University Microfilms INFORMATION TO USERS

Similar documents
LSU Historical Dissertations and Theses

Sodium-Initiated Polymerization of Alpha- Methylstyrene in the Vicinity of Its Reported Ceiling Temperature

A L A BA M A L A W R E V IE W

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

LU N C H IN C LU D E D

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations

Class Diagrams. CSC 440/540: Software Engineering Slide #1

University Microfilms

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

A Study of Protein-A of Staphylococcus Aureus of Bovine Origin.

Grain Reserves, Volatility and the WTO

Comparative Analyses of Teacher Verbal and Nonverbal Behavior in a Traditional and an Openspace

gender mains treaming in Polis h practice

A Comparison of Two Methods of Teaching Computer Programming to Secondary Mathematics Students.

Feasibility Analysis, Dynamics, and Control of Distillation Columns With Vapor Recompression.

EKOLOGIE EN SYSTEMATIEK. T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to th e a u th o r. PRIMARY PRODUCTIVITY.

MOLINA HEALTHCARE, INC. (Exact name of registrant as specified in its charter)

600 Billy Smith Road, Athens, VT

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C Form 8-K/A (Amendment No. 2)

The Effects of Symbolic Modeling and Parent Training on Noncompliance in Hyperactive Children

B ooks Expans ion on S ciencedirect: 2007:

STEEL PIPE NIPPLE BLACK AND GALVANIZED

A Study of Attitude Changes of Selected Student- Teachers During the Student-Teaching Experience.

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses.

Structure and metabolism of cuticular lipids of the grasshopper melanoplus sanguinipes

TTM TECHNOLOGIES, INC. (Exact Name of Registrant as Specified in Charter)

ANNUAL MONITORING REPORT 2000

AGRICULTURE SYLLABUS

S ca le M o d e l o f th e S o la r Sy ste m

The Effects of Apprehension, Conviction and Incarceration on Crime in New York State

M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta

Compulsory Continuing Education for Certified Public Accountants: a Model Program for the State of Louisiana.

THE EFFECT Of SUSPENSION CASTING ON THE HOT WORKABILITY AND MECHANICAL PROPERTIES OF A IS I TYPE STAINLESS STEEL

Survey of the subjects taught in Lake County high schools with recommendations for curriculum revision

REFUGEE AND FORCED MIGRATION STUDIES

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C FORM 8-K

Functional pottery [slide]

The Construction and Testing of a New Empathy Rating Scale

THE BANK OF NEW YORK MELLON CORPORATION (Exact name of registrant as specified in its charter)

The use and effectiveness of financial and physical reserves in Montana's dryland wheat area by Howard W Hjort

A new ThermicSol product

Joh n L a w r e n c e, w ho is on sta ff at S ain t H ill, w r ite s :

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

Imitative Aggression as a Function of Race of Model, Race of Target and Socioeconomic Status of Observer.

Beechwood Music Department Staff

NORWEGIAN MARITIME DIRECTORATE

UNITED STATES SECURITIES AND EXCHANGE COMMISSION FORM 8-K. Farmer Bros. Co.

INCOME TAXES IN ALONG-TERMMACROECONOMETRIC FORECASTING MODEL. Stephen H. Pollock

Distributive Justice, Injustice and Beyond Justice: The Difference from Principle to Reality between Karl Marx and John Rawls

A study of intra-urban mobility in Omaha

Chemical Treatment of a Dispersive Clay Reservoir

H STO RY OF TH E SA NT

TECHNICAL MANUAL OPTIMA PT/ST/VS

INFORMATION TO USERS

SCHOOLS DIVISION OFFICE OF KABANKALAN CITY

A Finite-Element Program for the Analysis of Embankments Over Soft, Saturated Soils Including Consolidation and Creep Effects.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

1980 Annual Report / FEDERAL R ESER V E BA N K OF RICHMOND. Digitized for FRASER Federal Reserve Bank of St.

I zm ir I nstiute of Technology CS Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign

Vlaamse Overheid Departement Mobiliteit en Openbare Werken

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C FORM 8-K

Visceral mass and reticulorumen volume of differing biological types of beef cattle by Eddie L Fredrickson

Sub: Filing of Reconciliation of share capital for the quarter ended September 30, 2018

The Measurement of Investment Center Managerial Performance Within Selected Diversified Industrial Firms: an Inquiry.

T H E ' B R I T M E f f B 'l T A R Y D O C U M E N T S U P P l Y C E N T R E

The development of equipment capable of measuring the density and viscosity of liquids to 50,000 p.s.i. under controlled temperatures.

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, DC FORM 8-K. Current Report

Obsidian hydration dating of naturally worked sediments in the Yellowstone region, Montana and Wyoming by Kenneth Donald Adams

Rule-Governed Behavior in Preschool Children

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Competition Between Females and Males at Different Age Levels on Perceptual Motor Performance.

INTERIM MANAGEMENT REPORT FIRST HALF OF 2018

7.2 P rodu c t L oad/u nload Sy stem s

A Comparison of the Early Social Behavior of Twins and Singletons.

Information System Desig

Report Documentation Page

MONTHLY REVIEW. f C r e d i t a n d B u s i n e s s C o n d i t i o n s F E D E R A L R E S E R V E B A N K O F N E W Y O R K MONEY MARKET IN JUNE

Response Rate, Latency, and Resistance to Change

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

@ *?? ^ % ^ J*

University Micrdfilms International 300 N. Z e e b Road Ann Arbor, Ml INFORMATION TO USERS

A comparative investigation of normal and irradiated Blastomyces dermatitidis

Genetic Behavior of Resistance to Lodging in Sugarcane.

A Confusion Matrix Intelligibility Testing Procedure for Preschool Children

Transverse curvature effects on turbulent boundary layers.


F O R M T H R E E K enya C ertificate of Secondary E ducation

Computer Games as a Pedagogical Tool in Education. Ken Maher B.Sc. School of Computer Applications, Dublin City University, Glasnevin, Dublin 9.

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH

Status of industrial arts teaching in Montana high schools with enrollments of from forty to one hundred fifty students in 1950

McCormick & Company, Incorporated (Exact name of registrant as specified in its charter)

Results as of 30 September 2018

An Exploration of the Relationship among Rhetorical Sensitivity, Communication Apprehension, and Nonverbal Decoding Ability

VERITAS L1 trigger Constant Fraction Discriminator. Vladimir Vassiliev Jeremy Smith David Kieda

heliozoan Zoo flagellated holotrichs peritrichs hypotrichs Euplots, Aspidisca Amoeba Thecamoeba Pleuromonas Bodo, Monosiga

BIRLA ERICSSON OPTICAL LIMITED

CHAPTER 6 SUMMARV, m a in FINDIN6S AND C0NCUL5I0NS

Country Report Government (Part I) Due: November 14, 2017

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Transcription:

INFORMATION TO USERS.his dissertation was p ro d u ced from a m icrofilm copy of the original d o cu m en t m ile the most advanced technological m eans to photograph and reproduce this urgent have been u sed, the quality is heavily dependent upon th e quality of original subm itted. he following ex p lan atio n of techniques is provided to help you understand Markings o r patterns w h ic h m ay appear on th is reproduction. 1. The sign o r " ta rg e t" for pages ap p aren tly lacking from th e docum ent photographed is "Missing Pagels)". If it was possible to obtain the missing page(s) or section, thev are spliced into the film along with adjacent pages. This may have necessitated cutting th ru an image and duplicating adjacen t pages to insure you complete contin u ity. 2. When an im age on the film is obliterated with a large round black mark, it is an indication th at th e photographer suspected th at the copy m ay h av e moved during exposure and thus cause a blurred image. Y ou w ill find a good im age of the page in th e adjacent frame. 3. When a m ap, drawing or chart, etc., was part of th e m aterial being p h o to g ra p h e d the photographer followed a definite m ethod in sectioning" th e material. It is custom ary to begin p h o tain g at the upper left h a n d corner of a large sh eet and to continue photoing from left to rig h t in equal sections w ith a small overlap. If necessary, sectioning is continued again beginning below th e first row and continuing o n until complete. 4. The m ajo rity of users indicate th a t the textual co n ten t is of greatest value, how ever, a somewhat h ig h er quality reproduction could be made from "photographs" if essential to the understanding o f the dissertation. Silver prints of "photographs" may be ordered at additional ch arg e by writing th e O rder Department, giving the catalog number, title, author and specific pages you wish reproduced. University Microfilms 300 North Z eab Rood Ann Arbor, M ichigan 48106 A Xerox E ducation Company

I 73-2008 GR0SSK0PF, J a c k C a r l, 191+6- CHARACTERIZATION OF IMMOBILIZED PRONASE BY SELECTED SUBSTRATES. The O hio S t a t e U n i v e r s i t y, P h.d., 1972 A g r i c u l t u r e, g e n e r a l University Microfilms. A XEROX C om pany, A nn Arbor. Michigan 1 THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

CHARACTERIZATION OF IMMOBILIZED PRONASE BY SELECTED SUBSTRATES DISSERTATION P r e s e n te d i n P a r t i a l F u l f i l l m e n t o f t h e R e q u ire m e n ts f o r t h e D eg ree D o c to r o f P h ilo s o p h y in t h e G ra d u a te S c h o o l o f th e O hio S t a t e U n iv e r s ity Hy J a c k C a r l G ro s s k o p f* B. S., M. S c. «*****««The Ohio S t a t e U n iv e r s ity 1972 A pproved by 1 Ad v i s e r / Depar^rtnent o f D a iry T ech n o lo g y

PLEASE NOTE: Some p a g e s may h av e indistinct print. Filmed as received. University Microfilms, A X erox Education Company

ACKNOWLEDGMENTS S in c e r e a p p r e c i a t i o n i s e x p re s s e d t o D r. W. J. H a rp e r, D ep artm en t o f Food S c ie n c e and N u t r i t i o n, f o r d i r e c t i n g t h i s e x p e r im e n ta l w o rk, an d f o r h i s a s s i s t a n c e and en co u rag em en t i n t h e p r e p a r a t i o n o f t h i s m a n u s c r ip t. S in c e r e a p p r e c i a t i o n i s a ls o e x p r e s s e d t o D r. T. K r i s t o f f e r s e n, A c tin g C hairm an o f th e D ep artm en t o f Food S c ie n c e and N u t r i t i o n, f o r p r o v id in g th e o p p o r tu n ity f o r g ra d u a te s t u d y, and f o r h i s i n t e r e s t and en co u rag em en t th ro u g h o u t my g r a d u a te p ro g ram. My s in c e r e th a n k s a r e e x te n d e d a l s o t o th e e n t i r e s t a f f o f th e D ep artm en t o f Food S c ie n c e and N u t r itio n f o r t h e i r c o o p e r a tio n d u rin g my g ra d u a te s tu d y, and t o M r. Jam es V. Chambers f o r a s s i s t a n c e in th e c o n tin u o u s c u l t u r e w ork. The f i n a n c i a l a s s i s t a n c e p ro v id e d by th e N a tio n a l S c ie n c e F o u n d a tio n and a d m in is te r e d th ro u g h t h e O hio S t a t e U n iv e r s ity R e searc h F o u n d a tio n i s a ls o g r a t e f u l l y acknow led g ed. I am in d e b te d t o my w i f e, L ynne, f o r h e r en co u rag em en t and u n d e r s ta n d in g th ro u g h o u t my g ra d u a te p ro g ra m, and f o r h e r a s s i s t a n c e i n th e p r e p a r a t i o n o f t h i s m a n u s c rip t. ii

CONTENTS Page ACKNOWLEDGMENTS....... i i T A B L E S... ILLUSTRATIONS... i v,:v INTRODUCTION....... 1 LITERATURE REVIEW... 2 P ro n a se... 2 Im m o b ilized E n z y m e s... 10 SCOPE OF IN V ESTIG A TIO N... U8 EXPERIMENTAL PROCEDURE... 50 RESULTS...... 5 6 P r o te i n P u r i t y... 56 E f f e c t o f S to ra g e on BAEE A c t i v i t y... 59 Bound Enzyme Q u a n t i t a t i o n... 62 M oib ture C o n te n t D e te rm in a tio n... 65 P ro n a se Bound t o G la ss... 65 E f f e c t o f T e m p e r a tu r e... 68 E f f e c t o f p H....... 76 E f f e c t o f C alcium C h l o r i d e... 79 E f f e c t o f S u b s tr a te C o n c e n tr a tio n... 82 S to ra g e S t a b i l i t y....... 108 T herm al S t a b i l i t y... 109 E f f e c t o f Flow R a te on A c t i v i t y o f P o ly m e ric P ro n a s e... I l l E f f e c t o f P ro n a se P r e tr e a tm e n t o f Skim m ilk on B iol o g i c a l O x i d a t i o n... 118 D IS C U S S IO N... 127 SUMMARY... 133 BIBLIOGRAPHY... 136 V I T A... 1>*9 i l l

TABLES Table Page 1. P r o p e r t i e s o f P r o te in a s e s P r e s e n t in P eak s on C M -C ellu lo se C h ro m a to g ra m... 5 2. R e a c tiv e Amino A cid R e s id u e s i n t h e Common I n s o l u b i l i z i n g M e th o d s...*... 18 3. F u n c tio n a l G roups A v a ila b le f o r S ila n e C o u p lin g A g en ts... 17 H. A p p lic a tio n s o f I n s o l u b i l i z e d E n z y m e s... 1+5 5. M o is tu re C o n te n t o f I n s o lu b le P ro n a se... 65 6. Sum m ation o f B in d in g S t u d i e s....... 67 7. Q-^q V alu e s f o r P o ly m e ric P ro n a s e on F o u r M ilk P r o t e i n s... 75 8. C om parison o f K in e tic D a ta f o r S o lu b le and I n s o lu b le P ro n a se... 108 9. E f f e c t o f S o lv e n t on E n zym atic A c t i v i t y... 109 1 0. E f f e c t o f T e m p e ra tu re on th e T herm al S t a b i l i t y o f S o lu b le and P o ly m e ric P r o n a s e... 110 1 1. L in e a r R e g re s s io n A n a ly s is o f R e sid e n c e Time and Time R e q u ire d t o Reach a C o n sta n t E nzym atic R e a c tio n V e lo c ity f o r P o ly m e ric P ro n a se A c tin g on M ilk P r o t e i n s... 115 1 2. B iom ass P e rfo rm a n c e D a t a... 12 U iv

ILLUSTRATIONS Figure Page 1. Some Common C r o s s - lin k in g R e a g e n ts... 16 2. C u r tiu s A zid e M ethod f o r C o u p lin g Enzymes t o C e l l u l o s e... 20 3. C o u p lin g o f P r o te in s t o S e p h a ro se b y Means o f ^ C yanogen Brom ide... 21 U. C o u p lin g o f P r o te i n s t o an E th y le n e -M a le ic A n h y d rid e ( l : l ) Copolym er (EMA)... 22 5. C a rb o d iim id e M ethod f o r B in n in g Enzymes t o a W a te r - I n s o lu b le S u p p o rt... 2k 6. P r e p a r a tio n o f W a te r - I n s o lu b le Enzymes by D iazo C o u p lin g o f t h e Enzyme t o a G la ss S u p p o rt..,. 25 7. I s o th io c y a n a te M ethod f o r C o u p lin g Enzymes t o G l a s s... 27 8. S ta r c h G el E l e c tr o p h o r e s is and P o ly a c ry la m id e G el E l e c tr o p h o r e s i s o f P u r i f i e d P r o te i n s... 57 9. A D i f f e r e n t i a l S p e c t r a l Scan from 330 nm t o 250 nm C om paring New an d O ld BAEE S a m p l e s... 60 10. R e a c tio n R a te f o r V a rio u s P ro n a se A liq u o ts from t h e C o u p lin g R e a c tio n on B A E E... 63 1 1. E f f e c t o f T e m p e ra tu re on th e R e a c tio n V e lo c ity o f S o lu b le P ro n a se w ith F o u r M ilk P r o t e i n s... 70 1 2. E f f e c t o f T e m p e ratu re on th e V e lo c ity o f P o ly m e ric P ro n a se w ith D i f f e r e n t M ilk P r o te in S u b s t r a t e s... 73 13. E f f e c t o f ph on t h e R e a c tio n V e lo c ity o f P o ly m e ric P ro n a se w ith D i f f e r e n t M ilk P r o te in s... 77 1 ^, E f f e c t o f C alcium C h lo r id e on t h e V e lo c ity o f P o ly m e ric P ro n a se w ith D i f f e r e n t M ilk P r o te i n s... 80 v

ILLUSTRATIONS (contd.) Figure Page 1 5. V e lo c ity v s. S u b s tr a te P l o t f o r S o lu b le P ro n a se R e a c tin g w ith C a se in and a - c a s e i n... 83 16. V e lo c ity v s. S u b s tr a te P l o t f o r S o lu b le P ro n a se on a - la c ta lb u m in and B - l a c t o g l o b u l i n... 86 1 7. L in e v e a v e r-b u rk e P lo t f o r t h e R e a c tio n o f S o lu b le P ro n a s e w ith a - c a s e i n... 88 1 8. L in e v e a v e r-b u rk e P lo t f o r S o lu b le P ro n a se Whole C a s e in R e a c tio n........ 90 1 9. L in e v e a v e r-b u rk e P lo t f o r t h e R e a c tio n o f S o lu b le P ro n a se w ith a - la e ta lb u m in... 92 2 0. L in e v e a v e r-b u rk e P lo t f o r S o lu b le P ro n a se { J -la c to g lo b u lin R e a c t i o n... 9 2 1. V e lo c ity v s. S u b s tr a te P lo t f o r t h e P o ly m e ric P ro n a se R e a c tio n on F o u r M ilk P r o te in s a t One M in u te R e s id e n c e T i m e... 97 2 2. L in e w e a v e r-b u rk e P lo t f o r P o ly m e ric P ro n a se C a se in R e a c t i o n * 99 2 3. L in ew eav er-b u rk e P lo t f o r P o ly m e ric P ro n a se a - c a s e i n R e a c tio n... 101 2U. L in ew eav er-b u rk e P lo t f o r t h e R e a c tio n o f P o ly m e ric P ro n a s e w ith B - la c to g lo b u lin... 103 2 5. L in e w e a v e r-b u rk e P lo ts f o r P o ly m e ric P ro n a se on a - l a c t a l b u m i n... 105 2 6. E f f e c t o f Flow R ate on th e Time R e q u ire d t o Come t o a S te a d y R e a c tio n V e lo c ity f o r th e P o ly m e ric P ro n a se 3 - la c t o g lo b u l i n R e a c tio n... 112 2 7. Time R e q u ire d f o r th e A c t i v i t y o f P o ly m e ric P ro n a se t o R each a C o n sta n t V alu e a t D i f f e r e n t Flow R a te s f o r 6 - la c t o g lo b u l i n and a - la c ta lb u m in... 116 vi

ILLUSTRATIONS (contd.) Figure Page 2 8. E f f e c t o f R e s id e n c e Time on t h e Maximum V e lo c ity A c h ie v a b le a t a G iven Flow R a te, v i t h a C o n s ta n t S u b s tr a te C o n c e n tr a tio n, f o r P o ly m e ric P ro n a s e R e a c tin g w ith 8 - l a c t o g l o b u l i n and a - la c ta lb u m in... 119 2 9. L in e w e av er-b u rk e P l o t f o r t h e P o ly m e ric P ro n a se - 8 - l a c t o g l o b u l i n R e a c tio n B ased upon V a lu es O b ta in e d from L in e a r U nw eighted R e g re s s io n A n a ly s is o f D a ta f o r B - la c to - g lo b u lin a t V a rio u s S u b s tr a te C o n c e n tr a tio n s... 121 3 0. H igh V o lta g e E l e c tr o p h o r e s is o f Sam ples O b ta in e d from a B io fe rm e n te r G iven P ro n a se T r e a te d Skim m ilk o v e r a T h re e Day P e r io d... 125 vii

INTRODUCTION C u r r e n t ly, t h e fo o d in d u s t r y p ro d u c e s w a s te s w hich r e p r e s e n t a b o u t UOJf o f t h e t o t a l b i o l o g i c a l oxygen demand on w a ste tr e a tm e n t f a c i l i t i e s. F u r th e r m o r e, p r o t e i n s p r e s e n t i n th e fo o d w a s te t r e a t m ent sy ste m can re d u c e c o n s id e r a b ly t h e e f f i c i e n c y o f a tr e a tm e n t p l a n t. T h is r e d u c tio n in e f f i c i e n c y b y fo o d p r o t e i n s can r e s u l t from i n t e r a c t i o n s w ith t h e m ic r o f lo r a o f t h e b i o l o g i c a l tr e a tm e n t p l a n t, th e r e b y d e c r e a s in g t h e r a t e o f oxygen t r a n s p o r t, w ith th e s u b se q u e n t p r o d u c tio n o f u n d e s ir a b l e foam s. P r e - d e g r a d a tio n o f p r o t e i n macromolecules w ould t h e o r e t i c a l l y i n c r e a s e t h e e f f i c i e n c y o f th e tr e a tm e n t p l a n t by re d u c in g m acro - m o le c u le - m ic r o f lo r a i n t e r a c t i o n s. H ow ever, s o lu b le enzym es a r e e x p e n s iv e, and i t w ould b e b o th u n e co n o m ic a l and i m p r a c tic a l t o u se them in a w a s te tr e a tm e n t p l a n t. A f e a s i b l e m ethod o f p r e t r e a t i n g fo o d w a s te s w ould b e t o a t t a c h enzym es t o a s o l i d s u p p o r t. But b e f o r e t h i s m ethod can b e a p p l i e d, th e optim um e n v iro n m e n ta l c o n d itio n s m ust b e known t o a s s u r e maximum e n z y m a tic a c t i v i t y. T h is i n v e s t i g a t i o n was u n d e r ta k e n t o c h a r a c t e r i z e th e a c t i v i t y o f im m o b iliz e d p ro n a se on s e l e c t e d m ilk p r o t e i n s i n o r d e r t o u s e t h i s te c h n iq u e f o r p o s s i b l e fo o d tr e a tm e n t a p p l i c a t i o n. 1

LITERATURE REVIEW Prona.se P ro n a se i s a c o m m e rc ia lly a v a i l a b l e p r o te in a s e p r e p a r a t i o n v h ic h i s p ro d u c e d in t h e c u l t u r e medium o f S tre p to m y c e s g r is e u s K - l. S in c e i t d e g ra d e s p r o t e i n s by h y d r o ly z in g t h e p e p t i d y l - p e p t i d e b o n d, th e Enzyme Com m ission h a s c l a s s i f i e d p ro n a s e in t h e g ro u p o f enzym es a c t i n g on p e p tid e bonds (1 3 2 ). Ncraoto and N a ra h a sh i ( i l l ) f i r s t r e p o r t e d t h e i s o l a t i o n o f a p r o te a s e from S tre p to m y c e s g r is e u s K -l i n 1959* T h e ir enzyme was conc e n t r a t e d b y ammonium s u l f a t e p r e c i p i t a t i o n, p u r i f i e d by a d s o r p tio n on a c a tio n - e x c h a n g e r e s i n, and f i n a l l y c r y s t a l l i z e d from d i l u t e a c e to n e s o l u t i o n. The enzyme c r y s t a l l i z e d i n n e e d le s w ith t h e f o llo w in g comp o s i t i o n : c a rb o n - 52.0j, h y d ro g en - 6.8?!, n itr o g e n - lu.0 #, s u l f u r - t r a c e, and c a lc iu m - 0.8 ^ ( 2 0 ). The p r o t e i n h ad a m o le c u la r w e ig h t o f 2 0,0 0 0 +_ 800 and an i s o e l e c t r i c p o in t a t ph 5.5. T h e ir enzyme was s t a b l e from ph 5 t o 10 an d p r o te c t e d s tr o n g l y by c a lc iu m i o n s. To i n v e s t i g a t e th e s u b s t r a t e s p e c i f i c i t y o f t h i s enzym e, Nomoto, N a ra h a s h i, and M urakam i (1 1 7 ) u t i l i z e d many s y n t h e t i c s u b s t r a t e s a s d i p e p t i d e s, t r i p e p t i d e s, am ino a c id a m id e s, am ino a c id e s t e r s, o rg a n ic a c id e s t e r s, and t h e i r a n a lo g o u s com pounds. T h e ir s tu d y showed t h a t t h e p r o te a s e h a d an e x tre m e ly b ro a d s p e c i f i c i t y to w a rd s t h e s u b s t r a t e s s tu d ie d and was c a p a b le o f h y d r o ly z in g many p e p t i d e s, am ides and e s t e r s in c lu d in g t h e r e i n th e m a jo r ity o f th e s p e c i f i c s u b s t r a t e s o f p e p s in,

t r y p s i n, c h y m o try p s in, p a p a in, c a th e p s in C, c a r b o x y p e p tid a s e, le u c in e a m in o p e p tid a s e, a m i n o t r i p e p t i d a s e, g l y c y l - l e u c in e d ip e p tid a s e, and im in - 3 o p e p tid a s e. The p r o te a s e was c a p a b le a l s o o f h y d r o ly z in g th e p e p tid e s in v o lv in g D-am ino a c i d r e s i d u e s. E x p e rim e n ts w ith s y n t h e t i c p e p tid e s i n d i c a t e d t h a t th e p r o te a s e p r e f e r e n t i a l l y h y d ro ly z e d th e p e p tid e bonds c o n ta in in g am ino g ro u p s o f L - le u c in e and L -p h e n y la la n in e (1 0 1 ). P e p tid e bonds r e s i s t i n g th e a c t i o n o f p r o te a s e w ere th o s e o f g ly c y l - g l y c i n e and g l y c y 1 - p r o l i n e, and b o n d s in v o lv in g a c y l r e s id u e s o f N -a c y l am ino a c id s and N -a c y l p e p tid e s ( 1 1 7 ). In e x p e rim e n ts w ith p r o t e i n s, th e a v e ra g e num ber o f p e p tid e bonds o f egg alb u m in h y d ro ly z e d by t h i s enzyme e q u a lle d 8755 o f th e t o t a l num ber o f b o n d s i n th e m o le c u le, w h ile 75^ o f th e t o t a l num ber o f b o n d s o f c a s e in w ere h y d ro ly z e d ( l l h ). F u r th e r work b y Nom oto, N a r a h a s h i, and Murakami show ed t h a t t h e i r enzyme was b o th an e n d o p e p tid a s e and an e x o p e p tid a s e w ith u n u s u a lly w ide s id e c h a in s p e c i f i c i t y (1 1 2, 1 1 3, 1 1 5, 1 1 6, 1 1 7 ). H ow ever, th e h o m o g en eity and s p e c i f i c i t y o f p ro n a se rem a in ed co n t r o v e r s i a l. P a ssa g e o f th e enzyme th ro u g h an A m b e rlite IRC-50 r e s i n gave tw o s e p a r a te p e a k s, each e x h i b i t i n g p r o t e o l y t i c a c t i v i t y and e a ch e x h i b i t i n g h e te r o g e n e ity by m oving b o u n d ary e l e c t r o p h o e s i s ( 107). L a te r, H ira m a tsu and O uchi (62) d e m o n s tra te d th e e x i s t e n c e o f t h r e e p e a k s w ith p r o t e o l y t i c a c t i v i t y by s t a r c h g e l zone e l e c t r o p h o r e s i s. Upon re e x a m in in g th e s e r e s u l t s, Nomoto e t. a l. ( 1 1 8 ) r e p o r te d th e f r a c t i o n a t i o n o f p ro n a s e by colum n ch ro m ato g rap h y i n t o f o u r co m p o n en ts, each e x h i b i t i n g p r o t e o l y t i c a c t i v i t y. S u b s e q u e n tly, p ro n a s e h as b een f r a c t i o n a t e d b y colum n ch ro m ato g rap h y w ith C M -c e llu lo s e, DEAE-Sephadex and

A m b e rlite CG-50 r e s i n i n t o 13 p r o t e o l y t i c enzym es (1 0 8, lu 2 ). T hese 13 p r o t e o l y t i c enzym es w ere g ro u p ed i n t o f i v e c l a s s i f i c a t i o n s d e p e n d in g upon t h e i r optim um ph f o r p r o t e o l y s i s and t h e i r s u b s t r a t e s p e c i f i c i t y : f o u r n e u t r a l p r o t e i n a s e s, t h r e e a l k a l i n e p r o t e i n a s e s, t h r e e am inopept i d a s e s, tw o c a r b o x y p e p tid a s e s, and an e l a s t o l y t i c enzym e. When com p arin g r e p o r t s on t h e s p e c i f i c i t i e s o f p ro n a s e en zy m es, t h e v a r i a b i l i t y o f d i f f e r e n t p ro n a s e p r e p a r a t i o n s s h o u ld b e k e p t in m in d. T rop e t. a l. (l^ O, l U l ), u t i l i z i n g B g ra d e p ro n a se * d e m o n s tra te d v e r y l i t t l e c h y m o tr y p s in - lik e a c t i v i t y when a s s a y e d a g a i n s t N - a c e ty l- t y r o s i n e e t h y l e s t e r, and t h i s a c t i v i t y c o u ld n o t b e d e te c te d i n any o f t h e s e p a r a te d f r a c t i o n s. H ow ever, Ryan (1 2 6 ) c l e a r l y d e m o n s tra te d t h e p r e s e n c e o f a o - c h y m o tr y p s in - lik e enzyme i n a d i f f e r e n t p ro n a s e p r e p a r a t i o n. D i f f e r e n t im m u n o d iffu sio n p a t t e r n s w ere a l s o n o te d f o r d i f f e r e n t p ro n a s e p r e p a r a t i o n s (U ). T hese d i f f e r e n c e s in t h e num ber o f enzym es p ro d u c e d and t h e i r q u a n t i t i e s may b e a t t r i b u t e d t o m u ta tio n s o f S tre p to m y c e s g r is e u s o r t o v a r i a t i o n s i n g ro w th c o n d itio n s (1 2 6 ). M ic r o b ia l p r o te in a s e s h ave b een c l a s s i f i e d i n t o t h r e e g ro u p s by t h e i r optimum ph f o r p r o t e o l y s i s, i. e. a c i d, n e u t r a l, and a l k a l i n e p r o te in a s e s ( l O l ). M ost o f t h e n e u t r a l p r o te in a s e s a re known t o be i n h i b i t e d b y e t h y l e n e d i a m i n e t e t r a a c e t i c a c id (EDTA), b u t u n a f f e c te d by d iis o p r o p y l p h o s p h o f l u o r i d a t e, is o p r o p y lm e th y lp h o s p h f lu o r id a te, o r p o t a t o i n h i b i t o r ( 2 0 ), On th e o t h e r h a n d, a l k a l i n e p r o te in a s e s a re n o t a f f e c t e d by th e fo rm e r b u t a r e c o m p le te ly i n h i b i t e d by t h e l a t t e r tw o a g e n t s, As a r e s u l t t h e n e u t r a l p r o te in a s e s a r e c a l l e d m e ta llo - enzym es and t h e a l k a l i n e p r o t e i n a s e s, s e r i n e enzym es. T a b le 1 l i s t s

