändén further showed that f(q) is actually B-positive [3, Lemma 4.]. We end this section by showing the following stronger result. Theorem 3.7. Let f(q) = n a jq j be a palindromic polynomial of darga n and f(q) = b i q i (+q) n 2i. If the polynomial f(q) = n a jq j has nonnegative coefficients and has only real zeros, then so does the polynomial b i q i. In particular, f(q) is B-positive. 9

Proof. We first consider the case that q f(q) and (+q) f(q). Now f(q) is palindromic and has only real zeros, so by Proposition 2.4, n is even and n/2 f(q) = a (q +r k )(q +/r k ), where a > 0,r k > 0 and r k. It follows that n/2 [ f(q) = a (+q) 2 +s k q ], where s k = r k +/r k 2 > 0. By Remark 3.6, we have n/2 n/2 b i q i = a (+s k q), which has nonnegative coefficients and has only real zeros. For the general case, let f(q) = q r (+q) e g(q), where q g(q) and (+q) g(q). Then g(q) is also a palindromic polynomial with nonnegative coefficients and with only real zeros. Bythediscussionabove, wehaveg(q) = m/2 c i q i (+q) m 2i, wherem = n 2r e and m/2 c i q i is a polynomial with nonnegative coefficients and with only real zeros. It follows that f(q) = m/2 c i q r+i (+q) m+e 2i = (m+2r)/2 j=r c j r q j (+q) n 2j, which implies that b j = c j r if r j (m+2r)/2 and b j = 0 otherwise. So b j q j = q r m/2 which is a polynomial with nonnegative coefficients and with only real zeros, as required. This completes our proof. Remark 3.8. It is well known that Eulerian polynomials, Narayana polynomials and derangement polynomials are palindromic and have only real zeros (see, e.g., [7]). So these polynomials are all B-positive. See [4, 5] for combinatorial interpretations to express these polynomials in terms of the basis B with nonnegative coefficients. c i q i, 4 Remarks An important resource for Λ-polynomials is rank-generating functions of posets. We follow Engel [5] for poset notation and terminology. 0

Let P be a finite graded poset of rank n and F(P;q) be the rank-generating function of P. Let C n and B n be the chain of length n and the Boolean algebra on n elements respectively. Then F(C n ;q) = +q +q 2 + +q n and F(B n ;q) = ( +q) n. It is well known that if P has a symmetric chain decomposition, then F(P;q) = c j q j (+q + +q n 2j ), where c j is the number of symmetric chains of length n 2j in the symmetric chain decomposition of P. Similarly, if P has a symmetric Boolean decomposition (see [0] for details), then F(P;q) = b j q j (+q) n 2j, where b j is the number of symmetric Boolean algebras B n 2j in the decomposition of P. Moregenerally, letp beapeck poset. ThenF(P;q)isaΛ-polynomial. Two particular interesting examples of Peck posets are Young lattices L(m, n) and M(n), whose rankgenerating functions are the Gaussian polynomial ( ) m+n F(L(m,n);q) = n and the partition polynomial F(M(n);q) = (+q)(+q 2 ) (+q n ) respectively. Stanley [3] showed, among other things, that L(m, n) and M(n) are Peck posets using the hard Lefschetz theorem of algebraic geometry(see [] for a linear algebra approach). This implies that the Gaussian polynomial and the partition polynomial are Λ-polynomials. O Hara [9] gave a constructive proof for the unimodality of the Gaussian polynomial. However, there is no combinatorial interpretation for the unimodality of the partition polynomial (+q)(+q 2 ) (+q n ). On the other hand, Odlyzko and Richmond [8] developed analytic techniques to study the unimodality of polynomials (+q a ) (+q an ), and in particular, showed the unimodality of (+q)(+q 2 ) (+q n ). Almkvist [] further proposed the following. Conjecture 4.. The polynomial f n,r (q) = n i= q ri q i is a Λ-polynomial if either r is even and n or r is odd and n. Almkvist also verified the conjecture for n = 3,4,...,20,00,0 using Odlyzko and Richmond s techniques. But the general case is still open. It is interesting to find out a combinatorial interpretation of the unimodality of ( + q)(+q 2 ) (+q n ) and how to express (+q)(+q 2 ) (+q n ) in terms of the basis A with nonnegative coefficients. q

References [] G. Almkvist, Proof of a conjecture about unimodal polynomials, J. Number Theory 32 (989) 43 57. [2] G.E. Andrews, A theorem on reciprocal polynomials with applications to permutations and compositions, Amer. Math. Monthly 82 (975) 830 833. [3] P. Brändén, Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture, Electron. J. Combin. (2) (2004-2005) #R9. [4] F. Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer. Math. Soc. 08 (990) 33 4. [5] K. Engel, Sperner Theory, Cambridge Univ. Press, 997. [6] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 952. [7] L.L. Liu, Y. Wang, A unified approach to polynomial sequences with only real zeros, Adv. Appl. Math. 38 (2007) 542 560. [8] A.M. Odlyzko, L.B. Richmond, On the unimodality of some partition polynomials, European J. Combin. 3 (982) 69 84. [9] K. O Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Combin. Theory Ser. A 53 (990) 29 52. [0] T.K. Petersen, On the shard intersection order of a coxeter group, SIAM J. Discrete Math. 27 (203) 880 92. [] R. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89 (982) 72 734. [2] J. Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 968 [3] R.P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic and Discrete Methods, (980) 68 84. [4] H. Sun, A group action on noncrossing partitions, Discrete Math. 33 (203) 224 226. [5] H. Sun, Y. Wang, A group action on derangements, Electron. J. Combin. 2 (204) P.67. [6] J.J. Sylvester, Proof of the hitherto undemonstrated fundamental theorem of invariants, in: Collect. Math. Papers, vol. 3, Chelsea, New York, 973, pp. 7 26. [7] D. Zeilberger, A one-line high school proof of the unimodality of the Gaussian polynomials ( n k) for k < 20, in: D. Stanton (Ed.), q-series and Partitions, Minneapolis, MN, 988, in: q IMA Vol. Math. Appl., vol. 8, Springer, New York, 989, pp. 67 72. [8] D. Zeilberger, Kathy O Hara s constructive proof of the unimodality of the Gaussian polynomials, Amer. Math. Monthly 96 (989) 590 602. 2