5 T a b le 1 P r o p e r t i e s o f p r o t e i n a s e s p r e s e n t i n p e a k s on C M -c e llu lo s e chro m ato g ram F r a c t io n P eak Numbers P r o p e r t i e s _ I ^ I l f I I I 3 r v f Optimum ph ( c a s e i n as s u b s t r a t e ) 7.5-8.0 7.5-8.0 9.0-1 0.0 9.0-1 0.0 S t a b l e ph ra n g e 5.0-9.0 5.0-9.0 3.0-9.0 3.0-9.0 H e a t s t a b i l i t y (6 0 C, 10 m in., % o f r e s i d u a l a c t i v i t y E x t i n c t i o n a t 278 nm (1 2 ) 89 95 50 89 1 6.2 * 1 1.5 1 0.2 P e r c e n t i n h i b i t i o n DFP 0 100 100 EDTA 97 9U 0 0 P o t a t o i n h i b i t o r 0 10 U0 90 P e p tid e h y d r o l y s i s ( S o l i d arro w show s th e b o n d s p l i t ) BAEE +++ TAME +++ + Z -G ly -P ro * L e u -G ly - +++ _ Z -G lu*t yr +++ - - xv G e la tin l i q u e f y i n g a c t i v i t y + + +++ D a ta ta k e n from I la ra h a s h i, ShibiQ ^a, an d Y a n a g ita ( 1 0 8 ). " ^ P ro te in a s e s e p a r a t e d fro m a m in o p e p tid a s e on D E A E -c e llu lo se 2 P r o t e i n a s e p r e s e n t in p e a k I I on C M -c e llu lo s e ^ P r o te in a s e s e p a r a t e d fro m c a r b o x y p e p tid a s e on A m b e rlite CG-50 r e s i n ^ P r o te in a s e p r e s e n t i n p e a k IV on C M -c e llu lo s e

some o f t h e p r o p e r t i e s o f p r o te in a s e s s e p a r a te d b y C M -c e llu lo s e, DEAE- S ep h ad ex, and A m b e rlite CG-50 r e s i n. The n e u t r a l p r o te in a s e s p r e s e n t in p e a k s I and I I h a d s i m i l a r p r o p e r t i e s w ith r e s p e c t t o ph optim um to w a rd s c a s e in s u b s t r a t e, s t a b l e ph r a n g e, and b e h a v io r a g a in s t i n h i b i t o r s. I n s t r i k i n g c o n t r a s t a r e th e p r o p e r t i e s o f th e a l k a l i n e p r o t e i n a s e s i n p e a k s I I I and IV, The s t a b l e ph ra n g e s w ere 5 t o 9 f o r th e n e u t r a l p r o te in a s e and 3 t o 9 f o r t h e a l k a l i n e p r o t e i n a s e. One o f t h e a l k a l i n e p r o te in a s e s i n p e a k I I I d e m o n s tra te d t h e a b i l i t y t o h y d ro ly z e N -b e n z p y l-l -a rg in in e e t h y l e s t e r (BAEE) and N - d - to s y l- L - a r g in in e m e th y l e s t e r (TAME) w hich a r e s u b s t r a t e s f o r t r y p s i n ( 1 1 0 ), c a th e p s in B ( 5 l)» an d p a p a in ( 7 8 ). T h is p r o t e i n a s e, u n lik e th e o th e r en zy m es, h ad p o te n t g e l a t i n - l i q u i f y i n g a c t i v i t y and h ad l e s s th e r m a l s t a b i l i t y com pared w ith th e o th e r enzym es i n p r o n a s e. R e c e n tly, T rop and B irk (lu 2 ) h a v e named t h i s enzyme p ro n a se t r y p s i n. F u r th e r w ork h a s i n d i c a te d a s i m i l a r i t y in th e a c t i v i t y o f b o th b o v in e t r y p s i n and p ro n a s e t r y p s i n on v a r io u s s u b s t r a t e s. By b lo c k in g th e e-am in o g ro u p o f th e l y s i n e r e s i d u e in a p e p t i d e, t h e s u b s t r a t e i s r e n d e re d immune t o h y d r o ly s i s by b o th enzym es (lu 2 ). P ro n a s e t r y p s i n a c t i v a t e s p r o - e l a s t a s e ( l l U ), tr y p s in o g e n and ch y m o try p sin o g e n A and h y d ro ly z e s p o ly L - ly s in e i n a s i m i l a r m anner t o t r y p s i n. The a c t i v i t y o f p ro n a s e t r y p s i n i s i n h i b i t e d by lmm d iis o p r o p y lp h o s p h o f lu o r id a te and by n a t u r a l l y o c c u rin g t r y p s i n i n h i b i t o r s. P ro n a se t r y p s i n was i n h i b i t e d b y a l l b o v in e t r y p s i n i n h i b i t o r s t e s t e d. Bowman-Birk so y b ean i n h i b i t o r i n h i b i t e d a b o u t 3056 o f p ro n a s e t r y p s i n 's a c t i v i t y to w a rd c a s e in and 100J6 o f i t s a c t i v i t y to w a rd

b e n z o y l a r g i n in e e t h y l e s t e r (19)* C h ick en o v o i n h i b i t o r i n h i b i t s b o th t h e t r y p s i n l i k e a c t i v i t y o f p ro n a s e to w a rd s b e n z o y 1 - a r g in in e e t h y l e s t e r an d t h e c h y m o try p s in lik e a c t i v i t y to w a rd s a c e t y l t r y o s i n e e t h y l e s t e r, w ith t h e c h y m o try p s in lik e a c t i v i t y b e in g i n h i b i t e d m ore s tr o n g l y th a n t h e t r y p s i n l i k e a c t i v i t y. T rop and B irk ( 1 U2 ) h av e shown t h a t t h e c a s e i n o l y t i c a c t i v i t y o f t h e i s o l a t e d t r y p s i n l i k e com ponent o f p ro n a s e can b e i n h i b i t e d up t o 80 t o 100JS, d e p e n d in g upon t h e i n h i b i t o r, by so y b ean and K u n itz p a n c r e a t i c t r y p s i n i n h i b i t o r, b y lim a b e a n, and by c h ic k e n ovom ucoid. S i m i l a r i t i e s in s i z e, a c t i v i t i e s, and i n i n h i b i t i o n by n a t u r a l l y o c c u rin g t r y p s i n i n h i b i t o r h av e l e d W ahlby (lt+u, IU5 ) t o s u g g e s t a p o s s i b l e s i m i l a r i t y i n c o m p o sitio n an d s t r u c t u r e o f t h e a c t i v e s i t e. A p a r t i a l seq u e n ce a n a l y s is o f th e r e s id u e s aro u n d th e a c t i v e s e r y l ( l 8 ), and h i s t i d y l r e s id u e s ( l 8 ) o f p ro n a s e t r y p s i n y i e l d e d th e f o llo w in g am ino a c i d s : -C y s-g ln -G ly -A sp -S e r - G Iy -G ly -P ro -V a l-t h r-a la -A la -H is - C y s-v a l- I n a d d i t i o n t o t h e p a r t i a l seq u e n c e a n a l y s is o f t h e a c t i v e s i t e, J u r a s e k e t. a l. ( 6 9 ) d e te rm in e d t h a t p ro n a s e t r y p s i n c o n ta in e d s ix d i s u l f i d e b r id g e s w h e re as mammalian t r y p s i n c o n ta in e d o n ly t h r e e d i s u l f i d e b r id g e s. P ro n a s e e l a s t a s e r e c e n t l y was i d e n t i f i e d b y T rop and B irk ( 1U2 ), and was a p p a r e n tly a hom ogeneous e n d o p e p tid a s e w h ich h y d ro ly z e s th e -L e u -T rp - and - A la - H is - p e p tid e b o n d s. I t i s a lm o st e n t i r e l y u n a f f e c te d by n a t u r a l t r y p s i n i n h i b i t o r s, and i s c o m p le te ly i n h i b i t e d by d i i s o - p r o p y lp h o s p h o r o f lu o r id a te, a p r o p e r ty s h a re d by p a n c r e a t i c e l a s t a s e

8 and o t h e r s e r i n e enzym es (1 ^ 2 ). H ow ever, b e n z eth o n iu m c h lo r id e i n h i b i t s ab o u t 85JE o f t h e e l a s t o l y t i c a c t i v i t y o f t h i s enzym e. To d e m o n s tra te t h e p r e s e n c e o f s e v e r a l p r o t e o l y t i c enzym es in p r o n a s e, N a r a h a s h i, and Y a n a g ita (1 0 7 ) o b s e rv e d t h e e f f e c t s o f v a r io u s m e ta l io n s on t h e a c t i v i t y o f p ro n a s e a g a in s t c a s e i n, c a rb o b e n z o x y g ly - c y l - L - le u c in e (CG L), L - le u c y lg ly c in e (L G ), an d L -le u c y l-b -n a p th y la m id e (LNA), T h e ir r e s u l t s showed t h a t t h e p r o te in a s e a c t i v i t y w ith c a s e in a s t h e s u b s t r a t e was somewhat p r o te c t e d by c a lc iu m and s tr o n tiu m i o n s, and c o n s id e r a b ly i n h i b i t e d by c o b a lt and z in c i o n s, w ith th e o th e r d i v a l e n t m e ta l io n s a s m anganese and m agnesium h a v in g no in f lu e n c e (1 0 7 ). S tu d ie s on t h e a c t i o n o f th e p e p tid a s e s i n d i c a t e d t h a t tw o ty p e s o f p e p t i d a s e s w ere p r e s e n t, a m in o p e p tid a s e, w hich h y d ro ly z e d LG and LNA, and c a r b o x y p e p tid a s e, w hich h y d ro ly z e d CGL (1 0 7 ). B oth a c t i v i t i e s in c r e a s e d re m a rk a b ly in th e p r e s e n c e o f c a lc iu m an d c o b a lt i o n s, i n d i c a t i n g b o th ty p e s o f p e p tid a s e s w ere m e ta llo e n z y m e s. B in d in g o f th e m e ta l w ith EDTA h ad th e e f f e c t o f rem oving t h e a c t i v a t i n g m e ta l io n s from th e enzym e, th e r e b y r e n d e r in g t h e enzyme i n a c t i v e. R e s to r a tio n o f a c t i v i t y c o u ld be a c h ie v e d by r e a c t i v a t i o n w ith c o b a lt o r c a lc iu m i o n s. The a m in o p e p tid a se was fo u n d t o be h e a t s t a b l e below 80 C and was n o t i n a c t i v a t e d b y up t o 9M u r e a even a t room te m p e r a tu r e. H ow ever, t h e enzyme was v e ry l a b i l e on d i a l y s i s a g a in s t d i s t i l l e d w a te r and w ith r e a g e n ts w hich bound m e ta l io n s. In th e p re s e n c e o f c a lc iu m io n s th e a m in o p e p tid a s e had a ph o p tim a aro u n d ph 8.3 and a t ph 8.0 and 9-5 in t h e p re s e n c e o f c o b a lt io n s w ith LG as th e s u b s t r a t e.

I n c o n t r a s t, t h e c a r b o x y p e p tid a s e v a s l e s s h e a t s t a b l e th a n t h e a m in o p e p tid a s e, and e x h ib ite d m ore s t a b i l i t y when m e ta l io n s w ere rem oved. The ph optim um f o r c a r b o x y p e p tid a s e v a s ph 7.5 i n th e p re s e n c e o f e i t h e r c a lc iu m o r c o b a lt i o n s. One o f t h e t h r e e a l k a l i n e p r o te in a s e s p o s s e s s e d a h ig h a c t i v i t y to w a rd N - b e n z o y l-l -a rg in in e e t h y l e s t e r (BAEE), N - a - to s y l- L - a r g in in e m e th y l e s t e r (TAME), N - a -b e n z o y l- L -ly s in e m e th y l e s t e r (BIM E), and N - b e n z o y l-d L - a rg in in e - ]D - n itro - a n ilid e (BAjdNA), w hich a r e s u b s t r a t e s o f t r y p s i n (1 0 6 ). The o th e r tw o a l k a l i n e p r o te in a s e s h y d ro ly z e N - a c e ty l- L - ty r o s in e e t h y l e s t e r. The t h r e e a l k a l i n e p r o te in a s e s w ith e s t e r o l y t i c a c t i v i t i e s w ere d e s ig n a te d a s a l k a l i n e p r o te in a s e a, b, and c, r e s p e c t i v e l y ; p r o te in a s e s a and c h y d ro ly z e d ATEE w h ile b h y d ro ly z e d BAEE. S e p a r a tio n o f t h e s e enzym es from p ro n a s e h a s b e en a t t a i n e d by s u c e s s iv e a p p l i c a t i o n o f io n -e x c h a n g e c h ro m a to g ra p h y. F u r th e r p u r i f i c a t i o n o f a l k a l i n e p r o te in a s e b on a S ephadex G-75 co lu m n, w hich h ad b e e n e q u i l i b r a t e d in lmm h y d r o c h lo r ic a c id c o n ta in in g 0.1 M sodium c h l o r i d e, ph 3. 0, w hose tw o s e p a r a t e p e a k s, each w ith a lm o st th e same s p e c i f i c a c t i v i t i e s to w a rd s c a s e in and BAEE, b u t d i f f e r e n t m o le c u la r w e ig h ts. The tw o a l k a l i n e p r o te in a s e s a r e c a l l e d b and b *. A lk a lin e p r o te in a s e b h a d a s i m i l a r i t y t o t r y p s i n aro u n d th e a c t i v e s i t e. The _/T c K v a lu e s a r e 9.0 x 10~ M f o r BAEE, 7.7 x 1 0 M f o r TAME, and l.u x m 1 0 " ^ f o r BAgNA. The m o le c u la r w e ig h t o f t h e p u r i f i e d a l k a l i n e p r o t e i n a s e b v a s e s tim a te d t o b e a b o u t 2 0,0 0 0 b y t h e g e l - f i l t r a t i o n m ethod w ith S ephadex G-75 ( l ). I n c o n c lu s io n p ro n a s e h a s b een found t o b e a h e te ro g e n e o u s m ixt u r e o f enzym es p o s s e s s in g w ide s u b s t r a t e s p e c i f i c i t y. Some w ork h a s

b e e n c o n d u c te d t o p u r i f y and c h a r a c t e r i z e s p e c i f i c p ro n a s e en zy m es, b u t m ore w ork n eed s t o b e done on a c t i v e s i t e a n a ly s is and a m in o -a c id s e q u e n c in g. Im m o b iliz ed Enzymes S y n th e tic o r g a n ic p o ly m e rs p o s s e s s c e r t a i n c h a r a c t e r i s t i c s, su ch a s c h e m ic a l i n e r t n e s s, i n s o l u b i l i t y i n aq u eo u s s o l u t i o n s, and o th e r u n iq u e p r o p e r t i e s, w hich h a v e l e d t o t h e i r w id e -s p re a d u t i l i z a t i o n. On th e o t h e r h a n d, n a t u r a l p o ly m ers,- su ch a s enzy m es, a n t i g e n s, and a n t i b o d i e s, a r e l a b i l e, s o lu b le i n aq ueous s o l u t i o n s, and h av e d i s t i n c t i v e b i o l o g i c a l a c t i v i t i e s. I n th e p a s t, th e i n t e r e s t s o f s c i e n t i s t s from tw o d i s c i p l i n e s, n a t u r a l p o ly m er c h e m is tr y, an d i n p a r t i c u l a r p r o t e i n c h e m is tr y, and s y n t h e t i c p o ly m e r c h e m is try h av e n o t o v e rla p p e d. Howe v e r, r e c e n t l y, i n t e r d i s c i p l i n a r y i n v e s t i g a t i o n s i n t o t h e a r e a o f im m o b iliz e d enzym es h av e b e e n c o n d u c te d b y b o th g ro u p s. E nzym es, a s d e f in e d by W eb ster ( 5 0 ), a re any o f a v e ry la r g e c l a s s o f com plex p r o te in a c e o u s s u b s ta n c e s t h a t a r e p ro d u c e d b y l i v i n g c e l l s and a c t as c a t a l y s t s in p ro m o tin g a t t h e c e l l te m p e ra tu re u s u a lly r e v e r s i b l e r e a c t i o n s w ith o u t th e m s e lv e s u n d e rg o in g m arked d e s t r u c t i o n i n t h e p r o c e s s. I n i n d u s t r y, th e c a t a l y t i c a c t i v i t y and s p e c i f i c i t y o f enzym es a r e w id e ly u t i l i z e d i n su ch d iv e r s e c o n c e rn s as t h e s p e c i f i c b i o l o g i c a l s y n th e s e s o f many p h a r m a c e u tic a ls ( 2 7 ), in c h e e s e m aking (2 U ), and i n d e te r g e n t a d d i t i v e s ( 8 0 ). H ow ever, s o lu b le enzym es i n h e r e n t l y p o s s e s s c e r t a i n d is a d v a n ta g e s : ( a ) enzym es a r e l a b i l e ; (b ) o n ce enzym es a re u t i l i z e d in s o l u t i o n, th e y c a n n o t b e r e c o v e r e d ;

( c ) u s u a l l y enzym es m ust b e f r e e from o t h e r c o n ta m in a tin g enzy m es, and a s a r e s u l t t h e s e p r e p a r a t i o n s may be e x p e n s iv e ; and (d ) i n some c a s e s r e s i d u a l e n z y m a tic a c t i v i t y may c a u se u n d e s ir a b le c o m p lic a tio n s. Many o f th e s e l i m i t a t i o n s can b e overcom e by u t i l i z i n g p o ly m e ric enzym es ( 8 7 ), i. e. n a t u r a l enzym es s u p p o rte d on s o l i d c a r r i e r s o r 11 c h e m ic a lly bonded t o s y n t h e t i c p o ly m e rs. T h ese im m o b iliz e d enzym es: ( a ) a r e r e a d i l y s e p a r a b le from p ro d u c ts and r e a c t a n t s by f i l t r a t i o n, th e r e b y p e r m ittin g r e p e a te d u t i l i z a t i o n o f t h e same enzyme p r e p a r a t i o n ; (b ) may b e u s e d o v e r lo n g p e r io d s o f tim e (1 2 5, 1 5 2 ); ( c ) may b e em ployed w ith o u t t h e d a n g e r o f one d i g e s t i n g a n o th e r ; (d ) p e rm it a g r e a t e r l a t i t u d e o f r e a c t i o n c o n d itio n s ( 3 6 ) ; ( e ) n eed n o t be p u re p r e p a r a t i o n s ; and ( f ) a r e m ore e a s i l y a d a p te d t o a u to m a tio n, c o n v e n ie n t, and e c o n o m ic a l th a n s o lu b le enzyme p r e p a r a t i o n s. Im m o b iliz ed enzym es a l s o p ro v id e s im p le, u s e f u l in v i t r o m odels f o r m em brane-bound enzym es su ch as th o s e p a r t i c i p a t i n g i n p h o to sy n t h e s i s, a c t i v e t r a n s p o r t, r e s p i r a t i o n, and p r o te in b i o s y n t h e s i s (7 2 ). U n t i l r e c e n t l y, t h e s e enzyme sy ste m s h av e b e e n s tu d ie d a lm o st e x c lu s i v e l y i n s o l u t i o n. W ith t h e r e c o g n itio n t h a t enzymes i n t h e l i v i n g c e l l a r e n o rm a lly a tta c h e d t o s u r f a c e s, t h e te rm a l l o t o p y h a s b e e n in tr o d u c e d t o d e s c r ib e t h e d i f f e r e n c e s b etw een th e p r o p e r t i e s o f m em brane-bound enzym es and t h e p r o p e r t i e s o f th e same enzym es in s o l u t i o n (lo U ). M ethods o f Im m o b iliz a tio n S e v e r a l m ethods h av e b een em ployed t o im m o b iliz e enzym es on w a te r i n s o l u b l e c a r r i e r s. T h ese in c lu d e p h y s ic a l a d s o r p tio n o n to

m a tr ic e s l i k e g l a s s ( 9 5 ), c h a r c o a l ( 1 0 9 ), b e n t o n i t e ( 5 7 ), o r t o o r g a n ic Io n -e x c h a n g e rs (1 5 1 ). O th e r i n s o l u b i l i z a t i o n m ethods in c lu d e p o ly c o n d e n s a tio n o f t h e enzyme w ith r e a c t i v e b i f u n c t i o n a l r e a g e n t s ; a d s o r p tio n f o llo w e d b y c o v a le n t c r o s s - l i n k i n g o f t h e p r o t e i n by a p p r o p r ia te b i f u n c t i o n a l r e a g e n t s ; i n c l u s i o n o r e n tra p m e n t o f t h e enzyme in th e p o re s o f a g e l, t h e p o re s o f w h ich a r e l a r g e enough t o a llo w s u b s t r a t e t o p a s s f r e e l y, b u t s m a ll enough t o r e t a i n th e enzym e; and c o v a le n t b in d in g o f t h e p r o t e i n t o a s u i t a b l e, w a t e r - i n s o l u b l e c a r r i e r, v i a f u n c t io n a l g ro u p s w hich a r e n o t e s s e n t i a l f o r b i o l o g i c a l a c t i v i t y. T h ese m ethods have b e en sum m arized i n a num ber o f re v ie w a r t i c l e s (1»3, Uk, 1*7, 7 1, 7 3, 8 7, 8 9, 9 2, 1 2 8, 1 3 1 ). 12 Enzymes Im m o b iliz e d by A d s o r p tio n : A d s o rp tio n a s a p h y s ic a l te c h n iq u e o f i n s o l u b l i z i n g enzym es o f te n le a d s t o d e n a t u r a t i o n. To m in im ize d e n a tu r a tio n a s u i t a b l e a d s o rb e n t s h o u ld p o s s e s s a h ig h a f f i n i t y f o r t h e enzyme and be s t a b l e u n d e r o p e r a t i o n a l c o n d itio n s. B oth c h a rg e d r e s i n s and n e u t r a l s u r f a c e s can b e u t i l i z e d t o a d s o rb - p r o t e i n s. B a rn e t and B u ll (8 ) a c h ie v e d a m ore p erm an en t enzyme a t t a c h m ent b y u s in g Dowex 5 0, a s u lf o n a te d p o ly s ty r e n e c a r r i e r, a s a s u p p o r t. S i m i l a r l y, M itz (9 9 ) h a s a tta c h e d c a t a l a s e, p e p s in, and p r o te a s e t o d ie th y la m in o e t h y l c e l l u l o s e (D E A E -c e llu lo s e ) w ith good r e t e n t i o n o f t h e i r a c t i v i t i e s. S e v e r a l io n -e x c h a n g e r e s i n s su ch a s D E A E -c e llu lo se, DEAE-Sephadex, and C M -c e llu lo se have b e e n u sed as s o l i d s u p p o r ts f o r enzyme im m o b iliz a tio n b y n o n -c o v a le n t b o n d in g (1 3 5, 1 3 8, 1 3 9 ). A d so rp t i o n o f enzym es o n to v a r io u s in o r g a n ic m a t e r ia ls as g l a s s b e a d s, q u a r t z, d i a l y s i s t u b i n g, and M illip o r e f i l t e r s h a s a ls o b e e n d e s c r ib e d (3 8, 122).

When c o m p le te enzyme im m o b iliz a tio n i s d e s i r e d, h o w e v e r, p h y s ic a l 13 a d s o r p tio n te c h n iq u e s a r e o f l i m i t e d r e l i a b i l i t y. Even i f u n d e r a g iv e n s e t o f c o n d itio n s no a c t i v e enzyme i s e l u t e d from an a d s o r b e n t, c h a n g in g t h e io n ic s t r e n g t h, ph o r te m p e r a tu r e, o r a d d i t i o n o f su b s t r a t e, may b r in g a b o u t e i t h e r a p a r t i a l o r a t o t a l d e s o r p tio n o f th e enzyme from t h e a d s o rb e n t ( 7 3 ). Work on t h e a d s o r p tio n o f p r o te in s on v a r io u s s u r f a c e s h a s b een sum m arized i n tw o r e c e n t re v ie w s (U l, 1 3 1 ). Enzymes Im m o b ilized by O c c lu s io n in C r o s s - lin k e d P o ly m e ric M a tr ic e s : Enzymes can b e o c c lu d e d w ith in a c r o s s - l i n k e d g e l m a trix by c a r r y in g o u t t h e p o ly m e r iz a tio n r e a c t i o n le a d in g t o g e l fo rm a tio n in a n aq u eo u s s o l u t i o n c o n ta in in g t h e enzyme ( 7 3 ). S u b se q u e n t m e c h a n ic a l d i s p e r s io n o f t h e g e l c o n ta in in g th e enzyme can b e a c h ie v e d t o o b ta in p a r t i c l e s o f d e f i n i t e s i z e. I n m ost o f th e c a s e s r e p o r t e d, a c ry la m id e was u s e d a s t h e monomer w ith c r o s s - l i n k i n g a f f e c t e d by N,N -m eth y len e b i s (a c ry la m id e ) ( 1 3, 5 3, 6 l ). H ow ever, e x p e rim e n ts w ith c e l l u l o s e ' n i t r a t e and c e l l u l o s e a c e t a t e h av e a ls o b e e n d e s c r ib e d, an d i t was c la im e d t h a t no le a c h in g o f t h e enzyme o c c u rre d d u rin g u s a g e (8 2, 8 7 ). Enzyme im m o b iliz a tio n by o c c lu s io n im p o ses m in im al c o n s t r a i n t s on t h e p o ly m e ric enzyme and d o es n o t in v o lv e c o v a le n t bond fo rm a tio n w ith th e s u p p o r tin g m a tr ix. T h e r e f o r e, i n th e o r y, t h i s p r i n c i p l e can b e a p p lie d t o any enzym e. H ow ever, s e v e r a l i n t r i n s i c l i m i t a t i o n s (7 3 ) o f t h i s m ethod n eed t o b e m e n tio n e d, (a ) B ecau se o f th e b ro a d d i s t r i b u t i o n i n t h e p o re s iz e o f s y n th e t i c g e ls o f t h e p o ly a c ry la m id e t y p e, c o n tin u o u s le a k a g e o f th e o c c lu d e d enzyme i s d i f f i c u l t t o a v o id, (b ) The e n z y m a tic r e a c t i o n o c c u rs o n ly w ith in t h e v i c i n i t y o f t h e g e l

1U m a tr ix. The c a t a l y t i c r e a c t i o n i s th u s l i m i t e d t o s u b s t r a t e s t h a t can d i f f u s e r e a d i l y i n t o t h e g e l. ( c ) The f r e e r a d i c a l s g e n e r a te d i n t h e c o u rs e o f p o ly m e r iz a tio n may a f f e c t t h e a c t i v i t y o f t h e e n tra p p e d enzym e. F o r ex am p le, a l d o l a s e v a s 25$ i n a c t i v a t e d d u r in g th e p r e p a r a t i o n o f t h e p o ly a c ry la m id e i n c l u s i o n c o n ju g a te (1 * 0. H ow ever, th e c o m p a ra tiv e ly h ig h a c t i v i t i e s (9*0 o f t h e i n c l u s i o n c o n ju g a te s o f a lc o h o l d e h y d ro g e n a s e, g lu c o s e o x id a s e, c h y m o try p s in, and e n o la s e r e f l e c t t h e g e n e r a l m ild n e s s o f th e m eth o d. I n c lu s io n a p p e a rs l e s s s u i t a b l e f o r enzym es h a v in g la r g e s u b s t r a t e s as r ib o n u c le a s e (9 * 0, p re su m a b ly t h e r e s u l t o f d i f f u s i o n and s t e r i c h in d r a n c e. Enzymes Im m o b iliz e d b y I n te r m o le c u la r C r o s s - l in k i n g : Many a c t i v e, i n s o l u b i l i z e d enzym es h av e b e e n form ed by r e a c t i o n w ith c r o s s - l i n k i n g r e a g e n t s, B i- o r m u l t i f u n c t i o n a l c r o s s - l i n k i n g r e a g e n ts can b e u t i l i z e d f o r t h e im m o b iliz a tio n o f b i o l o g i c a l l y a c t i v e p r o te in s by tw o m eth o d s (1 3 1 ): ( a ) th r e e - d im e n s io n a l n e t-w o rk fo rm a tio n as a r e s u l t o f i n t e r m o l e c u l a r c r o s s - l i n k i n g o f th e b i o l o g i c a l l y a c t i v e p r o t e i n ; and (b ) im m o b iliz a tio n o f t h e b i o l o g i c a l l y a c t i v e p r o t e i n b y s u i t a b l e b i - o r m u l t i f u n c t i o n a l c r o s s - l i n k i n g r e a g e n ts t o an i n s o l u b l e c a r r i e r. The p r o p e r t i e s o f b i f u n c t i o n a l p r o te in c r o s s - l i n k i n g r e a g e n ts and t h e i r u t i l i z a t i o n f o r t h e i n t r o d u c t i o n o f new i n tr a m o le c u la r c o v a le n t b o n d s, and f o r c o v a le n t l i n k i n g o f tw o s p e c ie s o f p r o te in m o le c u le s a r e d e s c r ib e d by R ic h a rd (12*0 and by Zahn (1 6 3 ). T he b i f u n c t i o n a l r e a g e n ts w hich a r e u sed in t h e in te r m o le c u la r c r o s s - l i n k i n g o f p r o t e i n s may be d iv id e d i n t o tw o g ro u p s (7 3 ): ( a ) h o m o b ifu n c tio n a l r e a g e n ts p o s s e s s in g tw o i d e n t i c a l f u n c t io n a l

g ro u p s, su ch as b i s - d ia z o b e n z id in e 2, 2* d i s u l f o n i c a c id ( F ig u r e l ) ; 15 and (b ) h e t e r o b i f u n c t i o n a l r e a g e n ts p o s s e s s in g tw o d i f f e r e n t f u n c t io n a l g r o u p s, su ch as t o l u e n e - 2 - is o c y a n a te - U - is o th io c y a n a te (F ig u re 1 ). B ecau se h e t e r o b i f u n c t i o n a l r e a g e n ts p o s s e s s d i f f e r e n t c h e m ic a l r e a c t i v i t i e s f o r t h e i r tw o f u n c t i o n a l g r o u p s, th e y a r e p a r t i c u l a r l y u s e f u l in b in d in g p r o t e i n s t o s u i t a b l e s u p p o r ts. H ow ever, t h e s e n s i t i v i t y o f many enzym es t o c h e m ic a l m o d if ic a tio n can l i m i t t h e a p p l i c a b i l i t y o f t h i s m eth o d. Enzymes Im m o b ilized b y C o v a le n t B in d in g : The b in d in g o f enzym es t o w a t e r - i n s o l u b l e c a r r i e r s by c o v a le n t b o n d s s h o u ld be c a r r i e d o u t v i a f u n c t i o n a l g ro u p s on th e p r o t e i n w hich a r e n o n e s s e n t i a l f o r b i o l o g i c a l a c t i v i t y. O b v io u s ly, t h e b in d in g r e a c t i o n s h o u ld b e p e rfo rm e d u n d e r c o n d itio n s t h a t do n o t c a u se d e n a t u r a t i o n. Any change i n th e a c t i v i t y o f an enzyme c o v a le n tly bound t o a p o ly m er may be a t t r i b u t e d t o tw o s o u r c e s. F i r s t, ch an g es r e s u l t i n g from c o v a le n t i n t e r a c t i o n s w ith t h e p o ly m er and s e c o n d, ch an g es a r i s i n g fro m n o n - c o v a le n t i n t e r - ' a c t i o n s. I n d e te rm in in g th e n a tu r e o f t h e c o v a le n t bonds by w h ich a * g iv e n p r o t e i n s h o u ld b e i n s o l u b i l i z e d an d s e l e c t i n g t h e a p p r o p r ia te w a t e r - i n s o l u b l e c a r r i e r u t i l i z a t i o n can b e made o f th e in f o r m a tio n a v a i l a b l e on th e e f f e c t s o f c h e m ic a l m o d if ic a tio n o f p r o te in s on t h e i r b i o l o g i c a l a c t i v i t y ( 3 2, 1 3 3, 13T) and on th e am ino a c id r e s i d u e s i n t h e a c t i v e s i t e o f enzym es ( 2 6 ). An i n s o l u b i l i z i n g r e a g e n t w hich i s p o t e n t i a l l y r e a c t i v e w ith an e s s e n t i a l am ino a c id r e s id u e in an en zy m e's a c t i v e s i t e may n o t, h o w e v e r, alw ay s le a d t o i n a c t i v i t y as i f when t h e r e s id u e i s s t e r i c a l l y

? " 2 < H CHp I n CHw-C/* 2 V H G lu ta ra ld e h y d e 6 n : F NOo 1, 5 - D if lu o r o - 2, 4 - d in itr o b e n z e n e *03 S S<% sn ca - M c n s D ip h e n y l-4, 4 '- d i i s o t h i o c y a n a t e - 2, 2 - d i s u l f o n i c a c id _0 3 S SO3 cr'ng^-^npcr B le d ia z o b e n z id in e - 2, 2 - d is u l f o n i c a c id CH- ( S c NO CNS T o lu e n e -2 - is o c y a n a t e 4 - is o t h i o c y a n a t e T r i c h l o r o - 6 - t r i a z i n e ( c y a n u r ic c h lo r id e ) F ig u re 1 : Some common c r o s s - l i n k i n g r e a g e n ts

i n a c c e s s i b l e. A ls o, t h e a c t i v e s i t e may b e p r o te c t e d w ith a s p e c i f i c r e a g e n t o r c o m p e titiv e i n h i b i t o r (1 2 0, 1 3 l) d u rin g i n s o l u b i l i z a t i o n t o s t a b i l i z e t h e enzyme i n i t s a c t i v e c o n fo rm a tio n (1 7 )- The f u n c t i o n a l g ro u p s o f p r o t e i n s s u i t a b l e f o r c o v a le n t b in d in g u n d e r m ild c o n d itio n s in c lu d e t h e te r m in a l c a rb o x y l and am ino g ro u p s o f en zy m es, and t h e s u b s t i t u e n t s o f c e r t a i n am ino a c id r e s i d u e s (9*0 i a r g i n in e ( g u a n id y l g r o u p ), l y s i n e (a and e am ino g r o u p s ), h i s t i d i n e (im id a z o y l g r o u p ), c y s te in e ( s u l f h y d r y l g r o u p ), s e r i n e (h y d ro x y l g r o u p ), t y r o s i n e (p h e n o l g r o u p ), a s p a r t i c a c i d (c a rb o x y l g r o u p ), and g lu ta m ic a c id (c a rb o x y l g ro u p ). T a b le 2 shows t h e r e a c t i v e am ino a c id r e s i d u e s i n th e common i n s o l u b i l i z i n g m eth o d s. N a tu r a l and s y n t h e t i c o r g a n ic p o ly m ers a r e u sed as c a r r i e r s f o r c o v a le n t b in d in g o f enzym es t o a r t i f i c i a l m a t r i c e s. T hese can be d iv id e d i n t o e l e c t r i c a l l y n e u t r a l c a r r i e r s su ch as c e l l u l o s e, S ep h ad ex, and S e p h a ro s e, and p o l y e l e c t r o l y t e c a r r i e r s su ch as C M -c e llu lo s e, and e th y le n e - m a le ic a c i d co p o ly m ers (EMA), and am ino e t h y l c e l l u l o s e ( U l). 'R e c e n tly, W e e ta ll (1^*9) u sed in o r g a n ic c a r r i e r s su ch as g l a s s w ith f u n c t i o n a l g ro u p s a tta c h e d t o im m o b iliz e enzym es (T a b le 3 ). T a b le 3 F u n c tio n a l g ro u p s a v a i l a b l e f o r s i l a n e c o u p lin g a g e n ts - ch2 =ch2 -CHg-CN - ch2 ~nh2 -CHg-CH-CHgO -CH2-NH-CH2-CH3 -CHgOH - ch2 -CH SH 0 CH g-cl -CH NH-C- 2 -NH, i B a ta ta k e n from W e e ta ll (1 5 1 )

18 Table 2 R e a c tiv e Amino A cid R e sid u e s in t h e Common I n s o l u b i l i z i n g M ethods I n s o l u b i l i z i n g r e a g e n t «R e a c tiv e am ino a c id r e s id u e s C h lo r o - s y m - tr ia z in y l d e r i v a t i v e Lys D ia z o - d e r iv a tiv e L y s, H is, T y r, A rg, Cys I s o - t h io c y a n a t e d e r i v a t iv e L y s, Arg N -E th y l-5 -p h e n y 1 i s oxaz o liu m -3 - s u lp h o n a te L y s, A sp, G lu D iim id e L y s, T y r, C ys, A sp, G lu A cid a z id e t y s, T y r, Cys, S e r M a le ic a c id o r m a le ic a n h y d rid e co p o ly m er N -C arb o x y -a-am in o a c id a n h y d rid e Lys Lys G lu ta ra ld e h y d e L y s, H is, T y r, Cys C y c lic im in o c a rb o n a te I ^ s D a ta ta k e n from T a b ach n ik and S o b o tk a (1 3 6 ) * In i n s t a n c e s v h en Lys i s r e a c t i v e a - N ^ g r o u p (s ) may r e a c t a l s o ; s i m i l a r l y, te r m in a l COOH g r o u p (s ) may co n d en se v hen Asp and ( o r ) Glu a r e r e a c t i v e. ** Formed by t h e r e a c t i o n o f cyanogen b ro m id e v i t h p o ly s a c c h a r id e s.

19 The g l a s s was a c t i v a t e d by c o u p lin g w ith *y-ami n o p ro p y l t r i e t h o x y s i l a n e, and th e a m in o a k ly ls ila n e - g la s s d e r i v a t i v e was c o n v e r te d t o i s o t h i o - c y a n a te d e r i v a t i v e o r was r e a c t e d w ith g - n itr o b e n z o ic a c id and th e n i t r o g ro u p re d u c e d and d i a z o t i z e d ( U l). The am ino g ro u p s o f enzym es h a v e b e e n u t i l i z e d t o o b ta in c o v a le n t lin k a g e t o s e v e r a l c a r b o x y lic p o ly m ers v i a th e c o rre s p o n d in g a z id e s (1 0 0, 150) (F ig u re 2 ), by a c t i v a t i o n o f th e p o ly m er c a rb o x y ls by c a rb o d iim id e (lu b, 1 U5 ) o r by W oodw ard^ R eagent K, N - e th y l- S - p h e n y l- is o x a z o liu r a - 3 1- s u l f o n a t e (1 2 1 ). More r e c e n t l y s u c c e s s f u l enzyme im m o b iliz a tio n h a s b e e n o b ta in e d by c e l l u l o s e a c t i v a t e d by symt r i c h l o r o t r i a z i n e ( c y a n u r ic c h l o r id e ) ( 7 b ), and by S ep h ad ex, o r S e p h a ro s e, a c t i v a t e d b y cyanogen b ro m id e (1 2 2 ) ( F ig u r e 3 ). Sty a c y l a t i o n o f th e am ino g ro u p s o f a p r o t e i n w hich a r e n o t e s s e n t i a l f o r i t s b i o l o g i c a l a c t i v i t y, i t h a s b een p o s s i b l e t o i n t r o d u ce new f u n c t io n a l g ro u p s w hich can b e u t i l i z e d i n b in d in g th e m o d ifie d p r o t e i n t o t h e a p p r o p r ia te c a r r i e r. F o r e x a m p le, new t y r o s y l r e s i d u e s w ere in tr o d u c e d i n t o t r y p s i n by i n i t i a t i n g th e p o ly m e r iz a tio n o f N - c a rb o x y - ty r o s in e a n h y d rid e w ith t h e enzyme ( 3 7 ). The f u l l y a c t i v e p o l y t y r o s y l t r y p s i n o b ta in e d was em ployed s u c c e s s f u l l y i n th e p r e p a r a t i o n o f a w a t e r - i n s o l u b l e p o l y t y r o s y l t r y p s i n d e r i v a t i v e by c o u p lin g i t w ith an i n s o l u b l e p o ly d ia z o n iu m c a r r i e r ( 7 ). New s u lf h y d r y l g ro u p s can be in tro d u c e d i n t o p r o te in s b y a c y la t i o n w ith N - a c e ty l h o m o c y ste in e t h i o l a c t o n e ( l l ). Such s u lf h y d r y l e n r ic h e d p r o te in s c a n b e p r e c i p i t a t e d from s o l u t i o n by c r o s s - l i n k i n g w ith a b i f u n c t i o n a l o rg a n o ra e rc u ria l compound ( 9 0 ).

l-chgoh -f CI-CHg-COOH + NaOH--------* CHgO-CHgCOOH + C I^O H * I C H ^ O - C H g C O O C H g + H 2 N - N H 2 ------------» U ch^ o- ch^ - c o - nh- nh2 + no2 i-c H g-0-c H 2 C0N3 -J- ghn-enzyme [ CH -O -CH gco N H -Enzym e F ig u re 2: C u r tiu s A zid e m ethod f o r c o u p lin g enzym es to c e l l u l o s e (1 0 0 ).

CH-1 OH \ \ CH-OH CH- + BrCN * y5h- 0-C 5N OH XC H - O v / I C=NH 4- HpN CH-0 -Enzyme \>H-Ox >N-Enzym e / L r H - H g O C H - 0 -C -^ -E n2yrne -O H F ig u r e 3 : C o u p lin g o f p r o t e i n s t o S e p h a ro s e by m eans cy an o g en b ro m id e ( 1 2 2 ).

22 F ig u re U sh o v s t h a t a p o ly m e ric a c y l a t i n g r e a g e n t, e th y le n e - m a le ic a n h y d rid e ( l : l ) copoly m er (EMA), h a s b een s u c c e s s f u l l y u s e d i n t h e p r e p a r a t i o n o f p o ly a n io n ic w a t e r - i n s o l u b l e d e r i v a t i v e s o f enzy m es, enzyme i n h i b i t o r s, and a n tig e n s ( 8 3, 1 4 6 ). EM A-papain and EMA- c h y m o try p sin c o n ju g a te s h av e b e en c o n v e rte d t o p o ly a lc o h o l o r p o ly - c a t i o n i c d e r i v a t i v e s b y c o u p lin g th e p o ly c a r b o x y lic enzyme d e r i v a t i v e w ith N,N -d im e th y la m in o -p ro p y la m in e o r p ro p a n o la m in e, r e s p e c t i v e l y, i n t h e p r e s e n c e o f c a rb o d iim id e ( 7 3 ). The p o ly a n io n ic c h a r a c t e r o f EMA- t r y p s i n and EM A -chym otrypsin c o n ju g a te s c o u ld a l s o b e p a r t l y n e u t r a l i z e d by in tr o d u c in g v a r y in g am ounts o f N,N -d im e th y la n iin o -e th y la m in e i n t o th e c o u p lin g m ix tu re (3 1*, 3 5 ). -CHg-CH -C H -C H 5 - COCT H nzyme-nh2 IH o - c I COO" -C H -C H ^ C H-C- H -C H F ig u r e 4 : C o u p lin g o f p r o t e i n s t o a n e th y le n e - m a le ic a n h y d rid e (1 :1 ) copoly m er (EMA) ( 8 3 ).

23 A lk y la tio n and a r y l a t i o n r e a c t i o n s can b e u t i l i z e d i n b in d in g enzym es t o s u i t a b l e c a r r i e r s. H ow ever, w o rk e rs (9&» 127) h av e shown t h a t a l k y l a t i n g r e a g e n ts su ch as io d o a c e tic a c id and 2, h - d i n i t r o - flu o ro b e n z e n e r e a c t, ev en u n d e r m ild c o n d i t i o n s, n o t o n ly w ith th e a -a m in o, c -a m in o, and t h i o l g ro u p s o f p r o t e i n s, b u t a ls o w ith th e s u l f u r o f m e th io n in e, t h e p h e n o lic h y d ro x y l o f t y r o s i n e, and th e im id a z o le o f h i s t i d i n e. R e c e n tly, G o ld s te in (U5 ) h a s c o v a l e n t l y bound enzym es v i a t h e i r c a rb o x y l g r o u p s, t o a m in o e th y l c e l l u l o s e o r o th e r r e s i n s c o n ta in in g p rim a ry a l i p h a t i c am ines u t i l i z i n g c a rb o d iim id e ( F ig u re 5 ). A n o th er c o u p lin g r e a c t i o n w hich h a s b e e n u s e d t o p r e p a re w a te r - i n s o l u b l e a n t i g e n s, a n t i b o d i e s, and enzym es i s th e r e a c t i o n b etw een a p r o t e i n and a p o ly d ia z o n iu m s a l t (F ig u re 6 ). V a rio u s f u n c t io n a l g ro u p s o f t h e p r o t e i n a p p e a r t o b e in v o lv e d i n th e c o u p lin g r e a c t i o n s in c e i t h a s b e e n shown t h a t low m o le c u la r w e ig h t d ia zo n iu m s a l t s r e a c t r a t h e r n o n - s p e c i f i c a l l y w ith p r o t e i n s. They com bine n o t o n ly w ith th e p h e n o l and a m id a z o le g ro u p s a n d, somewhat m ore s lo w ly, w ith am ino g ro u p s (3 3, 1 3 6 ), b u t a ls o w ith o th e r g ro u p s on t h e p r o t e i n m o le c u le. Howe v e r, azo c o u p lin g does p o s s e s s c e r t a i n i n t r i n s i c a d v a n ta g e s ( l 3 l ) : ( a ) i t i s e x tre m e ly r a p id ev en a t low te m p e r a tu r e s ; (b ) i t c an b e p e rfo rm e d in n e u t r a l aq u eo u s s o l u t i o n s ; and ( c ) th e s t a b l e a ro m a tic am ine p r e c u r s o r may b e q u a n t i t a t i v e l y d i a z o tiz e d r e a d i l y and sim p ly b e f o r e u s e. C am pbell e t. a l. ( 2 2 ), who c o u p le d b o v in e serum abum in w ith d ia z o tiz e d - a m in o b e n z y lc e llu lo s e w ere th e f i r s t t o r e p o r t an im m o b iliz e d enzyme c o u p le d by t h i s p r o c e d u re. S in c e th e n p o ly d ia z o n iu m

9 N Support C-OH + C 6 QI i 0 NH S u pport-c -O -6 -j- HUN-Enzyme O P 0 NH Support-6-N-E nzym e + C=0 + H* H P ISIH F ig u re 5; C a rb o d iim id e m ethod f o r b in d in g enzym es to a w a t e r - i n s o l u b l e s u p p o rt (4 5 ),

25 G lass-o -Si-O - + R 0 -^ i-r -N H 2 ------ > G lass-0 -S i-0 -$ i-r -N H 2 + 20 N -^ V c -C I 0 Glass-0-Si-0-j i-r-isi 6 N02 --------- G la s s-0 -S i-0 -S i-r -fy -C -@ NH2 --------- H G lass-o -Si-O -qi-r -N -C -^-N gc f+enzym e H 08S 0 - ^ 0 W ^ N - - N. En2yme n F ig u r e 6 ; P r e p a r a tio n o f w a t e r - i n s o l u b l e enzym es by d ia z o c o u p lin g o f th e enzym e to a g l a s s s u p p o rt ( 1 4 9 ).

26 s a l t s o f t h e f o llo w in g c a r r i e r s h av e "been u s e d f o r t h i s p u rp o s e : ( a ) m -am in o b en zylo x y m eth y l e s t e r o f c e l l u l o s e ( 2 5 ), p o ly - -a m in o - s ty r e n e ( 1 0 8 ), (b ) a copoly m er o f -a m in o p h e n y la la m in e and le u c in e ( 1 7 ), and ( c ) S-MDA (1*9), a r e s i n p r e p a r e d b y c o n d e n s a tio n o f d ia ld e h y d e s t a r c h ( a co m m e rc ia lly a v a i l a b l e p e r i o d a t e - o x i d a t i o n p ro d u c t o f s t a r c h ) w ith ji,]3'd ia jn in o d ip h e n y lm e th a n e, and s u b se q u e n t r e d u c tio n o f t h e s c h i f f b a s e o f t h e p o ly m e ric p r o d u c t. I s o c y a n a te s r e a c t p r im a r i l y w ith th e am ino g ro u p s o f p r o t e i n u n d e r m ild c o n d itio n s t o y i e l d t h e c o rre s p o n d in g u r e id o d e r i v a t i v e s ( l ). B ra n d e n b e rg e r ( 2 l ) u t i l i z e d t h i s p r i n c i p l e t o p r e p a r e a c r o s s - lin k e d p o l y - l i - i s o c y a n a te - s t y r e n e. P r e lim in a r y s t u d i e s on i t s u t i l i z a t i o n i n p r o t e i n b in d in g h av e b e e n d e s c r ib e d b y M anecke and c o -w o rk e rs (9 1, 9 3 ). I s o th io c y a n a te s a l s o r e a c t w ith am ino g ro u p s t o y i e l d th e c o rre s p o n d in g t h i o u r e i d o d e r i v a t i v e s (F ig u re 7 ). K ent and S la d e (7 7 ) and Axen and P o r a th ( 5 ) h av e r e p o r te d u s in g p o ly m e ric c a r r i e r s c o n ta in in g i s o t h i o c y a n a t e g ro u p s t o b in d p e p tid e s and p r o t e i n s. O rg a n o m e rc u ria l compounds su ch a s a n a lo g u e s o f -m e rc u rib e n z o ic a c id h a v e b e e n u s e d f o r b in d in g p r o t e i n s ( 6 0 ). K ent and S la d e (7 6 ) u s e d p o ly s ty r y lm e r c u r ie a c e t a t e as a c a r r i e r f o r t h e c o v a le n t b in d in g o f a n t i b o d i e s. H ow ever, c o v a le n t lin k a g e v i a an o rg a n o m e rc u ria l bond h a s tw o d is a d v a n ta g e s (1 3 1 )- F i r s t, t h e m e r c u r y - s u lf u r bond u n d e rg o e s ex ch an g e i n t h e p r e s e n c e o f s u lf h y d r y l compounds so t h a t t h e p r e s e n c e o f t h e l a t t e r may c a u se s o l u b i l i z a t i o n. M o reo v er, b e c a u s e m ost enzym es c o n ta in e i t h e r l i t t l e o r no f r e e s u lf h y d r y l g r o u p s, p r i o r

2T. i? Glass- Si- 0-Si-R-NHo + CI-C-CI i i 2 I I Glass S i-0 -S i-,-r-n»c=s + 9HN-Enzyme» I I 2 Glass- S i- 0 - Si R-N-C- N- Enzyme I I F ig u re 7: I s o th lo c y a n a te m ethod f o r c o u p lin g enzym es to g l a s s (1 3 1 ).

e n ric h m e n t o f th e p r o t e i n w ith s u lf h y d r y l g ro u p s (1 1 ) w i l l o f te n h e n e c e s s a r y b e f o r e c a r r y in g o u t b in d in g t o t h e o r g a n o m e rc u ria l c a r r i e r s. 28 C a r r i e r s U n t i l r e c e n t l y v i r t u a l l y a l l p o ly m e ric c a r r i e r s w ere d e r i v a t i v e s o f c e l l u l o s e, s y n t h e t i c p o ly am in o a c i d s, o r p o ly s ty r e n e. L im ita tio n s ( l 5 l ) in t h e u t i l i z a t i o n o f o r g a n ic p o ly m ers as s u p p o rt sy ste m s i n c lu d e : * 4 ( a ) S u s c e p t i b i l i t y t o ph an d s o lv e n t c o n d i t i o n s many p o ly m e rs change c o n f ig u r a tio n u n d e r d i f f e r i n g o p e r a t i o n a l c o n d i t i o n s, th u s c r e a t i n g ch an g es i n fle w r a t e s i f colum ns a re u s e d. (b ) S u s c e p t i b i l i t y t o e n z y m a tic a t t a c k, e i t h e r from m ic ro o rg a n ism s o r by enzym es b e in g im m o b iliz e d. ( c ) O p e r a tio n a l s t a b i l i t y - many enzym es im m o b iliz e d on o r g a n ic p o ly m e rs h av e p o o r s t a b i l i t y u n d e r o p e r a t i o n a l c o n d itio n s. (d ) P a r t i c l e s i z e and c o n d itio n Many p o ly m e r m a tr ic e s a r e o f e x tre m e ly s m a ll p a r t i c l e s i z e an d g e la tin o u s i n n a t u r e. To overcom e th e s e l i m i t a t i o n s C o rn in g G la s s Works h a s d e v e lo p e d m ethods o f c o v a le n tly a t t a c h i n g enzym es t o in o r g a n ic m a t e r ia ls r a n g in g from g l a s s t o s t a i n l e s s s t e e l. A d v an tag es (1 5 1 ) o f enzym es a tta c h e d t o o rg a n ic p o ly m e rs in c lu d e : ( a ) S t r u c t u r a l s t a b i l i t y th e in o rg a n ic m a t e r i a l s a r e n o t s u s c e p t i b l e t o ph and s o lv e n t c o n d itio n s. T h e r e f o r e, th e y w i l l n o t ch ange s iz e o r c o n f ig u r a tio n d u rin g u s a g e. (b ) The in o r g a n ic m a tr ic e s a r e n o t s u s c e p t i b l e t o m ic r o b ia l a t t a c k.

29 ( c ) I n o r g a n ic m a t e r i a l s can e a s i l y b e sh ap ed p e r m ittin g a w ide v a r i e t y o f c o n f i g u r a t i o n s. (d ) Enzymes c o u p le d t o in o r g a n ic m a t e r i a l s a p p e a r t o h av e g r e a t e r o p e r a t i o n a l s t a b i l i t y. In c o n s id e r in g a g iv e n c a r r i e r, a f u n c t i o n a l g ro u p w h ich i s h ig h ly r e a c t i v e w ith low m o le c u la r w e ig h t compounds may r e a c t s lu g g i s h l y when in c o r p o r a te d i n t o a p o ly m e r, e s p e c i a l l y when r e a c t i n g w ith f u n c t io n a l g ro u p s o f a h ig h m o le c u la r w e ig h t s u b s t r a t e. In p r i n c i p l e f u n c t io n a l g ro u p s c l o s e ly a tta c h e d t o t h e back b o n e o f a p o ly m e ric c a r r i e r, and h e n c e l e s s a c c e s s i b l e, s h o u ld e x h i b i t lo w er r e a c t i v i t y th a n s i m i l a r g ro u p s s i t u a t e d on t h e en d s o f lo n g, f l e x i b l e, h y d r o p h ilic s id e c h a in s. C e r ta in p h y s ic a l c h a r a c t e r i s t i c s o f th e c a r r i e r su c h a s s o lu b i l i t y, m e c h a n ic a l s t a b i l i t y, s w e llin g c h a r a c t e r i s t i c s, and s u r f a c e a r e a t o g e t h e r w ith i t s e l e c t r i c c h a rg e and h y d r o p h ilic o r h y d ro p h o b ic n a t u r e, p la y an im p o rta n t r o l e i n d e te r m in in g th e m axim al am ount o f p r o t e i n w hich c a n b e c o v a le n tly bound and t h e s t a b i l i t y and b i o l o g i c a l a c t i v i t y o f th e i n s o l u b l e p r o d u c t. M inim al s o l u b i l i t y, h ig h m e c h a n ic a l s t a b i l i t y, and a d e q u a te p a r t i c l e s iz e a r e d e s i r a b l e c h a r a c t e r i s t s w h ich a r e e s s e n t i a l f o r t h e p r e p a r a tio n o f b i o l o g i c a l l y a c t i v e, bound p r o t e i n s t h a t can b e r e a d i l y an d c o m p le te ly rem oved from t h e r e a c t i o n m ix tu re b y f i l t r a t i o n o r c e n t r i f u g a t i o n. The c h e m ic a l n a tu r e o f t h e c a r r i e r m a tr ix may a l s o re m a rk e d ly a f f e c t i t s a f f i n i t y f o r a g iv e n p r o te in a n d, a s a r e s u l t, i t a b i l i t y t o b in d c o v a le n tly t h e same p r o t e i n th ro u g h i t s r e a c t i v e g ro u p s (lu 6 ). S in c e an enzyme m o le c u le c o n ta in s one o r a s m a ll num ber o f a c t i v e s i t e s,

c o m p le te i n a c t i v a t i o n may o c c u r i f b in d in g t o a c a r r i e r ta k e s p la c e v i a f u n c t i o n a l g ro u p s o f t h e s e s i t e s. 30 S t a b i l i t y o f W a te r - I n s o lu b le Enzymes S to ra g e and O p e r a tio n a l S t a b i l i t y : S to ra g e a t h C f o r s e v e r a l m onths r e s u l t e d in l i t t l e l o s s o f a c t i v i t y f o r aqueous s u s p e n s io n s o f e th y le n e - m a le ic a c id enzyme d e r i v a t i v e s o f t r y p s i n ( 8 3 ), c h y m o try p sin ( 1 5 6 ), p a p a in ( 1 5 6 ), s u b t i l l i s i n Novo ( 1 5 6 ), s u b t i l l i s i n C a rls b e rg (1*5), f o r C M -c e llu lo s e d e r i v a t i v e s o f c h y m o try p sin ( 7 5 ), b ro m e la in ( 1 5 7 ), and f i c i n ( 6 5 ), and f o r S e p h a ro se d e r i v a t i v e s o f c h y m o try p sin ( 5 ). L yo- p h i l i z a t i o n o f th e s e p o ly m e ric enzym es d id n o t g r e a t l y re d u c e t h e i r a c t i v i t y a f t e r p ro lo n g e d s to r a g e a t h C and a t roam te m p e r a tu re ( ^ 7, 8 3, 1 3 1, 1 5 6 ). When -sm in o b e n z y l c e l l u l o s e s, S-MDA r e s i n s, and le u c in e -j> - a m in o p h e n y la la n in e co p o ly m ers w ere u sed a s p o ly m e ric c a r r i e r s f o r p a p a in ( 1 3 1 ), s u b t i l l i s i n Novo (U 5 ), s u b t i l l i s i n C a r ls b e rg (U9 ), and p o l y t r y r o s y l t r y p s i n ( 7 ), s to r a g e i n t h e c o ld f o r s e v e r a l m onths h a d l i t t l e a f f e c t on e n z y m a tic a c t i v i t y. H ow ever, th e s e p o ly m e ric enzym es w ere c o m p le te ly i n a c t i v a t e d on a i r d r y in g o r by l y o p h i l i z a t i o n, p ro b a b ly d u e t o th e h y d rc p h o b ic n a tu r e o f t h e c a r r i e r ( 1 3 1 ). M anecke (9 1 ) fo u n d t h a t w ith a copoly m er o f m e th a c r y lic a c id and m e th a c r y lic a c id f l u o r o d i n i t r o a n i l i d e, in s o lu b le c o n ju g a te s o f p e p s in, i n v e r t a s e, and a lc o h o l d e h y d ro g e n a se l o s t m ost o f t h e i r a c t i v i t y w ith in s e v e r a l w eeks v hen s to r e d a t lt C, Num erous w o rk e rs (1 3 1, 3 9, 5*0, h a v e a s c e r ta in e d t h a t enzym es o c c lu d e d i n p o ly a c ry la m id e o r s t a r c h g e l s, as w e ll a s e n z y m e -c o llo d io n

m em branes o f p a p a in and a l k a l i n e p h o s p h a ta s e, r e t a i n e d t h e i r a c t i v i t y 31 f o r s e v e r a l m onths a t r e f r i g e r a t e d s t o r a g e. L y o p h iliz e d p o ly a c ry la m id e an d s t a r c h g e l p r e p a r a tio n s c o n ta in in g th e above enzym es c o u ld b e r e h y d r a te d e a s i l y w ith t h e c o n c o m ita n t r e c o v e ry o f m ost o f t h e e n z y m a tic a c t i v i t y ( b l ). H ow ever, t h e e n z y m e -c o llo d io n membranes s h ra n k i r r e v e r s i b l y on l y o p h i l i z a t i o n and l o s t t h e i r a c t i v i t y p re su m a b ly due t o d e c r e a s e d p e r m e a b ility t o s u b s t r a t e ( 3 9 ). ^ Of t h e 50 in s ta n c e s in w hich d i r e c t co m p ariso n s o f t h e s t a b i l i t i e s o f t h e r e s p e c t i v e s o lu b le and in s o lu b le d e r i v a t i v e s w ere m ade, M elro se (9*0 c o n c lu d e d t h a t th e l a t t e r was m ore s t a b l e i n 30 c a s e s, t h e fo rm er i n 8 c a s e s, and t h a t t h e r e was l i t t l e d i f f e r e n c e in s t a b i l i t i e s in 12 c a s e s. P resu m ab ly t h e bound enzym es a r e m ore r e s i s t a n t t o d e n a tu r a tio n (9**) and i n th e c a s e o f i n s o l u b i l i z e d p r o t e a s e s, t h e i r s t a b i l i t i e s a r e e n h an ced f u r t h e r b y re d u c e d a u t o l y s i s. W e e ta ll (1 5 1 ) i n v e s t i g a t e d t h e o p e r a t i o n a l s t a b i l i t y o f a l k a l i n e p h o s p h a ta s e and L -am ino a c id o x id a s e bound t o g l a s s. A f te r 25 day s a t room te m p e r a tu re no s i g n i f i c a n t l o s s i n a c t i v i t y was n o te d f o r p o ly m e ric a l k a l i n e p h o s p h a ta s e. H ow ever, i n s o l u b i l i z e d L -am ino a c id o x id a s e d id e x h i b i t a s l i g h t l o s s in a c t i v i t y a f t e r 28 day s a t room te m p e r a tu r e. A n alogous r e s u l t s w ere o b s e rv e d w ith c o n tin u o u s, s t i r r e d ta n k r e a c t o r s. S i m i l a r l y, b o th c ru d e and c r y s t a l l i n e p e p s in bound t o p o ro u s g l a s s p a r t i c l e s r e t a i n e d 100# o f t h e i r a c t i v i t y a f t e r s to r a g e f o r 30 d ay s a t 6 C i n m o is t c a k e s. U nder o p e r a t i o n a l c o n d itio n s i n a colum n, no lo s s i n a c t i v i t y was n o te d a f t e r Uo d a y s. R oyer (1 2 5 ) h a s im m o b iliz e d p ro n a s e on a ry la m in e g l a s s and h as

32 o b s e rv e d l i t t l e change i n a c t i v i t y a f t e r 3 m onths vhen t h e p o ly m e ric enzyme was k e p t r e f r i g e r a t e d and i n a m o is t c o n d itio n. F i n a l l y, W e e ta ll ( lb 3 ) com pared w a t e r - i n s o l u b l e enzymes c o u p le d t o o rg a n ic p o ly m ers w ith w a t e r - i n s o l u b l e enzym es c o u p le d t o in o r g a n ic c a r r i e r s i n c lu d in g c o l l o d a l s i l i c a, g l a s s, and a lu m in a. He c o n c lu d e d t h a t enzym es c o v a l e n t l y c o u p le d t o in o r g a n ic c a r r i e r s h ad g r e a t e r s to r a g e s t a b i l i t y th a n enzym es c o v a le n tly a tta c h e d t o o rg a n ic p o ly m ers when s to r e d f o r s e v e r a l w eeks a t U and 2 3 C., d ry o r in d i s t i l l e d w a te r. He a l s o o b s e rv e d t h a t enzym es c o v a le n tly c o u p le d t o in o r g a n ic c a r r i e r s by s u lfo n a m id e lin k a g e w ere n o t as s t a b l e d u rin g s to r a g e a s enzym es c o u p le d by azo lin k a g e (1 U3 ). T h erm al S t a b i l i t y : Im proved th e rm a l s t a b i l i t i e s as com pared t o t h e c o rre s p o n d in g n a t i v e enzym es hav e b e en r e p o r te d f o r t h e fo llo w in g enzym es a t t a c h e d t o o r g a n ic c a r r i e r s : C M -c e llu lo se f i c i n ( 6 5 ), g lu c o s e o x id a s e im m o b iliz e d on c e llo p h a n e s h e e ts ( 2 l ), and D E A E -c e llu lo se - l a c t i c d e h y d ro g e n a se ( l 6 l ). P o ly m e ric enzym es e x h i b i t i n g lo w e r th e r m a l s t a b i l i t i e s th a n t h e c o rre s p o n d in g n a tiv e enzym es in c lu d e : p a p a in bound t o le u c in e - -a m in o p h e n y la la n in e co p o ly m er (131) and a l k a l i n e p h o s p h a ta s e ( 3 9 ), and g lu c o s e -6 - p h o s p h a te d e h y d ro g e n a se (bo) im m o b iliz e d o n to c o llo d io n m em branes. A s i m i l a r lo w e rin g o f th e rm a l s t a b i l i t y h a s b e e n r e p o r t e d f o r s e v e r a l o f t h e p o ly a n io n ic, p o l y c a t i o n i c, and p o ly a l c o h o l i c d e r i v a t i v e s o f p a p a in ( b 5 ). W e e ta ll ( lb 9 ) s tu d i e d th e r a t e o f th e r m a l i n a c t i v a t i o n o f t r y p s i n and p a p a in bound t o g l a s s. T h erm al i n a c t i v a t i o n o f b o th t r y p s i n and

p a p a in i n t h e i r s o lu b l e form s o c c u r re d w ith in 30 m in u te s a t a p p r o x i 33 m a te ly 60 C (1 9 ) an d in c r e a s e d a t h ig h e r te m p e r a tu r e s. W ith th e t r y p s i n - g l a s s d e r i v a t i v e s p r e p a re d by a z o - and s u lfo n a m id e c o u p lin g, t h e th e r m a l i n a c t i v a t i o n c u rv e s w ere s i m i l a r. I r r e v e r s i b l e d e n a tu r a tio n b eg an a t 53 C and 50 C, r e s p e c t i v e l y, v h en h e ld a t th o s e te m p e r a tu re s f o r 30 m in u te s. H ow ever, t h e p a p a in g l a s s d e r i v a t i v e was e x tre m e ly s t a b l e. When c o n t i n u a l l y a s s a y e d a t 88 C, no d e t e c t a b l e d e n a tu r a tio n o c c u rre d f o r a t l e a s t 80 m in u te s (ll+ 9 ). D ependence o f S t a b i l i t y on ph: Im proved s t a b i l i t i e s to w a rd a l k a l i n e ph*s up t o 1 0.7 have b e e n r e p o r te d f o r t h e E M A -d e riv a tiv e s o f t r y p s i n ( 8 3 ), p a p a in ( 1 5 6), an d c h y m o try p sin ( 1 5 6 ). C o n v e rs e ly, p o ly - c a t i o n i c d e r i v a t i v e s e x h ib ite d im p ro v ed s t a b i l i t i e s in t h e a c id ph ra n g e (1+5). I t h a s b e e n s u g g e s te d by L evin ( 8 3 ) an d by G o ld s te in ( U8) t h a t t h e s e phenom ena c o u ld be r e l a t e d t o l o c a l ph e f f e c t s in d u c e d by t h e p o l y e l e c t r o l y t e c a r r i e r. G o ld s te in (1+9) and S ilm an (1 3 1 ) o b se rv e d l i t t l e change in th e ph d ep en d en ce o f th e s t a b i l i t y o f p a p a in bound t o n e u t r a l c a r r i e r s as _-am inobenzyl c e l l u l o s e o r S-MDA r e s i n s v h en com pared t o t h e n a t i v e enzym e. I n c o n t r a s t j> -am inobenzyl c e l l u l o s e and S-MDA d e r i v a t i v e s o f p o l y t y r o s y l t r y p s i n (1+9) e x h i b i t e d m axim al s t a b i l i t y a t n e u t r a l and a l k a l i n e ph v a l u e s, i n c o n t r a d i s t i n c t i o n t o n a t i v e t r y p s i n o r p o ly t y r o s y l t r y p s i n w hich a r e m ost s t a b l e a t low ph v a lu e s (1+3, 9 2 ). W e e ta ll ( 1 5 1 ), L in e ( 8 8 ), and R oyer (1 2 5 ) h a v e shown t h a t enzym es im m o b iliz e d t o p o ro u s g l a s s p a r t i c l e s g e n e r a l l y e x h i b i t a b ro a d e n in g i n t h e i r maximum ph optim um.

3k I n c o n c lu s io n i t c an b e i n d i c a t e d t h a t th e m o d ifie d s t a b i l i t y p a t t e r n o f c o v a le n tly bound enzym es i s d e te rm in e d n o t o n ly by th e p h y s ic a l and c h e m ic a l c h a r a c t e r i s t i c s o f t h e c a r r i e r, b u t a l s o by th e n a tu r e o f t h e c h e m ic a l m o d if ic a tio n o f t h e enzyme m o ie ty b ro u g h t a b o u t b y t h e c o v a le n t b in d in g (l+ l). F a c to r s A f f e c tin g t h e K in e tic B e h a v io r The o b s e rv e d k i n e t i c b e h a v io r o f an im m o b iliz e d enzyme sy ste m i s t h e sum m ation o f t h e s u p e r p o s itio n o f t h e c a r r i e r c h a r a c t e r i s t i c s upon t h e s p e c i f i c enzyme k i n e t i c p a r a m e te r s. The e f f e c t s o f im m o b iliz a tio n on t h e a p p a r e n t k i n e t i c b e h a v io r o f t h e enzyme m ig h t b e r e s o lv e d a s fo llo w s C ^ l ) : ( a ) E f f e c ts o f d i f f u s i o n l i m i t a t i o n s th e k i n e t i c p a ra m e te rs o f enzym ic r e a c t i o n s m ig h t b e d e te rm in e d by t h e r a t e o f d i f f u s i o n o f s u b s t r a t e a c r o s s t h e u n s t i r r e d l a y e r s u rro u n d in g th e i n s o l u b l e m a tr ix, (b ) S t e r i c e f f e c t s when an im m o b iliz e d enzyme a c t s on a h ig h m o le c u la r w e ig h t s u b s t r a t e, s t e r i c r e s t r i c t i o n s im posed by t h e m a trix m ig h t m a rk e d ly a f f e c t t h e c o u rse o f t h e c a t a l y t i c r e a c t i o n. Cc) M ic ro e n v iro n m e n ta l e f f e c t s t h e s e a r e m ost p ro n o u n ced in t h e c a s e o f p o l y e l e c t r o l y t e c a r r i e r s, w here th e c h a rg e d m a tr ix im poses a m odif i e d m ic ro e n v iro n m e n t on t h e im m o b iliz e d enzym e. E f f e c t o f d i f f u s i o n : The v e l o c i t i e s o f r e a c t i o n s o f im m o b ilized enzyme p a r t i c l e s in aq ueous s o lu t i o n s a r e m a rk ed ly in c r e a s e d by r a p i d s t i r r i n g o f t h e i r s u s p e n s io n s ( 6 5 ), w hich a f f e c t s t h e th ic k n e s s o f th e u n s t i r r e d s o lv e n t l a y e r (59)* Hornby e t. a l. (6 6 ) d e r iv e d an e q u a tio n t o a c c o u n t f o r t h e e f f e c t o f d i f f u s i o n and e l e c t r i c a l p a ra m e te rs in

35 m o d ify in g t h e u s u a l M ic h a e lls -M e n te n c o n s ta n t o f th e enzym e: Km *Km + D ") ^RT-ZxF g rad * E q * ^ w h e re, K = t r u e M ic h a e lis -M e n te n c o n s ta n t m K* ~ a p p a re n t M ic h a e lis -M e n te n c o n s ta n t m x» e f f e c t i v e th ic k n e s s o f t h e d i f f u s i o n l a y e r v = maximum r e a c t i o n v e l o c i t y o f t h e f r e e enzyme S D s d i f f u s i o n c o n s ta n t o f th e s u b s t r a t e R - g a s c o n s ta n t T = a b s o lu te te m p e r a tu re o f t h e sy stem Z = e le c tr o c h e m ic a l v a le n c e o f t h e s u b s t r a t e g ra d = g r a d ie n t o f e l e c t r i c a l p o t e n t i a l F - F a ra d a y c o n s ta n t In t h e c o u rs e o f th e e n z y m a tic r e a c t i o n a s u b s t r a t e c o n c e n tr a tio n g r a d i e n t b u i l d s up a c r o s s t h e u n s t i r r e d b o u n d ary l a y e r ( 3 9 ). S a tu r a t i o n o f t h e p o ly m e ric enzyme o c c u rs a t h ig h e r s u b s t r a t e c o n c e n tr a tio n s th a n th o s e r e q u ir e d f o r t h e c o rre s p o n d in g n a t i v e enzyme i n s o l u t i o n : t h i s le a d s t o an i n c r e a s e i n th e v a lu e o f th e a p p a re n t M ic h a e lis c o n s t a n t, K^, w hich i s i n ag reem en t w ith t h e above e q u a tio n. From t h i s e q u a tio n i t a l s o can b e shown t h a t K i s i n v e r s e l y r e l a t e d t o th e m d i f f u s i o n te rm D, w h ich h a s b een a d e q u a te ly v e r i f i e d by e x p e rim e n ts o f o th e r w o rk e rs (0 5, 1 2 3, 1 6 2 ). When an enzyme i s d i s t r i b u t e d th ro u g h o u t a s w o lle n p o ly m e ric c a r r i e r, s u b s t r a t e c o n c e n tr a tio n g r a d ie n ts can a l s o b e e s ta b lis h e d

36 w i t h i n t h e r e g io n o f t h e im m o b iliz e d enzyme p h a s e. I n t h i s c a s e Goldman e t. a l. {1*2) h a v e shewn t h a t maximum a c t i v i t y w i l l be a t t a i n e d o n ly when t h e l o c a l s u b s t r a t e c o n c e n tr a tio n g r e a t l y ex c e e d s th e o f t h e n a tiv e enzym e. The e f f e c t o f an u n s t i r r e d l a y e r s u rro u n d in g a r i g i d p a r t i c l e on t h e M ic h a e lis c o n s ta n t o f an a t t a c h e d enzyme i s i l l u s t r a t e d in th e f o llo w in g ex am p les (1 3 1 ): (a ) H ornby e t. a l. (6 6 ) r e p o r te d a IT m o f 5.6 x 10 f o r c h y m o try p sin a t t a c h e d t o C M -c e llu lo se u s in g a c e t y l - -U L - ty r o s in e e t h y l e s t e r a s s u b s t r a t e. A v a lu e o f = 2.7 x 10 M was g iv e n by th e same a u th o r s f o r n a t i v e c h y m o try p s in. (b ) G o ld s te in e t. a l. (1 5 6 ) r e p o r t e d, f o r S-M DA-papain c o n ju g a te s a c t i n g on b e n z o y lg ly c in e e t h y l e s t e r, a o f 3.1+ x 1 0 ~ ^ com pared t o a o f 1.8 x lo ^ S i f o r n a t i v e p a p a in. G o ld s te in (1 5 6 ) a l s o r e p o r te d a Km = _2 1,7 x 10 M f o r S -M D A -su b tilo p e p tid a se A c o n ju g a te s a c t i n g on a c e t y l - L - ty r o s in e e t h y l e s t e r, w hich com pares t o a r e c o rd e d _2 10 M f o r n a t i v e s u b tilo p e p t i d a s e A. o f 0.5*+ x S t e r i c E f f e c t s : I m m o b iliz a tio n o f an enzyme o n to an o r g a n ic o r in o r g a n ic c a r r i e r may le a d t o s t e r i c r e s t r i c t i o n s on i t s r e a c t i v i t y w ith h ig h m o le c u la r w e ig h t s u b s t r a t e s. M ost o f th e w ork on t h e k i n e t i c b e h a v io r o f p o ly m e ric enzymes to w a rd la r g e s u b s t r a t e s h a s b e e n lim i t e d t o p r o t e a s e s. G e n e r a lly, im m o b iliz e d p r o te a s e s had lo w er s p e c i f i c a c t i v i t i e s to w a rd p r o t e i n s th a n t h e c o rre s p o n d in g n a tiv e enzym es (1 3 1, ll+ 6 ). F o r ex a m p le, p o ly m e ric p a p a in (1 3 1 ) and d e r i v a t i v e s o f p o ly t y r o s y l t r y p s i n (7 ) h y d ro ly z e d c a s e in a t i n i t i a l r a t e s w h ich w ere 30 t o 59X o f th o s e e x p e c te d on th e b a s i s o f t h e i r a c t i v i t y to w a rd

b e n z o y l- L - a r g in in e e t h y l e s t e r. O th e r p o ly m e ric enzym es e x h i b i t i n g low p r o t e o l y t i c a c t i v i t y in c lu d e t r y p s i n ( 1 0 0 ), b ro m e la in ( 1 5 7 ), f i c i n ( 6 5 ), p a p a in ( 1 5 6 ), and s u b t i l o p e p t i d a s e A (U 9 ). I n th e m a jo r ity o f th e s e c a s e s, s t e r i c h in d ra n c e in d u c e d by t h e c a r r i e r c o u ld b e a t t r i b u t e d as t h e c a u se f o r t h e lo w e rin g o f p r o t e o l y t i c a c t i v i t y (1+7)* O f te n, low p r o t e o l y t i c a c t i v i t y was acco m p an ied by a d e c r e a s e in t h e t o t a l num ber o f p e p tid e b o n d s s u s c e p t i b l e t o h y d r o ly s is (1 5 6 ). T h is e f f e c t v a s p a r t i c u l a r l y p ro n o u n c ed in t h e c a s e o f p o l y e l e c t r o l y t e enzyme d e r iv a t i v e s w here e l e c t r o s t a t i c i n t e r a c t i o n s b etw een t h e c h a rg e d c a r r i e r and th e c h a rg e d, h ig h m o le c u la r w e ig h t p r o t e i n s u b s t r a t e w ere su p e rim p o se d on t h e s t e r i c r e s t r i c t i o n s ( ^ 1, ^ 7, 1 1 9 ). R e s u lts by L e v in e t. a l. ( 8 3 ), s u g g e s t t h a t t h e num ber o f p e p tid e bonds s p l i t by p o ly m e ric t r y p s i n c o u ld b e c o n t r o l l e d b y v a r y in g t h e c h a rg e d e n s ity on t h e p o ly e l e c t r o l y t e enzyme d e r i v a t i v e. F u rth e rm o re, S ilm an and K a tc h a ls k i (1 3 1 ) i n d i c a t e d t h a t t h e s i t e s o f a t t a c k as w e ll a s t h e r a t e s o f c le a v a g e o f a h ig h m o le c u la r w e ig h t s u b s t r a t e m ig h t b e a f f e c t e d by t h e c h e m ic a l n a tu r e o f t h e p o ly m e ric c a r r i e r. O n g 's w ork (1 1 9 ) w ith t r y p s i n s u b s t a n t i a t e s th e fo rm e r. He e s t a b l i s h e d t h a t w h ereas t r y p s i n h y d ro ly z e d t h e 15 l y s y l p e p tid e bonds in p e p s in o g e n, th e IM A -try p sin d e r i v a t i v e n e v e r c le a v e d m ore th a n 10 b o n d s. T hese f in d in g s w ere c o n firm e d by p e p tid e m apping. The d a t a i n d i c a t e s t h a t t h e c h e m ic a l n a tu r e o f th e c a r r i e r, a t le a B t i n th e c a s e o f p o l y e l e c t r o l y t e enzyme d e r i v a t i v e s, may im pose a d d i t i o n a l r e s t r i c t i o n s on t h e s p e c i f i c i t y o f t h e bound enzyme ( 7 1 ). T h ese r e s t r i c t i o n s p ro b a b ly r e s u l t from c h a rg e i n t e r a c t i o n s b etw een

38 c a r r i e r an d d i f f e r e n t r e g i o n s, o r d i f f e r e n t se q u e n c e s on t h e h ig h m o le c u la r w e ig h t s u b s t r a t e m o le c u le ( 7 1 ). M ic ro e n v iro n m e n ta l E f f e c t s : Enzymes im m o b iliz e d on s o l i d s u p p o rts a r e s i t u a t e d i n a m ic ro e n v iro n m e n t v e ry d i f f e r e n t from th e aq u eo u s s o lu t i o n s i n w hich th e b e h a v io r o f p u r i f i e d enzym es u s u a lly i s exam in ed. C hanges i n t h e l o c a l d i e l e c t r i c c o n s t a n t, e l e c t r o s t a t i c f i e l d, io n ic s t r e n g t h, o r s u b s t r a t e c o n c e n tr a tio n o f th e m ic ro e n v iro n m ent c o u ld a f f e c t t h e mode o f a c tio n o f t h e enzym e. The m ost th o ro u g h ly i n v e s t i g a t e d e f f e c t s o f m ic ro e n v iro n m e n t on th e k i n e t i c b e h a v io r o f im m o b iliz e d enzym es a r e th o s e o f an e l e c t r o s t a t i c f i e l d p ro d u c e d by h ig h ly c h a rg e d c a r r i e r s (1*1). G o ld s te in e t. a l. (1+8) an d G o ld s te in and K a tc h a ls k i (1*7) r e p o r te d t h a t p o ly a n io n ic d e r i v a t i v e s o f s e v e r a l p r o t e o l y t i c enzym es a c t i n g on t h e i r s p e c i f i c, low m o le c u la r w e ig h t s u b s t r a t e s had t h e i r p H - a c t i v i ty p r o f i l e s d is p la c e d to w a rd s m ore a l k a l i n e p H -v a lu e s by 1 t o 2.5 ph u n i t s a t low io n ic s t r e n g t h ( r / 2 0,0 1 ) as com pared t o t h e n a tiv e enzym es. I n c o n t r a s t, p o l y c a t i o n i c d e r i v a t i v e s o f th e same enzym es e x h ib ite d d i s p la c e m e n t o f p H - a c t i v i ty p r o f i l e s to w a rd m ore a c i d i c p H -v a lu e s (1+7). T h ese a n o m a lie s w ere a b o lis h e d a t h ig h i o n i c s t r e n g t h ( r / 2 ^ l ). G o ld s te in e t. a l. (1+8) a l s o h a s r e p o r te d t h a t t h e a p p a re n t M ic h a e lis c o n s ta n t o f a p o ly a n io n ic d e r i v a t i v e o f t r y p s i n (E M A -try p sin ) w ith p o s i t i v e l y c h a rg e d s u b s t r a t e b e n z o y l- L - a r g in in e am ide was lo v e r a t low io n ic s t r e n g t h, th a n t h a t o f th e n a tiv e enzym e. T h is e f f e c t was a b o lis h e d a t h ig h io n ic s t r e n g t h. S im ila r r e s u l t s h av e b een r e p o r te d f o r th e p o ly a n io n ic d e r i v a t i v e s o f p a p a in (1+6), f i c i n ( 6 5 ), and b ro m e la in.

T hese phenom ena h a v e "been e x p la in e d as r e s u l t i n g from an u n e q u a l d i s t r i b u t i o n o f io n i c s p e c ie s b etw een t h e c h a rg e d p o ly e le c tr o y te -e n z y m e 39 p a r t i c l e and th e s u rro u n d in g s o l u t i o n (U 8). The l o c a l h y d ro g e n -io n c o n c e n tr a tio n i n t h e r e g io n o f th e c h a rg e d enzyme d e r i v a t i v e c o u ld b e d e s c r ib e d by e q u a tio n 2 ( 7 1 ): w h e re, i o zeip/kt Eq. (2 ) h* v - e a^+ an d a + = h y d ro g en io n a c t i v i t i e s i n t h e p o l y e l e c t r o l y t e - enzyme d e r i v a t i v e p h a se and t h e e x t e r n a l s o l u t i o n r e s p e c t i v e l y V* = e l e c t r o s t a t i c p o t e n t i a l in t h e dom ain o f th e c h a rg e d im m o b iliz e d enzyme p a r t i c l e e = p o s i t i v e e l e c t r o n c h a rg e z = p o s i t i v e o r n e g a tiv e i n t e g e r o f v a lu e u n i t y i n t h e c a s e o f h y d ro g en i o n s. K T - B o ltzm an n c o n s ta n t = a b s o lu te te m p e r a tu re I t can b e c o n c lu d e d from t h i s e q u a tio n t h a t t h e l o c a l ph w i l l b e lo w e r i n t h e r e g io n o f t h e p o ly a n io n ic enzyme p a r t i c l e th a n in th e e x t e r n a l s o l u t i o n. F o r p o l y c a t i o n i c enzym es t h e r e v e r s e i s t r u e. T h u s, t h e p H - a c t i v i ty p r o f i l e o f a p o ly m e ric enzyme w i l l b e d is p la c e d to w a rd s m ore a l k a l i n e ph v a lu e s f o r a n e g a t i v e l y c h a rg e d c a r r i e r and to w a rd s m ore a c id ph v a lu e s f o r a p o s i t i v e l y c h a rg e d c a r r i e r. The d ep en d en ce o f enzym ic a c t i v i t y on ph i s r e l a t e d t o th e d i s s o c i a t i o n o f i o n i z i n g g ro u p s p a r t i c i p a t i n g i n t h e enzym ic c a t a l y s i s m echanism s (1 0, 2 8 ). The d is p la c e d p H - a c tiv ity p r o f i l e s o f a

l+o p o l y e l e c t r o l y t e enzyme d e r i v a t i v e can t h e r e f o r e h e a l t e r n a t i v e l y r e p r e s e n te d in te rm s o f ch an g es in t h e v a lu e o f t h e a p p a re n t a c id ic d i s s o c i a t i o n c o n s ta n ts (pka ( a p p ) ) o f th e a c t i v e s i t e i o n iz in g g ro u p e f f e c t e d hy th e p o l y e l e c t r o l y t e m ic ro e n v iro n m e n t o f t h e enzyme d e r i v a t i v e a s e x p re s s e d i n e q u a tio n 3 (7 1 ) * ApKa = PKa - P *a» * U3 E q* (3 ) w h e re, pka and pk^ = a p p a re n t d i s s o c i a t i o n c o n s ta n ts f o r t h e n a tiv e enzyme and p o l y e l e c t r o l y t e enzyme d e r i v a t iv e r e s p e c t i v e l y, c a l c u l a t e d from t h e a p p r o p r ia te p H - a c t i v i ty p r o f i l e. T h is m o d el, sum m arized i n e q u a tio n s 2 and 3, e x p la in s s a t i s f a c t o r i l y m ost o f t h e known d a t a on t h e ph -dependence o f a c t i v i t y o f p o ly m e ric enzym es. The ch an g es in th e v a lu e s o f t h e a p p a re n t M ie h a e lis c o n s ta n ts o f p o l y e l e c t r o l y t e enzyme d e r i v a t i v e s a c tin g on c h a rg e d low m o le c u la r w e ig h t s u b s t r a t e s can h e r e l a t e d t o t h e u n e q u a l d i s t r i b u t i o n o f su b s t r a t e betw een t h e c h a rg e d enzyme p a r t i c l e and t h e e x t e r n a l s o lu t i o n by t h e fo llo w in g e q u a tio n ( 7 l ) : j g j i _ w h e re, [ s ] ^ and [ S ] = t h e s u b s t r a t e c o n c e n tr a tio n s i n t h e r e g io n o f t h e p o l y e l e c t r o l y t e enzyme p a r t i c l e and t h e e x t e r n a l s o lu t i o n r e s p e c t i v e l y. When p o l y e l e c t r o l y t e enzyme d e r i v a t i v e and s u b s t r a t e p o s s e s s o p p o s ite

c h a rg e s ([s]1 > [S f) t th e enzym e d e r i v a t i v e w i l l a t t a i n V max a t a lo w e r s u b s t r a t e c o n c e n tr a tio n com pared t o t h e n a tiv e enzym e, and th e K f o r t h e im m o b iliz e d enzym e w i l l be lo w e r (71)* The o p p o s ite w i l l in b e t r u e when t h e s u b s t r a t e an d p o l y e l e c t r o l y t e enzyme p a r t i c l e p o s s e s s Ul th e same c h a rg e ( [ S ] 1 < [ s ] ), and th e K o f t h e p o ly m e ric enzyme w i l l b e h ig h e r. T h u s, t h e v a lu e o f t h e e x t e r n a l s u b s t r a t e c o n c e n tr a tio n [ S ], a t w hich half-m axim um v e l o c i t y i s a t t a i n e d, le a d s t o an a p p a re n t M ic h a e lis c o n s ta n t K, r e l a t e d t o th e M ic h a e lis c o n s ta n t o f th e n a tiv e m enzyme b y t h e e x p r e s s io n ( 7 1 ):, - m * / kt (, m m A r e c e n t re v ie w a r t i c l e by K a tc h a ls k i e t. a l. (7 3 ) d is c u s s e s in m ore d e t a i l t h e e f f e c t o f t h e m ic ro e n v iro n m e n t on t h e mode o f a c t i o n o f im m o b iliz e d enzym es. Enzyme Colum ns Im m o b iliz e d enzyme colum ns have b e e n em ployed t o r e g u l a t e th e e x te n t o f c o n v e r s io n o f s u b s t r a t e t o p r o d u c t, f o r th e c o n tin u o u s p r e p a r a t i o n o f p r o d u c t, and i n au to m ated a n a l y t i c a l p r o c e d u r e s. B a r - E li and K a tc h a ls k i (7 ) and l a t t e r L i l l y (8 5 ) h av e i n v e s t i g a te d t h e k i n e t i c b e h a v io r o f p o ly m e ric enzym es i n co lu m n s. In 1963 B a r - E li and K a tc h a ls k i u s e d t h e i n t e g r a t e d form o f th e M ic h a e lis - M en ter e q u a tio n ( e q u a tio n 6 ), d e r iv e d f o r enzym es in s o l u t i o n, t o o b ta in e q u a tio n 7. (s0 - S t) + k I n (S Q/S t ) = h 3E0t Eq. (6)

w here, Sc - i n i t i a l s u b s t r a t e c o n c e n tr a tio n S-t = s u b s t r a t e c o n c e n tr a tio n a t t i m e, t» M ic h a e lis * c o n s ta n t E0 = enzym e c o n c e n tr a tio n k 3 *= r a t e c o n s ta n t fo** d i s s o c i a t i o n o f [ES] com plex w h e re, (S 0 - Sh ) + i n (S D/S t ) = k 3ED (h /V ) E q. (T) h/v = r e s id e n c e tim e o f s u b s t r a t e i n th e enzyme colum n Sj! = s u b s t r a t e c o n c e n tr a tio n o f e lu e n t The above e q u a tio n c o r r e l a t e s t h e e x te n t o f s u b s t r a t e c o n v e rs io n w ith t h e enzyme c o n c e n t r a t i o n, th e h e ig h t o f t h e co lu m n, and th e l i n e a r r a t e o f flo w o f s u b s t r a t e th ro u g h t h e colum n i n c e n tim e te r s p e r u n i t tim e ( 7 5 ). The e f f i c i e n c y o f o p e r a tio n o f b io c h e m ic a l r e a c t o r s u s in g im m o b iliz e d enzym es i n s u s p e n s io n i n a c o n tin u o u s - f e e d s t i r r e d ta n k h a s b e e n i n v e s t i g a t e d an d com pared t o a p ack ed b e d (Ul, 8U, 86), L i l l y and S h a rp (8U) showed t h a t in a ta n k c o n ta in in g a s u s p e n s io n o f p o ly m e ric c h y m o try p sin a g i t a t e d by a t u r b i n e i m p e l l e r, b o th th e a p p a re n t an d V Y v a r i e d w ith th e am ount o f a g i t a t i o n, i n d i c a t i n g t h a t t h e r a t e o f th e r e a c t i o n was p a r t l y d i f f u s i o n c o n t r o l l e d. H ow ever, in a p a c k e d b e d t h i s l i m i t a t i o n c o u ld b e overcom e by i n c r e a s i n g th e l i n e a r v e l o c i t y o f t h e s u b s t r a t e s o lu t i o n th ro u g h t h e b ed ( U l, 8U ).

1*3 A p p lic a tio n A ff i n i t y C h ro m ato g rap h y : T h is te c h n iq u e i s u t i l i z e d t o p u r i f y one o f t h e com ponents o f a sy ste m c o n s is t i n g o f tw o o r m ore s p e c ie s v h o se r e v e r s i b l e i n t e r a c t i o n s r e f l e c t a f f i n i t y w ith a h ig h d e g re e o f " b io lo g ic a l s p e c i f i c i t y ( 2 3 ). The b a s ic p r i n c i p l e i s t o im m o b iliz e one o f t h e com ponents o f th e i n t e r a c t i n g sy stem t o an i n s o l u b l e s u p p o rt w hich can th e n s e l e c t i v e l y i n t e r a c t w ith th e o th e r com ponents i n th e m edium. E l u tio n can b e a c h ie v e d by any p ro c e d u re w hich r e s u l t s i n d i s s o c i a t i o n o f th e co m p lex. A f f i n i t y ch ro m ato g rap h y h as b een em ployed t o p u r i f y enzym es such as f la v o k in a s e ( 3 ), r ib o n u c le a s e ( 1 5 9 ), t r y p s i n ( 3 0 ), and mushroom t y r o s i n a s e ( 8 l ). F r i t z, W erle and t h e i r co w o rk ers ( 3 1*) hav e r e v e r s e d t h e g e n e r a l p ro c e d u re b y u s in g bonded p r o te a s e s t o i s o l a t e p h a rm a c o lo g i c a l l y im p o rta n t i n h i b i t o r s o f t h e s e enzym es from b i o l o g i c a l f l u i d s. T h is m ethod a l s o h a s b e e n u s e d in t h e a r e a o f im m unology w here i t i s f r e q u e n t l y im p o rta n t t o s e l e c t one p a r t i c u l a r ty p e o f a n tib o d y m o le c u le o u t o f a h ig h ly com plex m ix tu r e. T h is can be a c c o m p lish e d q u i t e sim p ly b y u s in g m a tr ic e s w ith t h e a n tig e n c o rre s p o n d in g t o th e d e s ir e d a n t i body c o v a le n tly a t t a c h e d. C o n v e rs e ly, m a trix -b o u n d a n tib o d ie s c an be em ployed t o i s o l a t e t h e i r s p e c i f i c a n tig e n s. Enzyme E l e c tr o d e : G u ilb a u lt and M o n talv o (1 0 4 ) h av e em bedded u r e a s e in a p o ly a c ry la m id e membrane a b o u t 0.1 m i l l i m e t e r t h i c k on an e l e c t r o d e s e n s i t i v e t o ammonium io n s. In th e p re s e n c e o f u r e a s e, u r e a and w a te r r e a c t t o form ammionium io n s and b ic a r b o n a te. The c o n c e n tr a tio n o f ammonium io n s t h a t b u i l d s up a t th e s u r f a c e o f th e

uu e l e c t r o d e y i e l d s a d i r e c t m easu re o f t h e u r e a p r e s e n t in th e sam p le. Enzyme e l e c t r o d e s o f t h i s ty p e have o p e ra te d c o n t i n u a l l y a t room te m p e r a tu re f o r t h r e e w eeks w ith o u t l o s s o f a c t i v i t y {lok). Food A p p l i c a t i o n s : F e r r i e r e t. a l, ( 3 l ) u s e d im m o b iliz e d p e p s in i n a colum n t o a c t upon skim m ilk a c i d i f i e d t o ph 5-6. t h e m ilk t o 30 C, a t y p i c a l skim m ilk c u rd f o r fo rm ed. Upon w arm ing H ow ever, p a s s a g e o f skim m ilk o r whey th ro u g h t h e colum n s lo w ly i n a c t i v a t e d th e in s o l u b l e enzym e, S h ip p e a t. a l. (1 3 0 ) p a s s e d m ilk o v e r t r y p s i n im m o b iliz e d on p o ro u s g l a s s t o r e t a r d t h e dev elo p m en t o f o x id iz e d f l a v o r. T h e ir r e s u l t s i n d i c a t e d t h a t m ilk t r e a t e d w ith p o ly m e ric t r y p s i n i s m ore s t a b l e t o o x id a tio n th a n u n t r e a t e d m ilk. T a b le k i n d i c a t e s o th e r p o s s i b l e a p p l i c a t i o n s o f im m o b iliz e d enzyme te c h n o lo g y.

Table k A p p lic a tio n s o f I n s o lu b iliz e d Enzymes I n s o lu b iliz e d Enzyme A p p lic a tio n 1. G lucose o x id ase 2. G lucose o x id ase and p e ro x id a se 3. C at a la s e P e ro x id a se 5. H exokinase, phosp h o g lu - c o iso m erase, p h o sp h o fru c to - k in a s e, a ld o la s e 6. A ld o lase and g ly c e r a ld e - hydephosphate dehydrogenase T* P y ru v ate k in a se and l a c t a t e dehydrogenase 8. NAD p y ro p h o sp h o ry lase co n tin u o u s 'r e a g e n t l e s s ' a ssa y o f g lu c o se c o n tin u o u s, tv o - s te p d e g ra d a tio n : D -glucose + 0 2 = D -glucono-6 - la c to n e + H2O2 H2O2 + H d oner = 2H2O + o x id iz e d doner in v iv o enzyme replacem en t in a c a ta la sa e m ic m ice p re p a ra tio n o f enzyme-bound p ap er s t r i p s f o r th e d e te c tio n o f H2O2 ( to 1 0-6M) c o n tin u o u s, f o u r - s te p s y n th e s is and d e g ra d a tio n : D -glucose t o D -glucose 6-p h o sp h a te t o D -fru c to se 6- p h osphate t o D -fru c to se 1,6 -d ip h o s p h a te t o d ih y d ro x y aceto n e phosp h ate and D -g ly cerald eh y d e 3-p h o sp h ate c o n tin u o u s, tv o - s te p d e g ra d a tio n : D -fru c to se 1,6 -d ip h o sp h a te to D -g ly cerald eh y d e 3 -p h o sp h ate t o 3 -p h o sp h o -D -g ly ceric a c id c o n tin u o u s, tw o -ste p s y n th e s is : p h o sp h o en o lp y ru v ate t o p y ru v a te t o L - la c ta te co n tin u o u s s y n th e s is o f NAD 9. C h o lin e s te ra s e s c o n tin u o u s assay o f a n ti- c h o lin e s te r a s e compounds \n

Table U (Continued) Applications of Insolubilized Enzymes I n s o lu b iliz e d Enzyme A p p lic a tio n 10. Amylases 11. G a la c to s id e se 12. I n v e rta s e 13. C arb o x y p ep tid ase co n tin u o u s p ro d u c tio n o f h ig h g lu co se sy ru p s c o n tin u o u s h y d ro ly s is o f 0 -D -g a la c to s id e s co n tin u o u s h y d ro ly s is o f su c ro se co n tin u o u s r e s o lu tio n o f c h lo ro a c e ty l-d L -a la n in e l k, Rennin c l o t t i n g m ilk 15. T ry p sin s e le c tiv e d e g ra d a tio n (a n d /o r a c tiv a tio n ) o f ( i ) myosin ( i i ) heavy meromyosin ( i i i ) fib rin o g e n ( iv ) proth ro m b in and r e l a t e d c l o t t i n g f a c to r s (v ) chym otrypsinogen ( v i) pepsin o g en and carb o x y m eth y lated pep sin o g en ( v i i ) p r e k a llik r e in l 6. T ry p sin and rib o n u c le a s e s t a b i l i z a t i o n o f each in o rd e r t o stu d y th e r e v e r s ib le re d u c tio n o f t h e i r d is u lp h id e bonds IT, Chym otrypsin 18. P apain c l o t t i n g o f m ilk ( i ) s e le c tiv e d e g ra d a tio n s o f a n tib o d ie s ( i i ) c h ill- p r o o f in g o f b e e r 4 o\

Table I (Continued) Applications of Insolubilized Enzymes I n s o lu b iliz e d Enzyme A p p lic a tio n 19. Thrombin s e le c tiv e d e g ra d a tio n o f fib rin o g e n 2 0. R enin a c t iv a tio n o f a n g io te n sin o g e n 21. S tre p to k in a s e s e le c tiv e a c tiv a tio n o f plasm inogen 22. K a llik r e in a c t iv a tio n o f p r e k a llik r e in 23. A sp arag in ase ( i ) co n tin u o u s r e s o lu tio n o f D,L -a sp arag in e ( i i ) tre a tm e n t o f lymphosarcoma D ata ta k e n from M elrose (9M -

SCOPE OF INVESTIGATION A r e p o r t on t h e d is p o s a l o f d a ir y w a s te s (5 8 ) h a s shown t h a t c e r t a i n fo o d c o n s t i t u e n t s su ch a s m ilk p r o t e i n s te n d t o c r e a t e p ro b le m s i n b i o l o g i c a l tr e a tm e n t p r o c e s s e s. D i f f i c u l t i e s h av e b e e n e n c o u n te re d i n t h e b i o d e g r a d a b i l i t y o f c e r t a i n fo o d c o n s t i t u e n t s, p a r t i c u l a r l y B - l a c t o g l o b u l i n, and i n t h e i r a b i l i t y t o i n t e r a c t w ith o th e r m acrom o le c u le s a n d /o r t h e m ic r o f lo r a o f t h e b i o l o g i c a l tr e a tm e n t s y s te m, r e s u l t i n g i n im peded d e g r a d a tio n, fo a m in g, o r i n t e r f e r e n c e w ith oxygen t r a n s p o r t, th e r e b y re d u c in g th e e f f i c i e n c y o f t h e w a ste d i s p o s a l p l a n t. A tte m p ts t o im prove th e w a s te d is p o s a l p l a n t 's e f f i c i e n c y by p r e t r e a t i n g t h e w a s te m a t e r ia l w ith s o lu b le p r o te a s e p r e p a r a t i o n s have m et w ith some s u c c e s s. H ow ever, b e c a u s e o f t h e i r e x p e n s e, s o lu b le p r o te a s e s h av e b e e n em ployed f o r t h i s p u rp o se o n ly as a l a s t r e s o r t. P r e d e g r a d a tio n o f t h e s e fo o d c o n s t i t u e n t s by enzym es a tta c h e d t o i n s o l u b l e s u p p o rts may o f f e r a s o l u t i o n t o t h e s e p ro b lem s by e lim in a t i n g d i f f i c u l t i e s a s s o c i a t e d w ith m a c ro m o le c u le -m ic ro flo ra i n t e r a c t i o n s. H ow ever, l i t t l e w ork h a s b een c o n d u c te d t o d e te rm in e th e e f f e c t s o f v a r io u s m ilk c o n s t i t u e n t s on t h e a c t i v i t y o f im m o b iliz e d enzym es. T h e r e f o r e, th e m a jo r p u rp o se o f t h i s s tu d y was t o i n v e s t i g a t e th e a c t i o n o f an im m o b iliz e d p r o t e a s e, p r o n a s e, on c e r t a i n p u r i f i e d m ilk p r o t e i n s. The s p e c i f i c o b j e c t i v e s w ere: ( a ) To im m o b iliz e p ro n a s e on a p o ro u s g l a s s s u p p o rt and d e te rm in e i t s a c t i v i t y, ua

U9 <b) To d e te rm in e t h e optim um c o n d itio n s f o r t h e maximum e n z y m a tic d e g r a d a tio n o f s e l e c t e d, p u r i f i e d m ilk p r o t e i n s. ( c ) To d e te rm in e t h e a p p l i c a b i l i t y o f u t i l i z i n g p ro n a s e as a p r e tr e a tm e n t p r o c e s s f o r b i o l o g i c a l w a s te s.

EXPERIMENTAL PROCEDURE im m o b iliz a tio n o f P ro n a se t o G la s s D i a z o t i z a t i o n : One gram o f a ry la m in e g l a s s pow der (C o rn in g G la s s W orks, C o rn in g, New Y o rk ), 10 ml o f 2 N HC1, and 20 m l d i s t i l l e d w a te r w ere m ixed in an ic e - c o o le d E rle n m e y e r f l a s k. F i v e - t e n t h s ml o f 0.5 N NaNOg was ad d ed and s t i r r i n g was c o n tin u e d f o r 15 m in u te s. The g l a s s d e r i v a t i v e was f i l t e r e d on a f r i t t e d d i s c, w ashed w ith 200 ml o f 3% s u lfa m ic a c i d s o lu t i o n t o d e s tr o y any e x c e s s n i t r o u s a c i d, and f i n a l l y w ashed w ith 100 ml d i s t i l l e d w a te r. C o u p lin g : The g la s s d e r i v a t i v e was added t o 50 m l o f a r e f r i g e r a t e d s o lu t i o n o f p ro n a s e (Sigm a C hem ical Company, S t. L o u is, M is s o u ri) c o n ta in in g 50 rag o f enzyme in.05 N T r i s b u f f e r, ph 7. 0. The m ix tu re w as s t i r r e d f o r 60 m in u te s. A liq u o ts o f t h e enzyme s o l u t i o n w ere rem oved p e r i o d i c a l l y f o r a n a l y s i s. F o llo w in g c o u p lin g, th e g l a s s - enzyme d e r i v a t i v e s o lu t i o n was f i l t e r e d on a f r i t t e d d i s c, w ashed w ith 100 ml o f T r is b u f f e r, ph 7. 0, and 100 m l o f d i s t i l l e d w a t e r, and s to r e d u n d e r w a te r a t l* C. A ssay P ro c e d u re The s p e c tro p h o to m e tr ic a s s a y p ro c e d u re d e s c r ib e d i n M ethods o f E nzym atic A n a ly s is (12) was u t i l i z e d t o d e te rm in e th e am ount o f enzyme im m o b iliz e d t o th e g l a s s s u p p o rt. 50

51 A c t i v i t y o f S o lu b le P ro n a se on S e le c te d M ilk P r o te i n s A p re d e te rm in e d am ount o f t h e d e s ig n a te d p r o t e i n was d is s o lv e d in.0 5 N T r i s b u f f e r, ph 7. 0. F o u r m l o f t h i s p r o t e i n s o l u t i o n was p la c e d i n a t e s t tu b e and one m l o f p ro n a s e ( l mg/1 m l ), p r e v io u s ly d is s o lv e d i n T r i s b u f f e r, ph 7. 0, was a d d ed. The b la n k c o n ta in e d f o u r m l o f t h e d e s ig n a te d p r o t e i n and one ml o f d i s t i l l e d w a te r. A ll t e s t tu b e s w ere p la c e d on a D u b n o ff m e ta b o lic s h a k e r b a th a t room te m p e ra t u r e, and th e r e a c t i o n was a llo w e d t o c o n tin u e f o r 30 m in u te s. T h en, f i v e m l o f 25)5 (w /v ) t r i c h l o r o a c e t i c a c id was ad d ed t o a l l t u b e s, m ixed f o r f i v e seco n d s on a V o rte x -G e n ie m ix e r, and a llo w e d t o s ta n d q u ie s c e n tly f o r 20 m in u te s a t room te m p e r a tu r e. The c o n te n ts w ere f i l t e r e d th ro u g h tw o s h e e ts o f Whatman No. h2 f i l t e r p a p e r, and t h e f i l t r a t e was m easu red s p e c tr o p h o to m e tr ic a lly a t 280 nm w ith a H ita c h i P e rk in -E lm e r 139 UV-Vis s p e c tro p h o to m e te r. A ll e x p e rim e n ts w ere ru n in d u p l i c a t e. A c t i v i t y o f P o ly m e ric P ro n a se on S e le c te d M ilk P r o te in s A j a c k e te d g l a s s co lu m n, P h a rm a c ia ty p e K 9 / 1 5, w ith a d ia m e te r o f 0.9 cm, a le n g th o f 15 cm, and a b ed volum e o f 9.5 ml was u s e d i n i n v e s t i g a t i o n s w ith im m o b iliz e d p r o n a s e. The v o id volum e o f t h e enzyme colum n was d e te rm in e d u s in g a 0. IjC b lu e d e x tr a n s o l u t i o n. I n d e te rm in in g t h e e n z y m a tic a c t i v i t y o f p o ly m e ric p ro n a s e on s e l e c t e d m ilk p r o t e i n s, w a te r was a llo w e d t o flo w th ro u g h t h e colum n c o n ta in in g t h r e e gram s o f th e e n z y m e -g la ss p r e p a r a t i o n u n t i l t h e w a te r l e v e l h a d re a c h e d th e to p o f th e enzyme colum n. T hen, th e

p r o t e i n s o l u t i o n, p r e v io u s ly m ade-up i n.05 N T r i s " b u ffe r, ph 7. 0, 52 was added and "between 15 and 20 ml o f e lu a n t w ere d is c a r d e d. Flow r a t e th ro u g h t h e colum n was k e p t c o n s ta n t b y u s in g a B u c h le r p e r i s t a - t i c, m u l t i - c h a n n e l, p o l y s t a l t i c i n f u s io n pump a t t h e i n l e t t o t h e colum n and c o n t r o l l e d b y a screw clam p a t t h e o u t l e t o f t h e colum n. F o u r m l sam p les w ere c o l l e c t e d in d u p l i c a t e i n g ra d u a te d t e s t tu b e s an d p la c e d in i c e u n t i l a l l sam p le s h a d b e e n c o l l e c t e d. The b la n k s o l u t i o n c o n s is te d o f f o u r ml o f t h e p r o t e i n s o l u t i o n n o t t r e a t e d by t h e enzym e. T h e n, f o u r m l o f 25$ (w /v ) t r i c h l o r o a c e t i c a c id was added t o e a c h sam p le, m ixed f o r f i v e seco n d s on a V o rte x -G e n ie, and a llo w e d t o s ta n d q u i e s c e n t ly a t room te m p e r a tu re f o r 20 m in u te s. The c o n te n ts w ere f i l t e r e d th ro u g h tw o s h e e ts o f Whatman No. k2 f i l t e r p a p e r, and t h e f i l t r a t e was m easu red s p e c tr o p h o ta m e tr ic a lly a t 280 nm a g a i n s t th e u n t r e a t e d p r o t e i n b la n k u s in g a Coleman 12U d o u b le beam s p e c tr o p h o to m e te r. D e te rm in a tio n o f P r o te i n P u r i t y The p u r i f i e d m ilk p r o t e i n s u s e d i n t h i s s tu d y ( f i - l a c t o g l o b u lin, a - l a c t a l b u m in, a - c a s e i n, and w hole c a s e in ) w ere p u rc h a s e d from N u t r i t i o n a l B io c h e m ic a ls, C le v e la n d, O hio. S ta r c h g e l e l e c t r o p h o r e s i s ( 1 0 3 ), and v e r t i c a l s la b p o ly a c ry la m id e g e l e l e c t r o p h o r e s i s ( 1 0 2 ), w ere u t i l i z e d t o d e te rm in e th e p u r i t y o f t h e p u rc h a s e d p r o t e i n sam p le s. M o is tu re C o n te n t o f I n s o lu b le P ro n a se F o u r m o is t p o ly m e ric p ro n a s e sam p les w ere p la c e d on s e p a r a t e w atch g l a s s e s, p r e v io u s ly w eig h ed on a M e ttle r H10T a n a l y t i c a l b a la n c e. The w a tc h g l a s s e s w ith th e sam p les w ere w e ig h e d, an d t h e

sam p les v e r e d r ie d f o r UO m in u te s a t 110 C i n a M odel l 6 T h e lc o oven* The sam p les w ere t r a n s f e r r e d immediately t o a d e s s l c a t o r, c o o le d f o r 10 m in u te s and w eig h ed. The m o is tu re c o n te n t was c a l c u l a t e d as f o llo w s : % moisture = Ms plejret - wt. sample dry x 10Q w t. sam p le w et 53 T herm al S t a b i l i t y T h re e d i f f e r e n t te m p e r a tu re s (3 0 C, 50 C, and T0 C) v e r e u t i l i z e d f o r 6 h o u rs e a c h t o stu d y th e e f f e c t o f h e a t on t h e b i o l o g i c a l a c t i v i t y o f p o ly m e ric p ro n a s e. Two p o ly m e ric p ro n a s e colum ns v e re u s e d, e a c h c o n ta in in g t h r e e gram s o f t h e g l a s s enzyme d e r i v a t i v e, one f o r s t u d i e s a t 30 and 50 C, and t h e o th e r f o r e x p e rim e n ts a t 70 C. Bound enzyme in t h e colum n was s u b je c te d t o t h e d e s ig n a te d te m p e r a tu re f o r one h o u r and th e n r e a c t e d w ith 25 ml o f c a s e i n, ph 7.1, a t a flo w r a t e o f 1 m l/2.5 m in u te s. Two 5 m l sam p les w ere c o l l e c t e d a f t e r 10 ml o f p r o t e i n e lu a n t h ad b e e n d is c a r d e d. The two s a m p le s, t o g e t h e r w ith t h e p r o te in sam ple t o be u s e d a s a b la n k v e re k e p t i n i c e u n t i l a l l sam p les w ere c o l l e c t e d. T h en, a l l sam p les w ere t r e a t e d w ith I* m l o f 25% t r i c h l o r o a c e t i c a c id ( w /v ), a llo w e d t o s ta n d q u i e s c e n t ly f o r 20 m in u te s a t room te m p e r a tu r e, f i l t e r e d th ro u g h tw o s h e e ts o f Whatman No, 1*2 f i l t e r p a p e r and r e a d a t 280 nm, S o lu b le p ro n a se (2 m g/m l) was k e p t i n a w a te r b a th f o r th e d e s ig n a te d tim e and th e n rem oved and one ml a llo w e d t o r e a c t w ith fo u r m l o f t h e p r o t e i n s u b s t r a t e u n d e r th e same c o n d itio n s as s t a t e d f o r t h e im m o b iliz e d enzyme d e r i v a t i v e. The re m a in d e r o f t h e enzyme

5U s o l u t i o n was r e t u r n e d t o t h e w a te r h a th f o r a n o th e r h o u r. F o llo w in g t h e r e a c t i o n, t h e same p ro c e d u re as d e s c r ib e d above was u s e d t o o b ta in t h e f i l t r a t e w hich was re a d a t 280 nm on a Colem an 12U d o u b le beam s p e c tr o p h o to m e te r, u s in g a c a s e in sam ple n o t t r e a t e d w ith s o lu b le p ro n a s e as t h e b la n k. B io lo g ic a l O x id a tio n o f Skim m ilk T r e a te d w ith P ro n a se T h ree l i t e r s o f sk im m ilk, p u rc h a s e d from t h e U n iv e r s ity d a ir y * was a d ju s te d t o ph 7.1 w ith 0.1 H NaOH and t r e a t e d w ith t h r e e gram s o f p ro n a s e f o r ^5 m in u te s a t 30 C. A g ita tio n o f t h e m ix tu re was a c h ie v e d by u s in g a Y ankee v a r i a b l e sp e e d r o t a t o r. The d e g r a d a tio n o b ta in e d, w ith s o lu b le p ro n a s e w ould b e e q u iv a le n t t o t h a t o b ta in e d a t a flo w r a t e o f 0.0 8 3 m l/m in f o r p o ly m e ric p r o n a s e. The p ro n a s e t r e a t e d sk im m ilk was th e n a u to c la v e d f o r 7 m in u te s a t 121 C, c o o le d q u ic k ly i n an ic e b a th t o ^ 5 F, and in tr o d u c e d i n t o th e s u b s t r a t e r e s e r v o i r. The b io f e r m e n ta tio n sy stem was m a in ta in e d a t 2 3 C, ph 6.8 5 + 0.0 3 and 0. 7 ** ppm d is s o lv e d oxygen w ith an a e r a t i o n r a t e o f 2 l i t e r s / m i n u t e a t 5 p s i. When t h e b io f e r m e n ta tio n sy stem h ad a c h ie v e d a s te a d y s t a t e, sam p les w ere c o l l e c t e d a t d i f f e r e n t tim e i n t e r v a l s from v a r io u s lo c a t i o n s and f r o z e n f o r s u b s e q u e n t i n v e s t i g a t i o n s. H igh V o lta g e E le c tr o p h o r e s is The f r o z e n sam p les o b ta in e d from t h e b i o l o g i c a l o x id a tio n s tu d y w ere thaw ed a t room te m p e r a tu r e. One h u n d re d m i c r o l i t e r sam p les w ere s p o tte d 5 in c h e s from t h e b o tto m o f a p a p e r s h e e t m e a su rin g 18 in c h e s by 22 in c h e s and a i r d r i e d. T h e n, th e p a p e r was p la c e d in an

55 e l e c t r o p h o r e t i c cham ber and a p y r id i n e : a c e t i c a c id : w a te r m ix tu re ph 3.U, ( 5 :1 5 :8 5 ) was a d d e d. E l e c tr o p h o r e s i s was c o n d u c te d a t 2500 v o l t s, 150 m a, f o r 1.5 h o u r s. F o llo w in g e l e c t r o p h o r e s i s, t h e p a p e r was a i r - d r i e d and th e n s p ra y e d w ith n in h y d r in t o v i s u a l i z e t h e am ino a c id s and p e p t i d e s.

RESULTS P r e lim in a r y I n v e s t i g a t i o n s P r o te i n P u r i t y C h a r a c t e r i z a t i o n o f an e n z y m e -s u b s tra te r e a c t i o n u n d e r v a r io u s p h y s ic a l c o n d itio n s r e q u i r e s a know ledge o f t h e p u r i t y o f th e *; com ponents in v o lv e d in t h e r e a c t i o n. T h e r e f o r e, v e r t i c a l s l a t p o ly a c ry la m id e g e l e l e c t r o p h o r e s i s and s t a r c h g e l e l e c t r o p h o r e s i s v e r e u t i l i z e d t o d e te rm in e t h e p u r i t y o f c o m m e rc ia lly p u rc h a se d p r o te in s u sed in s u b s e q u e n t i n v e s t i g a t i o n s. I d e n t i f i c a t i o n o f com ponents was made a c c o rd in g t o s ta n d a r d s d e s c r ib e d by Thompson (1 3 7 ) as shown In F ig u re 8. B - la c to g lo b u lin e x h ib ite d one m a jo r zone and t h r e e m in o r whey p r o t e i n zones when s u b je c te d t o e l e c t r o p h o r e s i s on s t a r c h g e l a t ph 8,6 in t h e p re s e n c e o f b o th 7 M u r e a and 2 -m e rc a p to e th a n o l (F ig u re 8a ). W ith a - c a s e i n tw o m a jo r zo n es w ere e v id e n t, a l a r g e r r e g io n c o n ta in in g a - c a s e i n and a s m a lle r a r e a c o n ta in in g a - c a s e i n. A m in o r r e g io n s c o n ta in in g x - c a s e in a l s o was p r e s e n t. Whole c a s e in gave a p a t t e r n i d e n t i c a l t o a - c a s e i n e x c e p t f o r a s m a lle r a - c a s e i n r e g io n. P ro n a se s was n o t s t a i n e d s u f f i c i e n t l y b y th e dye t o e x h i b i t any z o n e s. E l e c t r o p h o r e s is o f a - la c ta lb u m in as shown i n F ig u re 8b show ed m in o r c o n ta m in a t i o n w ith { J -la c to g lo b u lin and b lo o d serum a lb u m in. 6- l a c t o g l o b u l i n c o u ld b e s e p a r a te d i n t o i t s g e n e tic v a r i a n t s, B - la c to g lo b u lin ^ and g - l a c t o g l o b u l i n B, w ith no t r a c e s o f c a s e in

57 F ig u re 8 : S ta rc h g e l e l e c t r o p h o r e s i s and p o ly a c ry la m id e g e l e l e c t r o p h o r e s i s o f p u r i f i e d p r o t e i n s. (a ) S ta r c h g e l e l e c t r o p h o r e s i s, ph 8.6 in t h e p r e s e n c e o f b o th 7 M u r e a and 2- m e rc a p to e th a n o l. ( l ) B - l a c t o g l o b u l i n, ( 2 ) a - c a s e i n, ( 3 ) w h o le c a s e i n, and {!*) p ro n a s e. (b ) S ta r c h g e l e l e c t r o p h o r e s i s, ph 8.6 in t h e p re s e n c e o f b o th 7 M u r e a and 2- m e rc a p to e th a n o l. ( l ) a - la c ta lb u m in. (c ) V e r t i c a l s la b p o ly a c ry la m id e g e l e l e c t r o p h o r e s i s, ph 8.6. ( l ) w h o le c a s e i n, (2 ) a - c a s e i n, (3 ) & - la c to g lo b u lin, and ( h ) p ro n a s e.

Sample slo ts P ronase K -casein B -casein a-la B -casein BLG a -c a s e in s o - c a s e in s BLG B BLG. «1 2 3 h 1 1 2 la ) (t) (c)

59 com ponents b y u t i l i z i n g v e r t i c a l s la b p o ly a c ry la m id e g e l e l e c t r o p h o r e s is a t ph 8.6 i n t h e a b se n c e o f u r e a and 2 -m e rc a p to e th a n o l ( F ig u r e 8c ). S in c e n e i t h e r u r e a n o r 2 -m e rc a p to e th a n o l v e r e em ployed in t h i s m ethod* a - c a s e i n and w hole c a s e in e x h ib ite d d i f f u s e p a t t e r n s f o r a - and 8- c a s e i n s. s s l o t s. A p p a re n tly K -c a s e in p o ly m e riz e d in t h e sam ple P ro n a se showed tw o f a i n t b a n d s, i n d i c a t i n g t h a t t h e dye d id n o t s t a i n t h e p r o t e i n s u f f i c i e n t l y t o i d e n t i f y t h e com pounds. T h ese i n v e s t i g a t i o n s showed t h a t t h e whey p r o t e i n s, B - la c to - g lo b u lin and a - l a c t a l b u m i n, c o n ta in e d l i t t l e c o n ta m in a tin g m a te r ia l an d t h a t t h e c a s e in s w ere a lm o s t i d e n t i c a l i n c o m p o sitio n e x c e p t f o r a l a r g e r a - c a s e i n r e g io n in t h e p u r i f i e d a - c a s e i n. s E f f e c t o f S to ra g e on BAEE A c t i v i t y B e n z o y l- a r g in in e e t h y l e s t e r was u s e d t o d e te rm in e t h e amount o f enzyme bound t o t h e g l a s s s u p p o r t. F o r co m p a riso n b etw een l o t s o f enzym e, i t w ould b e d e s i r a b l e t o u s e one l o t o f BAEE. H ow ever, a p p a re n t d is c r e p a n c ie s i n r e s u l t s w ith f r e s h and aged BAEE, le d t o an i n v e s t i g a tio n o f t h e s to r a g e s t a b i l i t y o f t h e s u b s t r a t e. To s tu d y t h e e f f e c t o f p ro lo n g e d s to r a g e on s u b s t r a t e s t a b i l i t y u n d e r r e f r i g e r a t e d cond i t i o n s, a f r e s h BAEE p r e p a r a t i o n (B) was com pared t o an 8 m onth o ld BAEE sam ple (A ). F ig u re 9 p r e s e n t s a s p e c t r a l sc a n from 330 nm t o 250 nm co m p arin g sam p les A and B. S c h v e rt and T akenaka (1 2 ) found t h a t t h e a b s o r p tio n o f N - b e n z o y l- L - a r g in in e - e th y l e s t e r i s much w eak er a t 25U nm th a n t h a t o f N - b e n z o y l-b -a r g in in e. T h e r e f o r e, when two sam p les a r e a n a ly z e d i n a d o u b le beam s p e c tro p h o to m e te r w ith one o f

60 F ig u re 9. A d i f f e r e n t i a l s p e c t r a l sc a n from 330 nm t o 250 nm co m p arin g new and o ld BAEE s a m p le s. R e fe re n c e c e l l i s new BAEE; sam ple c e l l i s o ld BAEE.

Relative Difference in Absorbance i\> at o Wavelength in nm ro o oj o

62 t h e sam p les a s t h e r e f e r e n c e, no change In a b s o rb a n c e i s t o b e e x p e c te d i f n e i t h e r sam ple h a s b een d e g ra d e d. I f any d e g r a d a tio n p r o d u c ts a r e p r e s e n t, th e y w i l l a p p e a r a s a p eak a t nm. R e s u lts from t h i s p h a s e o f t h e s tu d y i n d i c a t e d t h a t t h e o ld BAEE sam ple had u n d e rg o n e d e g r a d a tio n o v e r t h e e ig h t-m o n th p e r io d e i t h e r th ro u g h c h e m ic a l breakdow n upon s to r a g e o r by m ic r o b ia l a t t a c k o r by a c o m b in a tio n o f t h e tw o p r o c e s s e s. S S in c e a l a r g e q u a n t i t y o f th e e n z y m e -g la ss d e r i v a t i v e was p r e p a r e d i n i t i a l l y u t i l i z i n g f r e s h BAEE, t h e s e f in d in g s d id n o t in f lu e n c e p r e v io u s r e s u l t s. H ow ever, b e c a u s e o f th e s e r e s u l t s, o n ly r e c e n t l y p u rc h a s e d BAEE was u sed t o a n a ly z e f o r e n z y m a tic a c t i v i t y o f s u b s e q u e n t b o u n d enzyme d e r i v a t i v e s. Bound Enzyme Q u a n tita tio n To d e te rm in e th e am ount o f enzyme bound t o t h e a ry la m in e g l a s s i n t h e c o u p lin g r e a c t i o n, a tim e c o u rse was o b ta in e d f o r t h e s o lu b le pronase-b A E E r e a c t i o n. F ig u r e 10 d e p i c t s th e tim e c o u rs e o f t h e r e a c t i o n o f BAEE w ith a l i q u o t s o f t h e p ro n a s e s o lu t i o n rem oved a t 15 m in u te i n t e r v a l s from t h e c o u p lin g r e a c t i o n. P ro n a se rem oved a t 0 tim e from t h e c o u p lin g r e a c t i o n g av e 100^ h y d r o ly s is a f t e r tw o m in u te s r e a c t i o n w ith BAEE. On th e o th e r h a n d, p ro n a se rem oved a t 60 m in u te s o r T5 m in u te s a f t e r th e b in d in g r e a c t i o n h a d begun showed 52JC and 53J& h y d r o l y s i s, r e s p e c t i v e l y, a f t e r tw o m in u te s o f c o n ta c t w ith BAEE. S in c e l i t t l e change was n o te d i n t h e p e r c e n t BAEE h y d ro ly z e d i n t h e a l i q u o t s o f p ro n a se ta k e n a t 60 and 75 m in u te s, i t was c o n c lu d e d t h a t th e c o u p lin g r e a c t i o n was n e a r ly c o m p leted a f t e r

63 F ig u re 10: R e a c tio n r a t e f o r v a r io u s p ro n a s e a l i q u o t s from t h e c o u p lin g r e a c t i o n on BAEE. (T e m p e ra tu re 26 C ; 0.0 0 1 M BAEE; ph 7.1 )

100 6 U 15 min 00 30 min % BAEE hydrolyzed 6 0 40 75 min r 45 min 20 0 60 90 Reaction Time in Seconds 120

65 60 m in u te s, and t h i s tim e was u s e d i n s u b s e q u e n t e n z y m e -g la ss p r e p a r a t i o n s. M o is tu re C o n te n t D e te rm in a tio n I n o r d e r t o d e te rm in e th e e x te n t o f h y d r a tio n o f in n a o b iliz e d p ro n a s e a tta c h e d t o p o ro u s g l a s s, th e m o is tu r e c o n te n t o f f o u r w et sa m p les was d e te rm in e d. R e s u lts a r e g iv e n I n t h e fo llo w in g T a b le : T a b le 5 M o is tu re C o n te n t o f I n s o lu b le P ro n a se Sam ple No. Sam ple w et ( g r,) Sam ple d ry ( g r.) M o is tu re % M o is tu re 1 0.1 2 6 0 0.03U 7 0.0 9 1 3 7 2.5 2 0.1 7 6 6 0.01*67 0.1 3 1 9 7 3.8 3 O.llU? 0.0 3 1 0 0.0 9 1 0 7 ^.6 1* O.llli? 0.0 3 0 0 0.081*5 7 3.8 L i t t l e v a r i a t i o n i n m o is tu r e c o n te n t was n o tic e d b etw een s a m p le s, and t h e a v e ra g e m o is tu re c o n te n t f o r th e f o u r sam p les was 7 3.7?. T h is i n d i c a t e s t h a t t h e m ic ro e n v iro n m e n t aro u n d t h e im m o b iliz e d enzyme m o le c u le h a s a h ig h d e g re e o f h y d r o p h i l i c i t y. P ro n a se Bound t o G lass P ro n a se was bound t o a ry la m in e g la s s b y d ia z o c o u p lin g th ro u g h a t y r o s i n e r e s id u e on t h e enzyme m o le c u le. I n o r d e r t o d e te rm in e th e am ount o f p ro n a s e a tta c h e d t o t h e p o ro u s g l a s s s u r f a c e o f v a r io u s p r e p a r a t i o n s d u rin g t h e b in d in g p r o c e d u re, a s p e c tr o p h o to m e tr ic a s s a y m ethod u t i l i z i n g b e n z o y l - L - a r g i n i n e - e t h y l - e s t e r (BAEE) was em ployed.

66 A sum m ation o f t h e b in d in g r e s u l t s a r e fo u n d i n T a b le 6. I n t h e i n i t i a l i n v e s t i g a t i o n ( T r i a l s 1 t h r u 3 ) o f p o ly m e ric p r o n a s e, o n ly one gram o f a ry la m in e g la s s v a s u t i l i z e d in t h e d ia z o - t i z a t i o n and c o u p lin g r e a c t i o n s. I n s u b s e q u e n t colum n s t u d i e s ( T r i a l s k t h r u 1 0 ) l a r g e r q u a n t i t i e s o f t h e e n z y m e -g la ss d e r i v a t i v e w ere r e q u i r e d. T h e r e f o r e, t h r e e gram s o f a ry la m in e g l a s s w ere r e a c t e d w ith 200 m l o f p ro n a s e ( l mg/1 m l). As a r e s u l t, th e p e r c e n t e.nzyme b o u n d /g g l a s s d e c r e a s e d from an a v e ra g e o f 21.1>f in T r i a l s 1 t h r u 3 t o an a v e ra g e o f 1 3.8 # i n T r i a l s U t h r u 10. To i n s u r e t h a t no enzyme was b e in g e l u t e d from t h e b o u n d p ro n a s e i n t h e g l a s s co lu m n, 150 ml o f d i s t i l l e d w a te r was p a s s e d th ro u g h th e enzyme colum n a t a flo w r a t e o f 2 m l/m in u te. The e lu a n t v a s co n cen t r a t e d t o 5 m l b y u t i l i z i n g a r o t a r y e v a p o r a to r. One m l o f t h i s e lu a n t was r e a c t e d w ith one m l o f a 25# a c id ( v / v ) ; 2 m l w ere r e a c t e d w ith 2 m l s o l u t i o n o f t r i c h l o r o a c e t i c o f BAEE; and 2 ml w ere r e a c te d w ith 2 m l o f c a s e i n, ph 7. 0, p r e c i p i t a t e d w ith *+ ml o f a 25# s o l u t i o n o f t r i c h l o r o a c e t i c a c id ( w /v ), and f i l t e r e d on Whatman No. h2 f i l t e r p a p e r. No m ilk y c o lo r d e v e lo p e d w ith t h e t r i c h l o r a c e t i c a c id s o lu t i o n a f t e r 20 m in u te s, an d no a c t i v i t y was m easu red e i t h e r a t 2 5 *+ nm f o r BAEE o r a t 280 nm f o r t h e t r i c h l o r a c e t i c a c id s o l u t i o n. T h e re f o r e, i t was c o n c lu d e d t h a t t h e r e was no l o s s o f bound enzyme from th e colum n.

Table 6 Summation o f B inding S tu d ie s T r i a l No. I n i t i a l A b s o r b a n c e ^ F in a l A bsorbance (b ) % enzyme b o u n d /.v g g la s s mg enzyme b o u n d /.* g g la s s 1 0.7 7 0.61* 1 6.8 8.1* 2 0.8 2 0.67 1 8.2 9.1 3 0.8 1 0.5 8 28.3 ll*.l It 0.1*0 0.2 0 16.6 1 1.1 5 0.1*1 0.2 0 17*1 11.1* 6 0. 1*0 0.2 5 1 2.5 8.3 T 0.1*3 0.2 8 11.6 7.7 8 0. 1*0 0.25. 12.5 8.3 9 0. 1*1 0.2 6 1 2.1 8.1 10 0.3 1 0.1 8 11*.0 9.3 (A) P ro n ase in s o lu tio n a t b e g in n in g o f b in d in g, ab so rb an ce a t 25U nm w ith BAEE as s u b s tr a te. (B) P ronase in s o lu tio n a t te rm in a tio n o f b in d in g, ab so rb an ce a t 25*+ nm w ith BAEE as s u b s t r a te. (C )rf, 3 ^ I n i t i a l A b s.-f in a l Abs. % bound enzyme c a lc u la te d as " T / '.v------------- x 100* J I n i t i a l Abs. ^ I n sam ples 1* th r u 10 6 6.6 mg s o lu b le enzyme/mg g la s s was used compared t o 50 mg s o lu b le enzyme/mg g la s s f o r sam ples 1 th r u 3. o\ -3

68 C h a r a c t e r i s t i c s o f S o lu b le and P o ly m e ric P ro n a se F o r t h e e v e n tu a l a p p l i c a t i o n o f im m o b iliz e d p r o n a s e t o d a i r y fo o d p l a n t w a s te t r e a t m e n t, in f o r m a tio n on th e c h a r a c t e r i s t i c s o f th e im m o b iliz e d enzyme and a co m p a riso n t o t h e c h a r a c t e r i s t i c s o f th e s o lu b l e form o f t h e enzyme a r e e s s e n t i a l. S i g n i f i c a n t in f o r m a tio n f o r e v e n tu a l a p p l i c a t i o n in c lu d e d e te r m in a tio n o f t h e e f f e c t o f t h e f o llo w in g f a c t o r s : ( a ) ty p e o f s u b s t r a t e and r e l a t i v e a c t i v i t y a g a i n s t v a r io u s m ilk p r o t e i n s, (b ) te m p e r a tu r e, ( c ) ph, ( d ) i o n i c s t r e n g t h, and (e ) flo w r a t e. T h e r e f o r e, s t u d i e s w ere c o n d u c te d w ith s o lu b l e and im m o b iliz e d p ro n a s e a c tin g on f o u r m ilk p r o t e i n s ( P - l a c t o g l o b u l i n, a - l a c t a l b u m in, a c a s e in and w hole c a s e in ) u n d e r v a r io u s e n v iro n m e n ta l c o n d itio n s t o d e te rm in e w hat e f f e c t s im m o b iliz a tio n h a s on p ro n a s e a c t i v i t y and t o com pare th e s e e f f e c t s t o s o lu b le p r o n a s e. E f f e c t o f T e m p e ra tu re L ik e o th e r p r o t e i n s, enzym es r e t a i n t h e i r b i o l o g i c a l a c t i v i t y o n ly w ith in a l i m i t e d te m p e r a tu re r a n g e. E x p o su re o f p r o t e i n m olec u le s t o h ig h te m p e r a tu r e s c a u s e them t o d e n a tu re o r u n f o ld t h e i r c h a r a c t e r i s t i c f o ld e d s t r u c t u r e y i e l d i n g p o ly p e p tid e c h a in s t h a t a r e random ly and i r r e g u l a r l y lo o p e d o r c o i l e d (U l), S in c e t h e th e r m a l s t a b i l i t y w i l l v a ry w ith t h e ty p e o f enzym e, i n v e s t i g a t i o n s w ere made t o d e te rm in e t h e e f f e c t s o f te m p e r a tu r e on t h e th e r m a l s t a b i l i t y o f b o th s o lu b le and i n s o l u b l e p ro n a s e p r e p a r a t i o n s. S o lu b le p ro n a s e r e a c t e d f o r 30 m in u te s w ith t h e d e s ig n a te d p r o t e i n (0.2 6 6 grams p r o te in /1 0 0 m l o f 0.0 5 N T r is b u f f e r, ph 7. 1 ). The b la n k c o n s is te d o f U m l o f t h e d e s ig n a te d p r o t e i n + 1 ml o f T r is b u f f e r. A flo w r a t e

o f 0.5 7 m l/m in u te v a s o b ta in e d f o r t h e p o ly m e ric p ro n a s e - d e s ig n a te d p r o t e i n r e a c t i o n (0.2 5 0 grains p r o te in /1 0 0 ml o f 0.0 5 N T r i s b u f f e r, ph 7. 1 ). The c o n t r o l c o n s is te d o f ^ m l o f t h e d e s ig n a te d p r o t e i n v i t h no enzym e t r e a t m e n t. L i t t l e change i n r e a c t i o n v e l o c i t y v a s o b s e rv e d from 3 0 t o 60 C f o r s o lu b l e p ro n a s e ( F ig u re 1 1 ), v i t h e i t h e r w hole c a s e in o r a - c a s e in a s t h e s u b s t r a t e. H ow ever, la r g e c h a n g e s i n t h e p ro n a s e r e a c t i o n v e l o c i t y w ere o b s e rv e d f o r th e whey p r o t e i n s, 6- l a c t o g l o b u l i n and a - l a c t a l b u m in, o v e r t h e same te m p e r a tu re r a n g e. At te m p e r a tu re s a ro u n d 30 C, su ch a s w ould b e e n c o u n te re d i n w a s te t r e a t m e n t, c a s e in w ould b e d e g ra d e d a t 1.2 3 tim e s f a s t e r th a n p - la c t o g lo b u l i n and 2.5 tim e s f a s t e r th a n a - la c ta lb u m in. H ow ever, b o th o f t h e s e p r o t e i n s w ould b e d e g ra d e d a t a f a s t e r r a t e th a n c a s e in a t te m p e r a tu r e s above 50 C. At 6j C t h e r a t e o f d e g r a d a tio n o f c a s e i n, B - la c to g lo b u lin and a - la c ta lb u m in w ere e s s e n t i a l l y t h e sam e. S in c e enzym es in c r e a s e in r e a c t i o n v e l o c i t y w ith in c r e a s in g t e m p e r a tu r e, one m ethod o f e x p r e s s in g t h i s i n c r e a s e i s w hich i s d e f in e d a s a t J P. A 10, q v a lu e s f o r s o lu b le p ro n a s e v e l o c i t y a t 10 C 10 re m a in e d c o n s ta n t a t 1.0 0 and 1.0 2 f o r a - c a s e i n and w h o le c a s e in from 30 t o 60 C. C o n v e rs e ly, a - la c ta lb u m in an d 6- l a c t o g l o b u l i n e x h ib ite d Q10 v a lu e s o f 1.9 3 and I. I 46 from 3 0 t o 50 C. The Q1q v a lu e s w ith c a s e in as th e s u b s t r a t e in d i c a t e t h a t te m p e r a tu re s t o 50 C a p p e a r t o h a v e l i t t l e e f f e c t upon p ro n a se v e l o c i t y. T h is p ro b a b ly can be a t t r i b u t e d t o t h e random c o i l s t r u c t u r e o f th e c a s e in s w hich i n i t i a l l y e x p o s e s m ost o f t h e s u s c e p t i b l e b o n d s t o enzym ic a t t a c k th e r e b y

70 F ig u re 11: E f f e c t o f te m p e ra tu re on t h e r e a c t i o n v e l o c i t y o f s o lu b le p ro n a s e w ith f o u r m ilk p r o t e i n s, ( T r i s b u f f e r, 0.0 5 N; ph 7.1 ; 0.2 6 6 grains p r o te in /1 0 0 ml b u f f e r ; 30 m in. r e a c t i o n tim e ; c o n t r o l li ml d e s ig n a te d p r o t e i n + 1 ml b u f f e r )

71 ea A Abt /min X 10*3 4 t t a-casein 20-2 0 30 4 0 50 60 70 Temperature C

p r e v e n tin g g r e a t in c r e a s e s i n v e l o c i t y v i t h i n c r e a s i n g te m p e r a tu r e s. 72 H ow ever, t h e v a lu e s f o r t h e whey p r o t e i n s seem t o i n d i c a t e t h a t t h e s e p r o t e i n s may b e u n d e rg o in g c o n f o rm a tio n a l ch an g es and i n t h e c a s e o f 3 - l a c t o g l o b u l i n, monomer f o rm a tio n r e s u l t i n g in t h e a p p e a ra n c e o f m ore bonds s u s c e p t i b l e t o e n z y m a tic h y d r o ly s is and h e n c e, a g r e a t e r r a t e o f h y d r o ly s is by th e s o lu b le enzym e. When t h e te m p e r a tu re was r a i s e d t o 7 0 C, s i g n i f i c a n t i n c r e a s e s in p ro n a s e r e a c t i o n v e l o c i t i e s frc m n e a r ly c o n s ta n t v a lu e s w ere r e c o rd e d v i t h e ach m ilk p r o t e i n - enzym e r e a c t i o n. T h is p ro b a b ly i n d i c a t e s e x te n s iv e d e n a tu r a tio n and d e g r a d a tio n o f b o th t h e enzyme and m ilk p r o t e i n m o le c u le s r a t h e r th a n i n c r e a s e d a c t i v i t y o f t h e s o lu b le p ro n a s e s in c e b o th th e enzyme and m ilk p r o t e i n m o le c u le s w ere s u b je c te d t o 70 C f o r 30 m in u te s. I n s o lu b le p ro n a s e { F ig u re 12) gave s i m i l a r th e r m a l p r o f i l e s f o r w hole c a s e i n, a - c a s e i n, and a - la c ta lb u m in e s p e c i a l l y from 30 t o 50 C. 6 - l a c t o g l o b u l i n, h o w e v e r, had a m arked i n c r e a s e i n th e r a t e o f d e g ra d a t i o n above Uo C w ith t h e g r e a t e s t in c r e a s e in v e l o c i t y o c c u r r in g b etw een U0 and 50 C. S in c e B - la c to g lo b u lin e x i s t s a s a d im e r a t n e u t r a l ph and a t m o d e ra te c o n c e n tr a tio n s w ith in c r e a s in g d i s s o c i a t i o n o f th e d im er o c c u r r in g b e tw e e n 30 and 50 C, i t i s p r o b a b le t h a t t h e m arked change i n im m o b iliz e d p ro n a se v e l o c i t y on B - la c to g lo b u lin can b e a t t r i b u t e d t o d i s s o c i a t i o n o f th e d im er t o t h e monomer fo rm, th e r e b y e x p o s in g m ore s u s c e p t i b l e p e p tid e b o n d s t o enzym ic a t t a c k. Above 55 C B - la c to g lo b u lin b e g in s t o u n f o ld and lo s e i t s g lo b u la r s t r u c t u r e e x p o s in g m ore s u s c e p t i b l e bonds t o h y d r o ly s is and th e r e b y e x p la in in g th e l i n e a r i n c r e a s e i n r e a c t i o n v e l o c i t y from 5 0 t o 70 C. The o t h e r whey p r o t e i n, a - l a c t a l b u m in, show ed n o su ch d r a m a tic in c r e a s e i n th e

73 F ig u re 12: E f f e c t o f te m p e r a tu re on t h e v e l o c i t y o f p o ly m e ric p ro n a s e v i t h d i f f e r e n t m ilk p r o t e i n s u b s t r a t e s. ( T r is b u f f e r, 0.0 5 N; ph 7.1 ; 0.2 5 0 0 gram s p r o te in /1 0 0 ml b u f f e r ; flo w r a t e 0. 5 7 m l/m in, ; c o n t r o l ml d e s ig n a te d p r o te in w ith no enzyme t r e a t m e n t ).

7* 64 56 48 -loctoglobulin x 40 A Abs /min 32 24 casein y a-lactalbum in Temperature C 60 70

75 r a t e o f p r o t e o l y s i s v h en a c te d upon by im m o b iliz e d p r o n a s e. On th e c o n t r a r y, t h e v e l o c i t y o f t h e r e a c t i o n in c r e a s e d in a l i n e a r f a s h io n fro m U0 t o 70 C i n d i c a t i n g t h a t n o t as e x te n s iv e c o n fo rm a tio n a l c h a n g es a r e o c c u r r in g w ith a - la c ta lb u m in a s w ith B - la c to g lo b u lin. The m arked d i f f e r e n c e in t h e r a t e o f d e g r a d a tio n o f a - la c ta lb u m in by t h e s o lu b le an d p o ly m e ric p ro n a s e sy stem s may r e s u l t fro m t h e lo n g e r c o n ta c t tim e b etw een s o lu b le enzyme and s u b s t r a t e and t h e m ore e x te n s iv e h e a t t r e a t m e n t. T h e r e f o r e, a g r e a t e r h y d r o ly s i s o f a - la c ta lb u m in w ould b e e x p e c te d w ith t h e s o lu b le p r o n a s e. F i n a l l y, t h e th e r m a l p r o f i l e f o r p o ly m e ric p ro n a s e on t h e s e f o u r m ilk p r o t e i n s i n d i c a t e s t h a t im m o b iliz e d p ro n a s e i s n o t d e n a tu r e d, ev en a f t e r e x p o s u re t o 70 C T a b le 7 g iv e s t h e Q1Q v a lu e s f o r t h e a c t i o n o f p o ly m e ric p ro n a s e on v a r io u s m ilk p r o t e i n s. T h ese r e s u l t s t o g e t h e r v i t h th o s e shown in F ig u re 12 i n d i c a t e t h a t te m p e r a tu r e s from Uo t o 70 C do n o t m ark ed ly in f lu e n c e t h e r e a c t i o n r a t e o f im m o b iliz e d p ro n a s e on w hole c a s e i n, a - c a s e i n, and a - la c ta lb u m in. T a b le 7 ($10 V a lu es f o r P o ly m e ric P ro n a se on F o u r M ilk P r o te i n s T e m p e ra tu re P r o t e i n R an g e, C V alu e a - la c ta lb u m in 140-50 1.1 3 50-60 1.1 2 6 0-7 0 1.1 1 B - la c t o g lo b u lin 50-60 1.06 6 0-7 0 1. 0U Whole c a s e in 30-140 1.19 140-50 1. 1U 50-60 1. 1I4 a - c a s e i n 30-140 1.21 140-50 1.1 7

76 E f f e c t o f ph The p H - a c t i v i ty r e l a t i o n s h i p o f any g iv e n enzyme dep en d s u p o n : ( a ) t h e p k o f t h e io n i z i n g g ro u p s o f t h e a c t i v e s i t e on t h e enzyme t h a t p a r t i c i p a t e i n b in d in g t h e s u b s t r a t e ; (b ) t h e pk o f th e f u n c t io n a l g ro u p s o f t h e s u b s t r a t e m o le c u le t h a t p a r t i c i p a t e i n b in d in g t o t h e enzym e; (c ) t h e pk o f th e f u n c t i o n a l g ro u p s o f t h e enzyme m o le c u le r e s p o n s ib le f o r t h e c a t a l y t i c a c t ; and (d ) t h e pk o f o th e r g ro u p s o f t h e enzyme m o le c u le w hose s t a t e o f i o n i z a t i o n may d e te rm in e t h e s p e c i f i c, c a t a l y t i c a l l y a c t i v e c o n fo rm a tio n o f th e m o le c u le. T h e r e f o r e, e x p e rim e n ts w ere c o n d u c te d t o d e te rm in e th e p H - a c t i v i ty r e l a t i o n s h i p o f im m o b iliz e d p ro n a s e w ith v a r io u s m ilk p r o te in s b etw een ph 6.0 an d 10. P o ly m e ric p ro n a s e was r e a c te d w ith s e le c t e d m ilk p r o t e i n s (0,2 3 3 gram s p r o te in /1 0 0 ml o f 0.0 5 N T r is b u f f e r ) a t 30 C +_ 1 C w ith a flo w r a t e o f 0.7 ^ ra l/m in. F our ml o f t h e d e s ig n a te d p r o t e i n w ith no enzyme tr e a tm e n t was u s e d as th e c o n t r o l. R e s u lts o f th e s e e x p e rim e n ts on d u p l i c a t e p r o t e i n sam p les a r e shown i n F ig u re 13. P o ly m e ric p ro n a s e h ad an optim um ph ra n g e from 8 t o 10 f o r a l l m ilk p r o t e i n s exam in ed. On 0 - la c t o g lo b u l i n t h e im m o b iliz e d enzyme showed maximum a c t i v i t y b etw een ph 8 and 10 w ith a ph optimum a t 8. A c tin g on a - l a c t a l b u m in, p o ly m e ric p ro n a s e d e m o n s tra te d a ph optim um a t 9. The h ig h e s t a c t i v i t y o f im m o b iliz e d p ro n a s e was a t ph 10 f o r i t s a c t i o n on a - c a s e i n w ith a l a r g e d i f f e r e n c e in t h e v e l o c i t y o f th e r e a c t i o n o c c u r r in g b etw een ph 9 and 10. On w hole c a s e in a r a t h e r b ro a d ph o p tim a b etw een 9 and 10 was o b se rv e d f o r th e p o ly m e ric enzym e. The m a g n itu d e o f t h e e f f e c t o f ph on t h e a c t i v i t y a g a i n s t th e d i f f e r e n t

77 F ig u re 13: E f f e c t o f ph on t h e r e a c t i o n v e l o c i t y o f p o ly m e ric p ro n a s e v i t h d i f f e r e n t m ilk p r o t e i n s. (T e m p e ra tu re 30oc +_ 1 C ; 0.0 5 N T r i s b u f f e r ; 0.2 3 3 gram s p r o te in /1 0 0 ml b u f f e r ; flo w r a t e 0.7U m l/m in.; c o n t r o l H m l o f d e s ig n a te d p r o t e i n w ith no enzyme t r e a t m e n t).

78 o- lact albumin casein 5 7 io ph

79 s u b s t r a t e s v a r i e d. U sin g ph 6.0 a s a r e f e r e n c e t h e a c t i v i t y a t th e ph optim um was 7. 6, 7.1 * 3.1 and 2.1 tim e s g r e a t e r a t t h e ph optim um th a n a t ph 6.0 f o r B - l a c t o g l o b u l i n, w hole c a s e i n, a - la c ta lb u m in and a - c a s e i n r e s p e c t i v e l y. T h e se d a ta show t h a t an a l k a l i n e ph ra n g e o f 9.0 t o 1 0.0 g iv e s a good im m o b iliz e d p ro n a s e r e a c t i o n v e l o c i t y f o r a l l m ilk p r o t e i n s ex am in ed. E f f e c t o f C alciu m C h lo rid e F ig u re ill d e p i c t s t h e r e s u l t s o f t h e e f f e c t s o f c a lc iu m c h lo r id e on t h e v e l o c i t y o f im m o b iliz e d p ro n a se m ilk p r o t e i n r e a c t i o n s. Im m o b iliz e d p ro n a s e d e m o n s tra te d t h e g r e a t e s t b i o l o g i c a l a c t i v i t y w ith a - la c ta lb u m in and re m a in e d s t a b l e t o a c a lc iu m c h lo r id e c o n c e n tr a tio n o f 0.5 0 M. At c o n c e n tr a tio n s above t h i s am ount, th e r e was a g ra d u a l d e c r e a s e i n enzyme a c t i v i t y. W ith B - la c to g lo b u lin as t h e s u b s t r a t e, p o ly m e ric p ro n a s e e x h i b i t e d a r e a c t i o n p r o f i l e s i m i l a r t o a - la c ta lb u m in b u t d is p la c e d f a r t h e r t o t h e l e f t. Maximum s t a b i l i t y was a c h ie v e d t o a c a lc iu m c h lo r id e c o n c e n tr a tio n o f 0.1 0 M w ith a d e c r e a s e i n enzyme a c t i v i t y o c c u r r in g as t h e c a lc iu m c h l o r id e c o n c e n tr a tio n in c r e a s e d t o 0.5 0 M. At h ig h e r m o la r c o n c e n tr a tio n s o f c a lc iu m c h lo r id e t h e r e was l i t t l e change i n enzyme v e l o c i t y. W ith a - c a s e i n a s t h e s u b s t r a t e th e im m o b iliz e d p ro n a se r e a c t i o n v e l o c i t y d e c re a s e d r a p i d l y t o a c a lc iu m c h lo r id e c o n c e n tr a tio n o f 0.3 0 M. As t h e c a lc iu m c h l o r id e c o n c e n tr a tio n v a s in c r e a s e d t o 0.9 0 M, h o w e v er, a l i n e a r i n c r e a s e in th e r e a c t i o n v e l o c i t y was o b se rv e d w ith t h e r e a c t i o n v e l o c i t y f o r t h e im m o b iliz e d p ro n a se a t a maximum a t a 0.9 0 M c a lc iu m c h lo r id e c o n c e n tr a tio n. The p o ly m e ric en zy m e's

80 F ig u re lu ; E f f e c t o f c a lc iu m c h lo r id e on t h e v e l o c i t y o f p o ly m e ric p ro n a s e w ith d i f f e r e n t m ilk p r o t e i n s. (T e m p eratu re 30 C +_ 1 C ; ph 7. 1 ; 0.0 5 N T r is b u f f e r ; flo w r a t e 0.8 5 1 m l/m in.; 0.2 1 0 gram s p r o te in /1 0 0 ml b u f f e r ; c o n t r o l ^ ml o f d e s ig n a te d p r o t e i n w ith no enzyme t r e a t m e n t ).

81 30 a- lactalbumin AAbt/min X 10* a-casein casein CaCL Molarity

82 v e l o c i t y v i t h w h o le c a s e in sh o v ed a s i m i l a r r e a c t i o n p r o f i l e t o a - c a s e i n t o a 0.5 0 M c a lc iu m c h l o r id e c o n c e n tr a tio n. H ig h e r c o n c e n tr a t i o n s p ro d u c e d l i t t l e ch an g e i n enzyme c a t a l y s i s. I n sum m ary, t h e s e r e s u l t s show t h a t p o ly m e ric p ro n a s e i s m ore r e a c t i v e a t low c a lc iu m c h l o r id e c o n c e n tr a tio n s v i t h a l l o f th e p r o t e i n s exam ined e x c e p t a - c a s e i n. E f f e c t o f S u b s t r a t e C o n c e n tr a tio n V c C h a r a c t e r i z a t i o n o f p o ly m e ric p ro n a s e b y v a r y in g t h e s u b s t r a t e c o n c e n tr a tio n o f e a c h m ilk p r o t e i n y i e l d s in f o r m a tio n on t h e tim e c o u rs e o f t h e r e a c t i o n, th e maximum r e a c t i o n v e l o c i t y, and t h e su b s t r a t e c o n c e n tr a tio n r e q u ir e d t o y i e l d h a l f t h e maximum v e l o c i t y ( a p p a re n t K ^ ). F u r th e r m a n ip u la tio n o f t h e k i n e t i c d a ta c o u ld i n d i c a t e w h e th e r one o r m ore enzyme r e a c t i o n s a r e o c c u r r in g. T h e r e f o r e, e x p e rim e n ts w ere c o n d u c te d t o d e te rm in e t h e e f f e c t s o f s u b s t r a t e conc e n t r a t i o n on t h e r e a c t i o n v e l o c i t y o f s o lu b le and in s o l u b l e p r o n a s e. A l l a n a ly s e s w e re c o n d u c te d a t ph 7.1 and room te m p e r a tu r e. R e s u l t s, e x p r e s s e d as A A b so rb a n c e /m in u te r e s id e n c e tim e, a r e p r e s e n te d i n F ig u r e s 15 t h r u 20 f o r s t u d i e s v i t h s o lu b le p ro n a s e and in F ig u re s 21 t h r u 25 f o r i n s o l u b l e p r o n a s e. As shown i n F ig u re 1 5, s o lu b le p ro n a se e x h ib ite d s i m i l a r r e a c t i o n p r o f i l e s f o r b o th w hole c a s e in and a - c a s e i n v i t h an a p p a re n t M ic h a e lis c o n s ta n t o f 0.1*2 gram s and v i t h r e s p e c t i v e a p p a re n t maximum v e l o c i t i e s o f 0,1 5 0 and 0.1 5 6 a b s o rb a n c e u n i t s / m i n u t e. The s i m i l a r r e a c t i o n p r o f i l e s w ould b e e x p e c te d s in c e p r e v io u s e l e c t r o p h o r e t i c i n v e s t i g a t i o n s showed l i t t l e q u a l i t a t i v e d i f f e r e n c e b etw een th e tw o p r o t e i n s. D i f f e r e n t r e a c t i o n p r o f i l e s w ere fo u n d f o r t h e a c tio n o f s o lu b le p ro n a s e

83 F ig u re 15- V e lo c ity v s s u b s t r a t e p l o t f o r s o lu b le p ro n a s e r e a c t i n g w ith c a s e in and a - c a s e i n. (ph 7.1 ; 0,0 5 N T r i s b u f f e r ; 30 C + 1 C ; 30 m in u te r e a c t i o n tim e ).

150 a-: casein casein 100 A Abs/min X I0 3 50 Substrate ^/tooml 20

on t h e whey p r o t e i n s, a - la c ta lb u m in an d B - l a c t o g l o b u l i n, and th e s e a r e p r e s e n te d in F ig u re l 6. S o lu b le p ro n a s e gave an a p p a r e n t maximum v e l o c i t y o f 0.1 0 2 a b s o rb a n c e u n its / m i n u t e f o r B - l a c t o g l o b u l i n, w ith a c o rre s p o n d in g a p p a re n t K,^ o f 0.2 2 g ram s. H ow ever, a t s u b s t r a t e conc e n t r a t i o n s above 0.7*+ g ra m s, s u b s t r a t e i n h i b i t i o n was n o te d. On th e o th e r h a n d, s o lu b le p ro n a s e n e v e r a p p ro a c h e d i t s maximum v e l o c i t y w ith a - la c ta lb u m in as s u b s t r a t e, ev en th o u g h a 2.7 5 # p r o t e i n s o lu t i o n v as u s e d. The a p p a re n t v a lu e s o b ta in e d from F ig u r e s 15 and 16 s u g g e s t t h a t t h e s o lu b le p ro n a s e h a s a low a f f i n i t y f o r t h e s e s u b s t r a t e s. When t h e d a ta p r e s e n te d in F ig u r e s 15 and 16 w ere g ra p h e d i n a L in e v e a v e r-b u rk e p l o t, s o lu b le p ro n a s e w ith t h e whey p r o t e i n s a s s u b s t r a t e s gav e a p p a r e n tly l i n e a r r e s u l t s, v i t h c u r v i l i n e a r p l o t s r e s u l t i n g when th e c a s e in s w ere u s e d a s s u b s t r a t e s as d e p ic te d in F ig u re s 17 t h r u 20. The c u r v i l i n e a r p l o t s f o r t h e a c t i o n o f s o lu b le p ro n a s e on t h e c a s e in s s u g g e s t a m u l t i p l i c i t y o f tw o o r m ore e n z y m a tic r e a c t i o n s o c c u r r in g c o n c o m ita n tly, b u t a t d i f f e r e n t r a t e s. From th e r e s u l t s i n F ig u re s 19 and 20 th e a p p a r e n t vmax f o r s o lu b le p ro n a se a c tin g on B - la c to g lo b u lin and a - la c ta lb u m in w ere c a l c u l a t e d t o be 0.1 7 3 9 an d 0.1 2 9 0 a b s o rb a n c e u n its / m i n u t e w ith a p p a re n t M ic h a e lis c o n s ta n ts o f 0.5 1 3 gram s f o r th e fo rm e r r e a c t i o n and 1.1 3 6 gram s f o r t h e l a t t e r r e a c t i o n. H ow ever, c u r v i l i n e a r p l o t s r e s u l t e d f o r s o lu b le p ro n a se a c t i n g on e a c h m ilk p r o t e i n when th e s e d a t a w ere p l o t t e d on an E a d ie -H o fs te e p l o t, w h ich i s u s e d t o m ag n ify any n o n - l i n e a r i t y e x i s t i n g in t h e L in e v e a v e r-b u rk e p l o t. T h ese d a t a i n d i c a t e t h a t e i t h e r s e v e r a l p r o t e o l y t i c enzym es w ere a c t i v e s im u lta n e o u s ly b u t a t d i f f e r e n t r a t e s

86 F ig u re 16: V e lo c ity v s. s u b s t r a t e p l o t f o r s o lu b le p ro n a se on a - la c ta lb u m in and 6 - la c t o g lo b u l i n (ph 7.1 ; 0.0 5 N T r is b u f f e r ; 30 C +_ IOC; 30 m in u te r e a c t i o n tim e ).

100 0- lactoglobulin 8 0 a-lactalbumin o io 60 X e e 4 0 \ <9 < < 20 Substrate gy^ooml

88 F ig u re IT : L in e w e a v e r-b u rk e p l o t f o r th e r e a c t i o n o f s o lu b le p ro n a s e w ith a - c a s e i n.

89 80i 60 4 0 0 1 2 3 4 5 6 7

90 F ig u re 18: c a s e in r e a c t i o n. L in e w e a v er-b u rk e p l o t f o r s o lu b le p ro n a s e v h o le

91 40 30 20

92 F ig u re 29: L in ew eav er-b u rk e p l o t f o r th e r e a c t i o n o f s o lu b le p ro n a s e w ith a - la c ta lb u m in.

60 80-40- 2 a TFT

F ig u re 20: L in e v e a v e r-b u rk e p l o t f o r s o lu b le p ro n a s e B - la c to g lo b u lin r e a c t i o n.

34 24

t o c a u se p r o t e i n d e g r a d a tio n a n d /o r t h a t one enzyme was h y d r o ly z in g a t d i f f e r e n t r a t e s m ore th a n one p e p tid e bond w hich l i n k s d i f f e r e n t am ino a c id r e s id u e s t o g e t h e r. R e s u lts fro m s tu d i e s o f im m o b iliz e d p ro n ab e a c t i n g on m ilk p r o te in s a r e p r e s e n te d in F ig u re 2 1. W ith 0 - l a c t o g l o b u l i n and c t-c a s e in a s s u b s t r a t e s, im m o b ilized p ro n a s e re a c h e d a maximum v e l o c i t y o f 0,80 and 0.2 2 a b s o rb a n c e u n its /m in u te r e s p e c t i v e l y. P o ly m e ric p ro n a s e was a p p ro a c h in g i t s maximum v e l o c i t y w ith w hole c a s e in b u t was s t i l l e x h i b i t i n g f i r s t o r d e r k i n e t i c s w ith a - la c ta lb u m in. F ig u re s 22 t h r u 25 r e p r e s e n t t h e L in ew eav er-b u rk e p l o t s f o r im m o b iliz e d p ro n a se w ith e ach m ilk p r o t e i n u t i l i z i n g d a ta r e p l o t t e d from F ig u re 21. R e s u lts w ith w hole c a s e i n as t h e s u b s t r a t e i n d i c a t e a c u r v i l i n e a r p l o t, s u g g e s tin g t h e o c c u rre n c e o f m ore th a n one e n z y m a tic r e a c t i o n. Howe v e r, a l i n e a r p l o t was o b ta in e d f o r t h e s u b s t r a t e a - c a s e i n w ith c a lc u la te d v a l u e s f o r a p p a re n t vraax and a p p a r e n t o f 0,500 a b s o rb a n c e u n its /m in u te an d 0.1 2 5 g ram s. T h e se v a lu e s com pare f a v o r a b ly w ith a c a l c u l a t e d, a p p a r e n t o f 0.1 0 0 gram and an a p p a re n t maximum v e l o c i t y 0.2 2 a b s o rb a n c e u n its /m in u te from F ig u re 2 1. R e s u lts w ith t h e whey p r o t e i n s u b s t r a t e s a r e shown in F ig u re s 2U and 2 5. Im m o b iliz ed p ro n a s e e x h ib ite d a l i n e a r p l o t w ith a - la c ta lb u m in w ith a c a l c u l a t e d a p p a re n t maximum v e l o c i t y o f 5.0 0 a b s o rb a n c e u n its /m in u te and an a p p a re n t o f 5.0 0 g ram s. A lth o u g h r e s u l t s c a l c u l a t e d from F ig u re 21 showed an a p p a re n t va a x of 0.8 0 a b s o rb a n c e u n its /m in u te and an a p p a re n t M ic h a e lis c o n s ta n t o f 0.26 gram s f o r im m o b iliz e d p ro n a se w ith t h e s u b s t r a t e B - l a c t o g l o b u l i n, th e L in ew eav e r-b u rk e p l o t i n d i c a t e d a c u r v i l i n e a r r e l a t i o n s h i p. When th e k i n e t i c d a ta f o r th e im m o b iliz e d p ro n a s e -m ilk

97 F ig u re 21: V e lo c ity v s. s u b s t r a t e p l o t f o r t h e p o ly m e ric p ro n a s e r e a c t i o n on f o u r m ilk p r o t e i n s a t one m in u te r e s id e n c e tim e. (ph 7. 1 ; te m p e r a tu r e 50 C +_ 1 C ; 0.0 5 N T r i s b u f f e r ; flo w r a t e 2 m l/ m in.; c o n t r o l U ml o f d e s ig n a te d p r o t e i n w ith no enzyme t r e a t m e n t ).

98 750 1acto globulin 6 0 0 casein 450 a-casein 150 0-0 0-5 Substrate g /fo o m l 1 0

99 r e a c tio n. F ig u re 22: Lineweaver-Burke p lo t f o r polym eric p ro n ase c a s e in

S 100

F ig u re 23: a -c a s e in r e a c tio n. Linew eaver-burke p l o t fo r polym eric pronase

CO CNJ in T in

F ig u re 2U: Linew eaver-burke p lo t f o r th e r e a c tio n of polym eric pronase w ith B -la c to g lo b u lin.

10*1 I S

105 F ig u re 25: a -la c ta lb u m in. Linew eaver-burke p lo ts f o r polym eric pronase on

10

p r o te in r e a c tio n s were p lo tte d on an E ad ie-h o fstee p lo t* th e r e s u l t s showed t h a t more th a n one enzym atic r e a c tio n was o c c u rrin g w ith each m ilk p r o te in. A lthough i t i s reco g n ized t h a t th e a b so lu te v a lu e s o b ta in e d by a n a ly s is o f th e k i n e t i c d a ta a re o f l i t t l e v a lu e, th e v alu es o b ta in e d do p ro v id e an in s ig h t in to d iff e r e n c e s in r e a c tio n r a te s w ith th e d i f f e r e n t m ilk p r o te in system s u sed and betw een th e s o lu b le and po ly m eric p ro n ase. The ap p aren t V and K_ t h a t co u ld be approxim ated max fo r th e v a rio u s system s from F ig u res 15, l 6, 19, 21, and 25 a re 107 summarized in T able 8. In com paring th e a c t i v i t y o f so lu b le and in s o lu b le pronase on th e v a rio u s m ilk p r o te in s, th e so lu b le p ro n a s e 's maximum v e l o c i t y, e x c ep tin g th e r e a c tio n w ith a - c a s e in, is alm ost te n tim es le s s th an th e maximum v e lo c ity fo r polym eric p ro n ase. T his in d ic a te s t h a t polym eric pronase was p re s e n t in a g r e a te r q u a n tity in th e enzyme column th a n t h a t used in th e so lu b le pronase s tu d ie s. C om paratively good agreement in ap p a re n t K ^'s were o b tain e d f o r s o lu b le and polym eric p ro n ase re a c tin g w ith c a s e in (0.U2 g. and 0.30 g.) and 8- la c to g lo b u lin (0.2 2 g, and 0.26 g. ). However, s o lu b le pronase gave much h ig h e r I ^ 's f o r a -c a s e in and a -la c ta lb u m in (0. t 2 g, and 1.11 g.) th an d id polym eric pronase "(0.125 g. and 0.5 g. ). F in a lly, th e s e r e s u l t s in d ic a te t h a t th e m ajor m ilk p r o te in s are degraded a t somewhat d i f f e r e n t r a t e s by each enzyme sy stem, w ith a -la c ta lb u m in b e in g th e most d i f f i c u l t p r o te in to degrade.

Table 8 108 Comparison o f K in e tic D ata f o r S o lu b le and In s o lu b le Pronase S u b s tra te A pparent V max (AAbs/min) S olu b le Polym eric P ronase Pronase S oluble Pronase A pparent Km (grams) Polym eric Pronase»* a -la c ta lb u m in.125 > 0.9 1.11 0.5 # B -la c to g lo b u lin.102 0.80.22 0.26 * a -c a s e in.156 0.22. 1*2 0.125 * c a se in.150 0.55.h2 0.3 «Based on V/S p l o t s, b u t n o n -lin e a r on Linew eaver-burke p lo ts. Based on l i n e a r Linew eaver-burke p l o t. S to rag e S t a b i l i t y S ince th e so lv e n t system may a f f e c t th e a c t i v i t y o f th e immobiliz e d enzyme, experim ents were perform ed w ith p o la r s o lv e n ts, nonp o la r s o lv e n ts and d rie d polym eric pronase t o determ ine th e e f f e c t o f so lv e n t on th e a c t i v i t y o f polym eric p ro n ase. A ll so lv e n t system s were s to r e d a t U C f o r th e two week p e rio d ex cep tin g cyclohexane and benzene which were s to re d a t 25 C. Polym eric pronase a c t i v i t y was determ ined u t i l i z i n g 10 ml of c a se in (0.500 gram s/25 ml) in 0.05 N T r is b u f f e r, ph 7.1 a t 30 C. R e su lts from t h i s in v e s tig a tio n are p re se n te d in Table 9. A fte r two weeks o f sto ra g e a l l enzyme p re p a ra tio n s s to r e d under p o la r o r n o n -p o la r so lv e n ts e x h ib ite d g r e a te r th an 90J( o f t h e i r o r ig in a l a c t i v i t y. In c o n tr a s t th e a i r - d r i e d bound

enzyme p re p a ra tio n showed only 20% o f i t s o r ig in a l a c t i v i t y, in d ic a tin g 109 s u b s t a n t i a l in a c tiv a tio n o f th e enzyme. The polym eric enzyme s to re d under w ater showed l i t t l e lo s s in enzymic a c t i v i t y even a f t e r 7 weeks s to ra g e under r e f r i g e r a te d c o n d itio n s. I t can "be concluded from th e s e ex p erim en tal r e s u l t s t h a t benzene, T r is b u f f e r, ph 7.0, and w ater a l l a re s u ita b le s o lv e n ts f o r polym eric p ro n ase. T able 9 E ffe c t o f S olv en t on Enzymatic A c tiv ity S olvent 0 day ab s. ll* day a b s. % o r ig in a l a c t i v i t y W ater 10. 6k 10.60 9 9.6 T r is b u f f e r ph 7.0 11.20 11.12 9 9.3 Benzene 10. 6U 10.56 99.2 M ethanol 11.20 1 1.OU 98.5 Cyclohexane 9.92 9.60 96.7 Frozen 10.21* 9.3 6 91.1+ A ir d rie d 1 0.2k 2.08 20.3 Therm al S t a b i l i t y As shown p re v io u sly in t h i s s tu d y, th e optimum a c t i v i t y o f p ro n ase a g a in st m ilk p r o te in s was in excess o f 50 C. S ince e le v a te d te m p e ra tu re s over p rolonged p e rio d s o f tim e may in a c tiv a te enzyme m olecules by cau sin g c o n fo rm atio n al changes in th e a c tiv e or b in d in g s i t e s, experim ents were conducted a t th re e d i f f e r e n t te m p e ra tu re s to d eterm in e th e th erm a l s t a b i l i t y o f bo th bound and s o lu b le p ro n a se.

C asein ( l g ram /7 6.2 ml "buffer) a t ph 7.1, 0.05 N T ris b u f f e r, 30 C + 1 C was used as th e s u b s tr a te. R e s u lts a re p re s e n te d in T able 10. 110 T able 10 E f f e c t o f Tem perature on th e Thermal S t a b i l i t y of S o lu b le and Polym eric P ronase 30 C 50 C 70 c S oluble In s o lu b le S o lu b le In s o lu b le S o lu b le In so lu b le Hr % O rig in a l A c tiv ity 0 100 100 100 100 100 100 1 105.1 97.8 10U.6 83.6 0 7U.8 2 99.0 88.6 9 0.3 8 h.l 0 51.0 3 99.0 82.14 8 7.8 7 2.6 0 65.3 h 96.9 83.7 69. U 79.7 0 31.5 5 9 9.0 82.0 6 6.8 85.7 0 hk.9 6 90.7 80.8 6 5.3 7 9.2 0 36.7 S olu b le pro n ase h e ld a t 30 C f o r 6 hours l o s t only 10% o f i t s o r ig in a l enzym atic a c t i v i t y w h ile polym eric p ro n ase l o s t ap p ro x im ately 20% o f i t s o r ig i n a l b io lo g ic a l a c t i v i t y. For th e f i r s t th r e e hours a t 50 C th e re was only a 10% lo s s in s o lu b le pro n ase a c t i v i t y, b u t f u r th e r h e a t tre a tm e n t caused an approxim ate 35% lo s s in c a t a l y t i c power. On th e o th e r h an d, in s o lu b iliz e d p ro n ase r e ta in e d 00% o f i t s a c t i v i t y a f t e r 6 hours exposure t o 50 C. When th e te m p e ra tu re was r a is e d to 70 C, so lu b le pron ase l o s t a l l i t s c a t a l y t i c a t x l i t y by th e end o f th e f i r s t h o u r. However, th e im m obilized enzyme r e ta in e d 65% o f i t s

Ill a c t i v i t y a f t e r 3 h o u rs and 3 6.7% a f t e r 6 h o u rs. In c o n c lu sio n, th e s e r e s u l t s show t h a t th e im m obilized enzyme is much more s ta b le a t e le v a te d te m p e ra tu res w ith th e s o lu b le pronase b e in g more s ta b le a t tem p eratu re s around 30 C. For prolonged u s e, te m p e ra tu re s above 50 C ap p ear t o be im p ra c tic a l. E ffe c t o f Flow B ate on A c tiv ity o f Polym eric P ronase O p tim izatio n o f th e o p e ra tin g c o n d itio n s f o r polym eric pron ase in a packed bed r e a c to r re q u ire s knowledge o f th e e f f e c t o f flow r a te on enzym atic a c t i v i t y. Flow r a t e w i l l a f f e c t th e degree of tu rb u le n c e in th e column, th e boundary la y e r a t th e g la s s su p p o rt in te r f a c e and th e d iff u s io n o f th e s u b s tr a te th ro u g h th e f lu i d medium and th e porous g la s s. A s e r ie s o f experim ents were conducted t o determ ine th e e f f e c t of flow r a t e on enzym atic a c t i v i t y. P re lim in a ry in v e s tig a tio n s were conducted w ith packed bed columns o f polym eric pronase u sin g a l l fo u r m ilk p ro te in s u b s tr a te s. S u b stra te was pumped through th e column c o n tin u o u sly a t given flow r a te s a t a tem p e ra tu re o f 30 C, ph 7.1 and an io n ic s tre n g th o f 0.0 1. A nalyses were made a t v a rio u s tim es a f t e r i n i t i a t i o n of flow. I t became ap p a re n t th a t a p e rio d o f tim e was re q u ire d to reach a maximum r a te o f c a t a l y s is a t a g iv en flow r a te and th a t th e tim e re q u ire d t o reach a maximum v e lo c ity v a r ie d as a fu n c tio n o f flow r a t e. R esidence tim e (min) which = f io v r a t ^ T ml/mitit was used 3X1 expr e s s io n of th e c o n ta c t tim e in th e column. T o p ical d a ta a re p re se n te d in F igure 26 fo r 0 -la c to g lo b u lin C0.1i7g/100 ml) a t flow r a te s ran g in g from 0.17 nil t o 1.57 ml/rain and

112 F ig u re 26 : E ffe c t o f flow r a te on th e tim e re q u ire d to come t o a stead y r e a c tio n v e lo c ity f o r th e polym eric pronase B -la c to - g lo b u lin r e a c tio n (0.^7 Srams p ro te in /1 0 0 ml in 0.05 N T ris b u f f e r ; 1; tem p eratu re 50 C +_ 1 C ; c o n tro l fs -lacto g lo b u lin n o t t r e a t e d enzyme). 1. F lov r a te 1.57 m l/m inute R esidence tim e 1.U6 m inutes 2. Flow r a te 0.89 m l/m inute R esidence tim e 2.36 m inutes 3. Flow r a te 0.65 m l/m inute R esidence tim e 3.2 3 m inutes h. Flow r a te 0.57 m l/m inute R esidence tim e 3.68 m inutes 5. Flow r a te 0.31 m l/m inute R esidence tim e 6.77 m inutes 6. Flow r a te 0.17 m l/m inute R esidence tim e 13 m inutes

1 0 113 0*9 0*8 0-7 A Abs 0*4 0 3 0*2 0*1 0 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time in Minutes

n il co rresp o n d in g re sid e n c e tim es ran g in g from 13 m inutes to l.h6 m in u tes. As in d ic a te d in th e F ig u re, th e tim e re q u ire d t o come to a stead y r e a c tio n v e lo c ity in c re a se d as th e flow r a t e d ecreased w ith th e maximum v e lo c ity achieved a ls o d e c re a sin g as th e flow r a t e d ecrease d. G e n e ra lly, b e t t e r h y d ro ly s is o f a l l s u b s tr a te s was observed a t th e f a s t flow r a te s u t i l i z e d. However, a t e x c e ssiv e ly hig h flow r a t e s, in th e range o f 15 t o 30 ml p er m in u te, th e enzym atic re a c tio n r a t e dropped t o v alu e s below 0.03 absorbancy u n its /m in. The r e la tio n s h ip o f flow r a t e (re sid e n c e tim e) on th e tim e re q u ire d to ach iev e a c o n sta n t v e lo c ity a t a g iv en flow r a t e was determ ined f o r each s u b s tr a te a t th re e d i f f e r e n t c o n c e n tra tio n s and a t l e a s t 5 d i f f e r e n t flow r a t e s. The s t a t i s t i c a l a n a ly s is o f th e l i n e a r re g re s s io n a n a ly s is o f th e d a ta is p re se n te d in Table 11. C o rre la tio n c o e f f ic ie n ts were s ig n if ic a n t in a l l c a se s. The slo p e o f th e lin e a r re g re s s io n lin e in d ic a te d iffe re n c e s in th e e f f e c t of v a r ia tio n o f re sid e n c e tim e on th e tim e re q u ire d t o achieve a stea d y r e a c tio n v e lo c ity a t a c o n sta n t flow r a t e. B -la c to g lo b u lin was a f fe c te d to th e g r e a te s t e x t e n t, follow ed by a -c a s e in and w ith a -la c ta lb u m in and whole c a se in e x h ib it th e l e a s t a f f e c te d. S u b s tra te c o n c e n tra tio n was a f a c to r only in th e case o f B -la c to g lo b u lin. The in te r c e p t v a lu e s cannot be given any s ig n if ic a n c e, sin ce th e r e a c tio n v e lo c ity drops t o 0 a t very h ig h flow r a t e s, The tim e re q u ire d fo r th e a c t i v i t y o f p ro n ase t o reach a c o n sta n t v a lu e a t d i f f e r e n t given flow r a te s is shown in F ig u re 27 f o r B -la c to g lo b u lin and a -la c ta lb u m in. At flow r a te below 0.5 ml/min (30 m l/h r ),

115 Table 11 L in e a r R egression A n aly sis o f R esidence Time and Time R equired to Reach a C o n stan t Enzymatic R eactio n V e lo c ity f o r Polym eric P ronase A cting on M ilk P ro te in s S u b s tra te C o n ce n tratio n g/150 ml C o rre la tio n C o e fic ie n t* L in ea r R egression Line slo p e in te r c e p t t min ) B -la c to g lo b u lin 0.27.96 9.6-3.1* 0.30.9U 3.1 1*.5 0.37.98 ll*.2-6.7 0.1*7.90 8.3-0.5 a -la c ta lb u m in 0.35.91 3.6 3.8 0.1*0.95 3.1-0.37 0.1*7.89 2.1(6 1.6 a -c a s e in 0,19.91* 9.2-1 0.6 0.27.73 6.9-6.5 o.uo.9h 6.9-0.16 c a se in 0.25.83 1.9 5.8 0.30.70 2.1 0.6 0.35.91 3.1 -.28 R e la tio n s h ip betw een re sid e n c e tim e (min) (X) and tim e re q u ire d to re ac h a c o n s ta n t re a c tio n v e lo c ity o f enzyme c a t y l s i s (Y).

F ig u re 27: Time re q u ire d f o r th e a c t i v i t y o f polym eric p ro n ase t o reach a c o n sta n t v alu e a t d i f f e r e n t flow r a te s fo r 8 - la c to g lo b u lin and a -la c ta lb u m in (0.21 grams a -la c ta lb u m in and 0.6*t grams 6 - la c to g lo b u lin p er 100 ml 0.05 N T ris b u f f e r ; ph T.l te m p e ratu re 50 C +_ 1 C; c o n tr o l d e sig n a te d p r o te in not t r e a t e d w ith enzyme).

3.o 25 \ 0-loctoglobulin V \\ i 2 0 ' 15 o (C 5 10 u. \ \ N \ \ A X N.. V v > a-lactolbumin \ M x w» 3 O H*5 d 3 te -3 a 05 \ 4 6 5. «D 01 > y. O 0 J T2 T5 Z? 30" K 3 6 Time in minutes to reach steady state

118 i t to o k more th a n 20 m inutes t o achieve a maximum r e a c tio n v e lo c ity a t a c o n s ta n t flow r a t e. The e f f e c t o f re sid e n c e tim e on th e maximum v e lo c ity a c h ie v a b le a t a g iv en flow r a t e, w ith a c o n sta n t s u b s tr a te c o n c e n tra tio n, is shown in F ig u re 28. The r e s u l t s show t h a t re sid e n c e tim es lo n g er th an s ix m inutes r e s u lte d in l i t t l e change in th e maximum enzym atic v e lo c ity a c h ie v a b le whereas s h o rt re sid e n c e tim e s r e s u lte d in la r g e r maximum v e l o c i t i e s. Long re s id e n c e tim es r e q u ir e very slow flow r a t e s, which in c re a s e th e th ic k n e ss o f th e f lu i d boundary la y e r surro u n d in g th e p a r t i c l e. T h e re fo re, th e maximum r e a c tio n v e lo c ity a tta in a b le becomes d if f u s io n lim itin g. On th e o th e r h an d, s h o rt re sid e n c e tim es re q u ire f a s t e r flow r a te s which in c re a s e tu rb u le n c e, d ecrease th e f lu i d boundary la y e r th ic k n e s s, th ere b y in c re a s in g maximum enzym atic v e lo c ity. A ttem pts were made t o determ ine th e e f f e c t o f r e te n tio n tim e on th e r e a c tio n r a t e. This was p o s s ib le only fo r B -la c to g lo b u lin, w ith th e d a ta a v a ila b le from th e s e ex p erim en ts. R e c ip ric a l p lo ts shown in F ig u re 29 a re based on l i n e a r unw eighted r e g re s s io n a n a ly s is o f d a ta fo r $ -la c to g lo b u lin a t v a rio u s s u b s tr a te c o n c e n tra tio n s as a fu n c tio n o f flow r a t e. As th e r e te n tio n tim e in c re a s e d, th e maximum v e lo c ity d ecreased and K a ls o d e c re a se d, in d ic a tin g th e e f f e c ts o f d iff u s io n in on th e glass-enzym e system. E ffe c t o f Pronase P re tre a tm e n t o f Skimmilk on B io lo g ic a l O x id a tio n : The prem ise in i n i t i a t i n g th e s e in v e s tig a tio n s, which n e c e s s ita te d th e c h a r a c te r iz a tio n o f polym eric pronase a g a in st m ilk p r o te in s, was t h a t p re d e g ra d a tio n o f m ilk p ro te in s would e lim in a te problem s in th e

119 F ig u re 28: E ffe c t o f re s id e n c e tim e on th e maximum v e lo c ity a c h iev ab le a t a g iv en flow r a t e, w ith a c o n sta n t s u b s tr a te c o n c e n tra t i o n, f o r polym eric pronase r e a c tin g w ith fi-la c to g lo b u lin and a -la c ta lb u m in (0.21 grains a -la c ta lb u m in and 0,6*+ grams 3 -la c to g lo b u lin p e r 100 ml 0.05 N T r is b u f f e r ; ph 7.1 ; te m p e ra tu re 50 C +_ 1 C; c o n tr o l d e sig n a te d p r o te in not t r e a te d w ith enzyme).

120 of Reaction lactoglobulin X o a-lactalbumin Residence Time in Minutes

121 F ig u re 29: L in ev eav er-b u rk e p lo t f o r th e p olym eric p ro n ase - B -la c to g lo b u lin r e a c tio n based upon v a lu e s o b ta in e d from l i n e a r u nw eighted r e g r e s s io n a n a ly s is o f d a ta f o r 8 - la c to g lo b u lin a t v a rio u s s u b s t r a te c o n c e n tr a tio n s.

Res. Time 2*.2 \( Res. Time 2 0 2 3 4 5

u t i l i z a t i o n o f miix p r o te in s d u rin g b io lo g ic a l o x id a tio n tre a tm e n t of d a ir y food p la n t w astes and improve th e e f f ic ie n c y o f b io lo g ic a l o x i 123 d a tio n. To t h i s end so lu b le pronase was s e le c te d f o r i n i t i a l tre a tm e n t o f skim m ilk t o be used in a la b o ra to ry a c tiv a te d slu d g e system o f th e extended a e r a tio n ty p e. R e su lts o f t h i s stu d y a re p re se n te d in T able 12. From t h i s T able th e r e appears t o be l i t t l e change in th e b io lo g ic a l oxygen demand, lo a d in g, biom ass c o n c e n tra tio n, food-biom ass r a t i o, o r e f fic ie n c y o f th e b io lo g ic a l oxygen demand rem oval w ith e i t h e r th e pronase t r e a t e d skim m ilk o r th e c o n tr o l sample over th e th r e e day p e rio d. However, th e re i s a s ig n i f i c a n t d e cre ase in th e e f f ic ie n c y o f th e chem ical oxygen demand rem oval from 37-7# fo r day one to 23.6# f o r day two (compared t o U3.6$ f o r th e c o n tro l) w ith no s i g n i f i c a n t change n o tic e a b le in p erc en t c e l l n itro g e n (1.6 6 and 1.60 fo r th e r e s p e c tiv e d a y s). A lso, t o t a l n itro g e n in th e e f f lu e n t in c re a s e d from 0.223$ N/ml fo r day one to 0. 2595? N/ml f o r day two w ith a c o n tr o l v alu e o f 0.000$ N/ml. Since about 5# la c to s e i s p re s e n t in skim m ilk w ith th e 3.2$ p r o te in, i t appears t h a t la c to s e is b ein g u t i l i z e d p r e f e r e n t i a l l y to th e amino a c id s, acco u n tin g f o r th e 50$ b io lo g ic a l oxygen demand e f fic ie n c y. High v o lta g e e le c tr o p h o re s is o f samples c o lle c te d over th e th r e e day p e rio d confirm ed t h a t p e p tid e s and amino ac id s were not b ein g u t i l i z e d by th e biom ass (F ig u re 3 0 ), e x p la in in g th e in c re a se d t o t a l n itro g e n in th e e f f lu e n t w ith no in c re a se in p e rc e n t c e l l n itro g e n.

Table 12 Biomass Performance Data Experimental Conditions mg B.O.D, lo ad in g / day Biomass Conc e n tra tio n (g/1.5 1) Food/Biomass Ratio % E fficien cy C.O.D. Removal % E fficien cy B.O.D. Removal T otal N itrogen in E fflu en t C ell Nitroj % Loading Day C alculated 3000 mg/ 1 6395 1*0.1+0 1.78 37.7 55.1* 0.22335 N/ml 1.66 B B.O.D. Pronase 2 6079 1*2.30 1.62 23.6 1*7.2 0.25935 N/ml 1.60 Treated Skimmilk 3 615** 1*3.1*0 1.69 22.1* 1*7.0 0. 26555 N/ml 1.56 3000 mg/ 3 5796 _ 1*3.6 50,0 0. 080/S N/ml 1.30 L B.0.D. Restored w ith Skimmilk ro tr

125 F ig u re 3 0 t High v o lta g e e le c tr o p h o re s is o f sam ples o b ta in e d from a b io fe rm e n te r given pronase t r e a te d skim m ilk over a th re e day p e rio d. 100 ml sam ples a p p lie d t o p a p e r, e le c tro p h o re s e d a t 2500 V f o r 1.5 hours a t 150 ma in ph 3.^ p y rid in e : a c e tic a c id : w ater m ixture (5 :1 5 :8 5 ). From l e f t t o r ig h t : Sample 1 Skimmilk 3000 B.O.D. Sample 2 N e u tra l and a c id ic amino acid s Sample 3 Mixed liq u o r 3000 B.O.D. skimmilk Sample b Skimmilk 3000 B.O.D. pronase t r e a te d Sample 5 Mixed liq u o r 1 st day Sample 6 C e ll f r e e e f f lu e n t 1 s t day Sample 7 Mixed liq u o r 2nd day Sample 8 C e ll f r e e e f f lu e n t 2nd day Sample 9 Mixed liq u o r 3rd day Sample 10 C e ll F ree e f f lu e n t 3rd day Sample 11 T o ta l e f f lu e n t 2nd day

D ire c tio n o f m ig ratio n N eu tral and a c id ic amino acid s base lin e Samples 1 2 3 1 + 5 6 7 8 9 10 11

DISCUSSION P ronase i s a complex o f enzymes o b ta in e d from Streptom yces g ris e u s K -l t h a t e x h ib its broad s p e c i f i c i t y under a wide range o f environm ental c o n d itio n s. The p re p a ra tio n of in s o lu b le d e r iv a tiv e s o f t h i s enzyme by d iaz o co u p lin g o f pron ase t o arylam ine g la s s p ro duced a s t a b l e, a c tiv e enzym e-glass d e r iv a tiv e. C h a ra c te riz a tio n of t h i s enzym e-glass d e r iv a tiv e by fo u r m ilk p r o te in s p o sse ssin g d if f e r e n t c o n fig u ra tio n s and m o lecu lar w eig h ts was achieved under v ario u s en v iro n m en tal c o n d itio n s o f ph, te m p e ra tu re, io n ic s tr e n g th, and subs t r a t e c o n c e n tra tio n. In s e v e ra l in s ta n c e s, com parisons were made w ith s o lu b le pronase under i d e n t i c a l c o n d itio n s t o a s c e r ta in th e e f f e c ts o f im m o b ilizatio n on th e h y d ro ly s is o f m ilk p r o te in s. The r e s u l t s o f t h i s stu d y showed t h a t in s o lu b iliz e d pronase could be re u sed many tim es w ith o u t lo s s o f i t s. b i o l o g i c a l a c t i v i t y as long as i t was kept m o ist and s to re d under r e f r i g e r a te d c o n d itio n s. Im m obilized pro n ase proved to be le s s cap ab le th an s o lu b le pronase in degrading l a r g e, s o lu b le m ilk p r o te in m o lecu les, b u t more s ta b le to th e rm a l in a c tiv a tio n a t e le v a te d te m p e ra tu res. Q u a n tif ic a tio n of th e a c t i v i t y o f im m obilized pronase was determ ined by d e p le tio n a n a ly s is, u t i l i z i n g benzoyl a rg in in e e th y l e s te r as th e s y n th e tic s u b s t r a te, and was th e r e fo r e n o t n e c e s s a r ily a r e f l e c t i o n o f a c tiv e enzyme b u t r a th e r o f t o t a l enzyme bound. For 10 b in d in g experim ents an average o f 9.6 mg of bound enzyme/g o f g la s s was o b tain ed w hich i s com parable t o r e s u l t s f o r o th e r polym eric enzyme 127

analogues (1^9, 152) bound t o in o rg a n ic su p p o rts. 128 The r a t e o f d eg rad atio n o f v a rio u s m ilk p r o te in s was u t i l i z e d as an index o f enzym atic a c t i v i t y f o r b o th s o lu b le and in s o lu b le p ro n ase. However, in d isc u s s in g th e s e r e s u l t s s e v e ra l f a c to r s need t o be m entioned. F i r s t, an enzyme u s u a lly h y d ro ly zes on ly c e r ta in chem ical b o nds, th e kind o f which are dependent upon th e prim ary amino a c id sequence o f th e p r o te in s u b s t r a te, and th e se w i l l vary w ith d i f f e r e n t p r o te in s. A lso, secondary and t e r t i a r y fo ld in g o f th e prim ary s tr u c tu r e as w e ll as d is u l f i d e and hydrophobic bonding a l l may lim it th e a v a i l a b i l i t y of s u s c e p tib le bonds t o enzym atic a c tio n. T h ird, p r o te in m olecule ag g re g a tio n a lso can impede enzym atic c a ta ly s is by c r e a tin g an u n fav o rab le stere o c h e m ica l r e la tio n s h ip betw een th e subs t r a t e and th e enzym e-support m a te r ia l. These f a c to r s in co n ju n ctio n w ith th e m icroenvironm ental c o n d itio n s around th e s u b s tr a te and enzyme support m a te r ia ls can produce s ig n if ic a n t changes in th e v e lo c ity o f th e enzym atic r e a c tio n w ith o u t cau sin g enzyme d e n a tu r a tio n. Thermal p r o f i l e s a re s im ila r f o r s o lu b le and polym eric pronase r e a c tin g w ith a - and whole c a se in to 60 C. S ince l i t t l e q u a lita tiv e o r q u a n tita tiv e d iff e r e n c e s e x is t c o m p o s itio n a lly, t h i s would be expected because th e c a se in s e x i s t in randomly c o ile d c o n fig u ra tio n s due to th e high hydrophobic c o n te n t and d i s t r i b u t i o n o f a p o la r amino a c id s in th e prim ary s tr u c tu r e. With B -la c to g lo b u lin s im ila r th erm al p r o f i l e s r e s u lte d w ith s o lu b le and polym eric p ro n a se, alth o u g h a g r e a te r in c re a s e in re a c tio n v e lo c ity o ccu rred w ith polym eric pronase

betw een 30 and 50 C. However, s u b s ta n tia lly d i f f e r e n t th erm a l p ro f i l e s e x i s t f o r th e a c tio n o f s o lu b le and polym eric p ro n ase on 129 a -la c ta lb u m in. These d iff e r e n c e s may be a t t r i b u t e d to th e e f f e c t s o f lo n g e r tim e exposure on th e prim ary amino a c id s t r u c t u r e, r e s u ltin g in more random c o i l fo rm atio n w ith subsequent s u s c e p tib le bond form a t i o n f o r s o lu b le p ro n ase. S ince th e h e a t tre a tm e n t was o f s h o rte r d u ra tio n fo r polym eric p ro n a s e, a more g ra d u a l u n fo ld in g o f th e a -la c ta lb u m in m olecule would occur as te m p eratu re in c re a se d. This could e x p la in th e lin e a r in c re a s e in r e a c tio n v e lo c ity w ith in c re a s in g te m p e ra tu re. G e n e ra lly, c o v ale n t b in d in g o f enzymes to su p p o rt m a te ria ls le a d s to a d e c re a se in th erm a l s t a b i l i t y (U l), However, in c re a s e s in th erm al s t a b i l i t y have been re p o rte d f o r enzymes bound to g la s s (1 5 1 ). Immobiliz e d p ro n ase was much more s ta b le th an th e s o lu b le p re p a ra tio n a t te m p era tu res o f 50 C o r h ig h e r ; th e s o lu b le p re p a ra tio n b ein g more s ta b le a t tem p eratu res around 30 C, U su a lly, d ecrease s in th e th erm al s t a b i l i t y o f a bound enzyme r e s u l t from th e i n a b i l i t y t o assume th e th re e -d im e n s io n a l c o n fig u ra t i o n o f th e so lu b le enzyme in s o lu tio n. P ro n ase, how ever, i s not a s in g le enzyme, b u t a m ix tu re o f a t l e a s t 13 enzymes. M oreover, i t is n o t known w ith c e r ta in ty which of th e se enzymes p o sse ss th e c a p a b ility o f d eg rad in g m ilk p r o te in s o r how th e se enzymes are bound to th e g la s s. One e x p la n a tio n, which acco u n ts fo r th e observed r e s u l t s, a t t r i b u t e s th e in c re a s e in th erm al s t a b i l i t y o f im m obilized p ro n ase to m inim al a l t e r a t i o n s in th e c o n fig u ra tio n o f th o se enzymes a s s o c ia te d w ith

130 p r o te in "breakdown. S in ce th e enzymes are a tta c h e d to a s o lid su p p o rt, enzyme a u to ly s is cannot occur as i t does w ith s o lu b le p ro n a se. Likew is e, c o n fig u ra tio n changes in th e enzyme m o le c u le s, b ro u g h t about by in c re a s e s in te m p e ra tu re, may o ccu r more e a s i ly w ith s o lu b le pronase th a n w ith th e su p p o rted m a te r ia l, r e s u ltin g in a d ecrease in enzym atic v e lo c ity as te m p e ra tu re in c r e a s e s. This e x p la n a tio n o f bound enzyme th e rm a l s t a b i l i t y s a t i s f a c t o r i l y e x p la in s th e d a ta o b tain ed in th i s stu d y. Royer (125) has re p o rte d t h a t when sm all m olecules a re used as s u b s t r a te s, a s i m i l a r i t y in th e ph optim a fo r s o lu b le and polym eric p ro n ase occurs (ph 8.0 ) w ith c o n sid e ra b le b roadening o f th e ph optimum tow ard h ig h e r a lk a lin e ph 's n o ted f o r th e in s o lu b le enzyme. With la rg e p r o te in m o le c u le s, th e ph a c t i v i t y p r o f i l e of im m obilized pronase depends upon th e summation o f th e e f f e c ts o f ph on th e p k 's o f th e io n iz a b le groups p re se n t on th e enzyme and s u b s tr a te m olecules and th e a l t e r a t io n s in c o n fig u ra tio n of th e enzyme and s u b s tr a te m olecules b ro u g h t about by th e s e e f f e c t s. R esu lts showed t h a t im m obilized p ro n ase d id e x h ib it g r e a te r r e a c tio n v e l o c i t i e s a t a lk a lin e ph 's fo r th e fo u r m ilk p r o te in s examined w ith ph optim a d if f e r in g f o r th e v a rio u s p r o te in s. These r e s u l t s support th e u t i l i z a t i o n o f im m obilized p ro n ase as a p re tre a tm e n t p ro c ess fo r d a iry w astes sin ce th e a c tio n of im m obilized pronase on m ilk p r o te in s was op tim al a t th e optimum ph found in a c tiv a te d slu d g e. The r e a c tio n p r o f i l e s f o r so lu b le and in s o lu b le p ro n ase in d ic a te d t h a t th e m ilk p r o te in s were hy d ro ly zed a t more th an one p la c e in t h e i r amino a c id chain and a t d i f f e r e n t r a t e s. The high K v a lu e s fo r

b o th enzyme system s on a -la e ta lb u m in in d ic a te d t h a t t h i s p r o te in had th e low est a f f i n i t y o f th e fo u r s u b s tr a te s f o r pro n ase w h ile fi-la c to - 131 g lo b u lin had th e h ig h e s t a f f i n i t y f o r p ro n ase. The much la r g e r V m flix v a lu e s f o r polym eric pronase may in d ic a te th e p re se n c e and a c t i v i t y o f a much la r g e r amount o f enzyme th a n was used in th e so lu b le p ro n a se - s u b s tr a te ex p erim en ts. However, th e 20 d iffe re n c e in tem p eratu re betw een th e s e two experim ents w i l l a f f e c t th e maximum v e lo c ity o f th e enzyme system and account fo r s u b s t a n t i a l p a r t o f th e in c re a se d v e lo c i t y o f polym eric p ro n ase. The la r g e d iscrep an cy in ap p aren t v a lu e s f o r th e s o lu b le and polym eric pronase a -la c ta lb u m in and a -c a s e in r e a c tio n s su g g est t h a t flow r a te may be a f f e c tin g th e d e te r m in atio n. R e su lts o f in v e s tig a tio n s i n t o th e e f f e c ts o f flow r a t e on th e a c t i v i t y of polym eric pronase in d ic a te d : (a) t h a t low flow r a te s d ecreased th e maximum enzym atic v e lo c ity a t t a i n a b l e ; (b) th a t as th e tim e t o come t o a ste a d y r e a c tio n v e lo c ity in c re a s e d, flow r a te d e c re a se d ; (c) t h a t enzym atic r e a c tio n r a te dropped to n e ar zero a t e x c e s siv e ly high flow r a t e s. Low flow ra te s w i l l d e c re a se th e tu rb u le n c e in th e column, th e re b y in c re a sin g th e f l u i d d iffu s io n boundary la y e r a t th e g la s s su p p o rt in te rf a c e and th e d iff u s io n o f s u b s tr a te t o and p ro d u ct from th e enzym e-glass su p p o rt. This r e s u l t s in a d ec re ase in th e maximum enzym atic v e lo c ity a t t a i n a b l e. S ince a c o n c e n tra tio n g ra d ie n t o f s u b s tr a te w i l l be e s ta b lis h e d acro ss th e u n s tir r e d boundary la y e r durin g th e course o f th e enzym atic r e a c tio n, th e tim e to reach a stead y r e a c tio n v e lo c ity w i l l in c re a s e. At e x c e s siv e ly h ig h flow r a t e s, tu rb u le n c e w ill be g r e a tly in c re a se d and

132 th e c o n ta c t tim e betw een s u b s tr a te and enzyme may be to o s h o rt to p e rm it b in d in g t o o ccu r. This r e s u l t s in an alm ost z e ro enzym atic r e a c tio n v e lo c ity. A p p lic a tio n of s o lu b le p ro n ase to p r e t r e a t skim m ilk f o r su b sequent u t i l i z a t i o n in a b io lo g ic a l ferm en ter r e s u lte d in a ^0!6 d e c rea se in C.O.D. v a lu e s over a th re e day p e rio d. F u rth e r in v e s tig a tio n s showed t h a t th e amino a c id s and p e p tid e s were no t b ein g u t i l i z e d by th e biom ass alth o u g h s u f f i c i e n t q u a n titie s of oxygen were b ein g s u p p lie d. S e v eral e x p la n a tio n s f o r t h i s e f f e c t may be su g g e sted. S ince th e c e l l s are no t u t i l i z i n g th e p e p tid e s and amino a c id s as a n itro g e n so u rc e, th e s e components could be com plexing t o th e biom ass and s e t t l i n g o u t. T his would e x p la in why th e r e is no s ig n if ic a n t change in th e biom ass c o n c e n tra tio n over th e th re e day p e rio d. The a c tio n o f e x t r a c e l l u l a r p ro te a se s a lre a d y p re s e n t in th e medium would f u r th e r degrade th e p e p tid e s t o amino a c id s, th e re b y c o n trib u tin g to B.O.D. e f f ic ie n c y. S ince such la rg e q u a n titie s o f degraded p ro te in s were p re se n t in t h i s ex p erim en t, c a ta b o lic feedback r e p re s s io n a lso may be lim itin g tr a n s p o r t o f th e amino a cid s and p e p tid e s in to th e c e l l. In a d d itio n th e high le v e ls o f p e p tid e s p re s e n t in th e f lu i d medium may p o s s ib ly i n h i b i t th e fo rm atio n o f e x t r a c e l l u l a r p ro te a s e s.

SUMMARY I n v e s tig a tio n s were conducted t o c h a r a c te r iz e th e r e a c tio n o f polym eric p ro n ase w ith fo u r m ilk p r o te in s under v a rio u s c o n d itio n s in o rd e r t o o p tim ize c o n d itio n s f o r p o s s ib le u t i l i z a t i o n o f t h i s bound enzyme as a p re tre a tra e n t method fo r d a iry food p la n t w a stes. Pronase i s a complex m ix tu re of enzymes o b tain ed from S tre p to - myces g ris e u s K -l by means of ammonium s u lp h a te p r e c i p i ta ti o n. B inding o f t h i s enzyme system t o porous arylam ine g la s s beads i s achieved th ro u g h th e tr y o s in e re s id u e s not e s s e n t i a l f o r b io lo g ic a l a c t i v i t y. An average o f 9.5 8 rag enzyme bound/mg g la s s was o b tain e d f o r te n b in d in g experim ents u t i l i z i n g d e p le tio n a n a ly s is w ith b e n z o y l-a rg in in e e th y l e s t e r as th e s y n th e tic s u b s tr a te. I n v e s tig a tio n s showed th a t BAEE d e te r io r a te s upon prolonged s to ra g e. P o ss ib le a p p lic a tio n o f im m obilized pronase to d a iry food p la n t w aste tre a tm e n t n e c e s s ita te d th e c h a r a c te r iz a tio n of th e in s o lu b iliz e d p ro n a se. A th e rm a l p r o f i l e o f polym eric pronase showed s im ila r r e s u l t s fo r a - c a s e in, whole c a s e in, and a -la c ta lb u m in from 30 to 50 C. Large changes in th e r e a c tio n v e lo c ity of polym eric pronase on B -lact g lo b u lin were r e l a t e d t o l i t e r a t u r e re p o rts o f d is s o c ia tio n o f th e dimer to th e monomer form, th ere b y f a c i l i t a t i n g i t s h y d ro ly s is. Throughout th e t r i a l s, im m obilized pronase d id not appear to d e n a tu re, even a f t e r exposure t o 70 C, 133

The p H -a c tiv ity r e la tio n s h ip f o r polym eric pronase showed an 13U optimum ph h ig h e r th a n 8 f o r a l l m ilk p r o te in s examined. The magnitu d e o f th e e f f e c t o f ph on th e a c t i v i t y a g a in s t d i f f e r e n t s u b s tr a te s v a rie d in th e fo llo w in g d e c re a sin g o rd e r: B -la c to g lo b u lin, whole c a s e in, a -la c ta lb u m in, a - c a s e in. Polym eric pronase dem onstrated a s im ila r r e a c tio n p a tte r n f o r a - c a s e in and whole c a s e in w ith a d e crea se in a c t i v i t y o c c u rrin g a t a 0.30 M calcium c h lo rid e c o n c e n tra tio n. Changes in calcium c h lo rid e c o n c e n tra tio n on e i t h e r s id e o f t h i s v alu e in c re a se d th e enzym atic v e lo c ity. In s o lu b iliz e d pronase gave th e g r e a te s t b io lo g ic a l a c t i v i t y w ith a - la c ta lb u m in, w ith th e g -la c to g lo b u lin curve s im ila r t o th e a -1 actalb u m in c u rv e, b u t d isp la c e d f a r t h e r t o th e r i g h t. K in e tic s tu d ie s on im m obilized pro n ase w ith fo u r m ilk p r o te in s in d ic a te d th a t pronase was h y d ro ly zin g th e s u b s tr a te s a t more th an one s i t e in th e p o ly p e p tid e c h ain. Comparison o f th e polym eric p ro n ase ap p aren t f o r th e v a rio u s p r o te in s showed t h a t a -la c ta lb u m in was th e most d i f f i c u l t p r o te in to degrade and a -c a s e in was th e e a s ie s t p r o te in d egraded. With two o f th e fo u r p r o te in s, th e d iffe re n c e s in apparent K ^'s f o r th e so lu b le and polym eric pronase were s u b s ta n tia l. Experim ents u n d ertak en w ith polym eric pronase t o show th e e f f e c ts o f d if f u s io n on enzym atic v e lo c ity in d ic a te d t h a t a t low flow r a t e s, th e maximum a tta in a b le enzym atic v e lo c ity was reduced and th e tim e to reach a ste a d y v e lo c ity was in c re a se d. These e f f e c ts were a t t r i b u t e d t o th e fo rm atio n and th ic k n e ss o f a f lu i d boundary la y e r w ith th e th ic k n e s s o f th e la y e r c o n tr o lle d by flow r a t e.

135 A p p lic a tio n o f a s o lu b le pronase tre a tm e n t to skim railk su b seq u en tly used in a b io -fe rm e n te r y ie ld e d d is a p p o in tin g r e s u l t s. A lthough b io lo g ic a l oxygen demand e f f ic ie n c y rem ained r e l a t i v e l y c o n s ta n t over th e th re e day p e rio d, chem ical oxygen demand e f fic ie n c y d e crea se d by I4O3S. R e su lts from high v o lta g e e le c tr o p h o re s is o f samples c o lle c te d over th e th re e day p e rio d showed t h a t p e p tid e s and amino acid s were n o t u t i l i z e d by th e b io m ass, b u t rem ained in th e e f f lu e n t. t

BIBLIOGRAPHY 1. A nderson, W. 195*4. Phenylcarbam oyl d e r iv a tiv e s o f in s u lin. A cta Chem. S c a n d., 8:1723-2. Andrews, P. 19614. E stim a tio n o f th e m o lecu lar w eights o f p ro t e i n s by Sephadex g e l - f i l t r a t i o n. Biochem. J., 91:222. 3. A rs e n is, C., and McCormick, D. B. 196*4. P u r if ic a tio n o f l i v e r fla v o k in a se by column chrom atography on f la v in - c e llu lo s e compounds. J. B io l. Chem., 239:3093. 1+. A v ta lio n, R. R., and T rop, M. U npublished work. 5. Axen, R., and P o ra th, J. 196*1, Chemical co u p lin g of amino a c id s, p e p tid e s, and p r o te in s t o Sephadex. A cta Chem. S can d., 18:2193. 6, B a r - E li, A., and K a tc h a ls k i, E. I960, A w a te r-in s o lu b le tr y p s in d e r iv a tiv e and i t s use as a tr y p s in column. N a tu re, 188:856. T. B a r - E li, A., and K a tc h a ls k i, E. 1963- P re p a ra tio n and p r o p e rtie s o f w a te r-in s o lu b le d e r iv a tiv e s o f tr y p s in. J. B io l. Chem., 238: 1690, 8. B a r n e tt, L. B., and B u ll, H. B. 1959. The optimum ph o f adsorbed rib o n u c le a s e. Biochim. B iophys. A c ta, 36:2*4*4. 9. Bauman, E. K., Goodson, L. H., G u ilb a u lt, G, G., and Kramer, D. N. 1 9 6 5. P re p a ra tio n o f im m obilized c h o lin e s te ra s e f o r use in a n a ly t i c a l ch em istry. A nal. Chem., 37:1378. 10. B ender, M. L,, and Kezdy, F. J. 1 9 6 5. Mechanism o f a c tio n o f p r o te o ly tic enzymes. Ann. Rev. B iochem., 3*4:*49. 11. B enesch, R,, and Benesch, R. E. 1958- T h io la tio n o f p r o te in s. P roc. N a tl, Acad. S e i., U.S., *4*4: 8 *4 8. 12, Bergm eyer, H. U. 1 9 6 5. D eterm in atio n w ith b e n z o y la rg in in e e th y l e s t e r as s u b s t r a te, Methods o f Enzymatic A n a ly s is, p. 815-818. 13, B e rn fe ld, P., and Wan, J. 1963. A ntigens and enzymes made in s o l u b le by e n tra p p in g them in to l a t t i c e s o f s y n th e tic polym ers. S c ie n c e, 1 *42:6 7 8. 1*4. B e rn fe ld, P., B ie b e r, R, E., and M acdonnell, P. C. 1968. W aterin s o lu b le enzymes: Arrangement o f a ld o la se w ith in an in s o lu b le c a r r i e r. Arch. Biochem. B io p h y s., 127:779. 136

15. 16. 17. 1 8. 19. 20. 21. 22. 23. 2 k, 25. 2 6. 27. 2 8. B e rn fe ld, P., B ie b e r, R. E., and W atson, D. M. 1969. K in e tic s o f w a te r-in s o lu b le p h o sp h o g ly cerate m ustase. Biochim. Biophys. A cta, 191:570. 137 B e rn fe ld, P., B ie b e r, R. E., W atson, D. M., and M acdonnell, P. C. 1969. K in e tic b e h av io r o f w a te r-in s o lu b le enzymes: E n o lase, phosp h o g ly c e ra te m utase and a ld o la s e. Fed, P r o c., Fed. Amer. Soc. Exp. B i o l., 28:53^. B ernhard, S. A., and R o s s i, G. L. 1 9 6 8. In S tr u c tu r a l Chem istry and M olecular B io lo g y, p. 98. E d ite d by A. Rich and N. Davidson. Freemen, San F ra n c isc o. B oyer, P. D. 1970. The Enzymes, S tru c tu re and C o n tr o l, V ol. 1, p. 305-307. Academic P r e s s, New York. Boyer, P. D. 1971. The Enzymes, V ol. 3, p. 398, ^72, 7^5. Academic P r e s s, New York. B oyer, P. D., Lardy, H., and Myrback, K. i 9 6 0. The Enzymes, V ol. U, p. 193, 206-208. Academic P r e s s, New York. B ran d en b erg er, H. 1956. Rev. Ferm ent. Ind. A lim e n t., 11:237. C ited from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971. W a te r-in so lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. Prom B iochem ical A spects o f R eactions on S o lid S u p p o rts. E d ited by George S ta rk. Academic P r e s s, New York. Cam pbell, D. H., L u eseh er, E., and Lerman, L, S. 1951. Immunolog ic a d s o rb e n ts. I. I s o la tio n of an tib o d y by means o f a c e llu lo s e - p r o te in a n tig e n. P roc. N a tl. Acad. S c i., 37:575. C u a tre c a s a s, P. 1971. A f f in ity chrom atography. Ann. Rev. B iochem., U0:259. D av is, J. G. 1965. C heese, V ol. 1 B asic Technology. American E ls e v ie r P u b lish in g Company, In c,, New York. D avis, R. V., Blanken, R. M., and B eag le, R. J. 1 9 6 9. D iaz o tize d m -am ino-benzyloxym ethylcellulose as th e in s o lu b le m a trix fo r an immunoadsorbent used in th e p u r if i c a t i o n of a n tig e n s and a n t i b o d ie s. B io ch em istry, 8:2706. D ay h o ff, M. 0. 1969. A tla s o f P ro te in Sequence and S tr u c tu r e. V ol. k, DeBecze, G. I. 1967. E ncyclopedia o f Polymer S cien ce and Technology, V ol. 6. W ile y -In te rs c ie n c e, New York. Dixon, M., and Webb, E. C. 196U. Enzymes, Second ed. Longmans, London.

138 29. E p s te in, C. J., and A n fin sen, C. B. 1962. The r e v e r s ib le r e d u c tio n of d is u l f i d e bonds in try p s in and rib o n u c le a se coupled t o c a rb o x y ra e th y lc e llu lo se. J. B io l. Chem., 237:2175. 30. F e in s te in, G. 1970, P u r if ic a tio n o f tr y p s in by a f f i n i t y chromato g ra p h y on ovom ucoid-sepharose r e s i n. FEBS L e t t e r s, 7:353. 31. F e r r i e r, L. K., R ich ard so n, T., O lson, N. F., and H ick s, C. L. 1972. C h a r a c te r is tic s o f in s o lu b le p ep sin u sed in a continuous m ilk - c lo ttin g system. J. D airy S c i., 5 5 :(6 )7 2 6. 32. F ra e u k e l-c o n ra t, H. 1959. In The Enzymes, B ey er, P. D., L ardy, H., and Myrback, K., E d s., V ol. 1, Academic P r e s s, New York, p. 589. 33. F r a s e r, D,, and H ig g in s, H. G. 1953. S p ectro p h o to m etric d e te r m in atio n o f am ino-groups. N atu re, 172:U59. 3U. F r i t z, H., G eb h ard t, G. M,, P in k, E., Schramm, W., and W erle, E. 1969. Z. P h y sio l. Chem., 305:129. C ited from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971. W a te r-in so lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From Biochem ical A spects o f R eactio n s on S olid S u p p o rts. E d ited by George S ta rk. Academic P re s s, Mew York. 35. F r i t z, H., H o c h s tra s s e r, K., W erle, E., B rey, E., and G ebhardt, B. M. 1968, Nachweis und p ra p a ra tiv e trennung von p r o te in - a s e in h ib ito r e n und von p ro te in a se n m it h i l f e v a s s e r u n lo s lic h e r enzym-bzv. i n h i b i t o r - h a r z e. Z. Anal. Chem., 2t3:H 52. 36. G ab el, D. I n s o lu b iliz e d tr y p s in w ith a c t i v i t y in a 8M u re a. 1970. Biochim. Biophys. A cta, 2 lh :5 6 l. 37. G la z e r, A, N., B a r - E li, A., and K a tc h a ls k i, E. 1962. P re p a ra tio n and c h a r a c te r iz a tio n o f p o ly ty ro s y l tr y p s in. J. B io l. Chem., 237: 1832. 38. G o ld fe ld, M, G., V orobeva, E. S., and P o lto ra k, 0. M. 1966. Zh. F iz, Khim., H0:259H. C ited from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971- W ate r-in so lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From Biochem ical A spects of R eactions on S o lid S u p p o rts. E d ited by George S ta rk. Academic P r e s s, New York. 39. Goldman, R., and K a tc h a ls k i, E. 1971. K in e tic b e h a v io r o f a tw o- enzyme membrane c a rry in g out a co n secu tiv e s e t o f r e a c tio n s. J. T heor. B i o l., 32:2U3. HO. Goldman, R., and L en h o ff, H. 1969. U npublished d a ta.

1+1. Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971* W aterin s o lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From B iochem ical A spects o f R eactio n s on S o lid S u p p o rts. E d ited by George S ta rk, Academic P r e s s, Hew York. 1+2. Goldman, R., Kedem, 0., and K a tc h a ls k i, E. 1968, P a p a in -c o llo d io n membranes. I I. A n aly sis o f th e k in e tic b e h a v io r o f enzymes im m obilized in a r t i f i c i a l membranes. B io ch em istry, 7:1+518. 1+3. G o ld s te in, L. 1969. In F erm en tatio n Advances (D. P erlm an, ed. ), p. 391. Academic P r e s s, New York. 1+1+. G o ld s te in, L. 1970. W a te r-in so lu b le d e r iv a tiv e s o f p r o te o ly tic enzymes. Methods in Enzymology, 19:935. 1+5. G o ld s te in, L. 1971. M anuscript in p r e p a ra tio n. C ite d from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971. W aterin s o lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From B iochem ical A spects o f R eactio n s on S o lid S u p p o rts. E d ite d by George S ta rk. Academic P r e s s, New York. 1+6. G o ld s te in, L. P riv a te com m unication, 1+7- G o ld s te in, L., and K a tc h a ls k i, E. 1968. Use o f w a te r-in s o lu b le enzyme d e r iv a tiv e s in b io ch em ical a n a ly s is and s e p a ra tio n. Z. A nal. Chem., 21+3:375* 1+8. G o ld s te in, L., L evin, Y., and K a tc h a ls k i, E. 196U. A w a te r- in so lu b le p o ly a n io n ic d e r iv a tiv e o f tr y p s i n. I I. E ffe c t o f th e p o ly e le c tr o ly te c a r r i e r on th e k i n e tic b eh av io r of th e bound tr y p s in. B io ch em istry, 3:1913. 1+9. G o ld s te in, L., P e c h t, M., Blumberg, S., A tla s, D., and L ev in, Y. 1970. W a te r-in so lu b le enzymes. S y n th e sis o f a new c a r r i e r and i t s u t i l i z a t i o n fo r p re p a ra tio n of in s o lu b le d e r iv a tiv e s of p a p a in, t r y p s i n, and s u b tilo p e p tid a s e A. B io ch em istry, 9:2322. 50. Gove, P. B. 1961. W eb ster's T h ird New I n te r n a tio n a l D ic tio n a ry. G. and C. Merriam Company, S p r in g f ie ld, M assach u setts. 51. Greenbaum, L. M., and F ru to n, J. S, 1957. P u r if ic a tio n and p r o p e r tie s o f b e e f sp le e n c a th e p sin B. J. B io l. Chem., 226:173. 52. G u ilb a u lt, G. G. 1968. Use o f enzymes in a n a ly tic a l ch em istry. A n a ly tic a l C hem istry, Uo: ( 5 )1+59R-1+71R. 53. G u ilb a u lt, G. G., and D as, J. 1970. Im m o b ilizatio n of c h o lin e s - t e r a s e and u re a s e. A n aly t. Biochem., 33:31+1. 139

5U. G u ilb a u lt, G. G., and Kramer, D. N. 1965* F lu o ram etrie system em ploying im m obilized c h o lin e s te r a s e fo r assay in g a n tic h o lin e s t e r a s e compounds. A nal. Chem., 37:1675. 55. G u ilb a u lt, G. G., and M ontalvo, J. G. 1970. An enzyme e le c tro d e f o r th e s u b s tr a te u re a. J. Am, Chem, Soc., 92:2533. lllo 5 6. G urvich, A. E, 1957. Q u a n tita tiv e d e te rm in a tio n of antibody c o n te n t by means o f p r o te in a n tig e n s fix e d on p ap er. B iochem istry (USSR), 22:977. 57. Hamoir, G. 19^6. Communications p r o v is o ire s L 'a d s o rp tio n des m e tallo fe rm e n ts a l a s u rfa c e des p r e c i p i te s m ineraux. E x p erim en tia, 2 :257. 58. H arp er, W. J., B l a i s d e l l, J.L., and G rosskopf, J. C. 1971* D airy food p la n t w astes and w aste tre a tm e n t p r a c tic e s. W ater P o llu tio n C o n tro l Research S e rie s. 59. H e lf f e r ic h, F. 1962. In Ion Exchange, p. 519. M cgraw-hill, Hew York. 6 0. H ellerm an, L, 1937- Phys. R ev,, 17:^5^. C ited from S ilm an, I. H., and K a tc h a ls k i, E. 1966, W a te r-in so lu b le d e riv a tiv e s of enzymes, a n tig e n s, and a n tib o d ie s. Ann. Rev, B iochem., 35:873. 61. H ick s, G, P., and U pdike, S, J. 1 9 6 6. The p re p a ra tio n and c h a r a c te r iz a tio n o f ly o p h iliz e d poly acry lam id e enzyme g e ls fo r chem ical a n a ly s is. A nal, Chem., 38:726. 6 2. H iram atsu, A., and O uchi, T. 1 9 6 3. On th e p r o te o ly tic enzymes from th e commercial p ro te a se p re p a ra tio n o f Streptom yces g ris e u s (P ronase P ). J. Biochem., 5^:^62. 6 3. Hornby, W. E,, and F ilip p u so n, H. 1970. The p re p a ra tio n of tr y p s in chem ically a tta c h e d to nylon tu b e s. Biochim. Biophys. A c ta, 220:31*3. 6U. Hornby, W. E., F ilip p u so n, II., and McDonald, A. 1970. FEBS L e tt e r s, 9 ;8. C ited from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971. W a te r-in so lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From B iochem ical A spects o f R eactions on S o lid S u p p o rts. E d ited by George S ta rk. Academic P r e s s, Hew Y ork. 6 5. Hornby, W. E., L i l l y, M, D., and Crook, E. M. 1966. The p re p a ra t i o n and p r o p e rtie s of f i c i n chem ically a tta c h e d to carboxym ethylc e llu lo s e. Biochem, J., 98:^20.

66. Hornby, W. B., L i l l y, M. D., and Crook, E. M. 1968. Some changes in th e r e a c t i v i t y of enzymes r e s u ltin g from t h e i r chem ical a tta c h ment t o v a te r - in s o lu b le d e r iv a tiv e s of c e llu lo s e. Biochem. J., 107:669. 67. H u ssain, Q. Z., and Newcomb, T. F. 1961+. P roc. Soc. Exp. B io l. M ed., 115:301, C ited from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971. W a te r-in so lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From B iochem ical A spects o f R eactions on S o lid S u p p o rts. E d ite d by George S ta rk. Academic P r e s s, New York. 68. Inman, J, K., and D in tz is, II. M. 1969. The d e r iv a tiz a tio n of c r o s s -lin k e d p olyacrylam ide b ead s. C o n tro lle d in tro d u c tio n o f f u n c tio n a l groups fo r th e p re p a ra tio n o f s p e c ia l-p u rp o s e, b io chem ical a d s o rb e n ts. B io ch em istry, 8 : U0 7 U. 6 9. J u ra s e k, L., F a c k re, D,, and S m illie, L. B. 1 9 6 9. Remarkable homology about th e d is u lf id e b rid g e s of a tr y p s in lik e enzyme from Streptom yces g r is e u s. Biochem, Eiophys. Res. Commun., 37:99. 70. K a tc h a ls k i, E, 1 9 6 2. In "Polyamino A cid s, P o ly p e p tid e s, P r o te in s," P roc. I n t. Symp., 1 s t (M. A. Stahmann, e d. ), p. 283. Univ. W isconsin P re s s. 71. K a tc h a ls k i, E, 1970. A s y n th e tic approach to th e study o f m icroenvironm ental e f f e c ts on enzyme a c tio n. In S tru c tu re -F u n c tio n R e la tio n sh ip s o f P r o te o lv tic Enzymes. (E d ited by P. D esn u elle, H. N e u ra th, and M. O tte s e n ), New York. 72. K a tc h a ls k i, E. 1970. Symmetry and F un ctio n o f B io lo g ic a l Systems a t th e M acrom olecular L e v el. E d ited by A. Engstrom and B. S tran d b erg. I n te r s c ie n c e, New York, p. 283. 73. K a tc h a ls k i, E., Silm an, I., and Goldman, R. 1971. E ffe c t o f th e m icroenvironm ent on th e mode o f a c tio n o f im m obilized enzymes. Adv. in Enzymology, 3*+: *+1+5-536. 7*+. Kay, G,, and Crook, E. M. 1967. Coupling of enzymes of c e llu lo s e u sin g c h lo ro -sym-t r ia z in e s. N atu re, 216:51**. 75. Kay, G., L i l l y, M. D., S h arp, A. K., and W ilson, R. J. H. 1968. P re p a ra tio n and use of porous sh e e ts w ith enzyme a c tio n. N atu re, 217:61+1. 76. K ent, L. H., and S la d e, J. H. R, i 9 6 0. Im m unochem ically-active c r o s s -lin k e d p o ly sty ren e p re p a ra tio n s. Biochem. J., 77:12. 77. K ent, L. H., and S lad e, J. H. R. 1963. P roc, I n te r n. Congr. B iochem., 5th Moscow, 1 9 6 1, 9:1+7*+. C ited from S ilm an, I. H., and K a tc h a ls k i, E. 1966. W a te r-in so lu b le d e r iv a tiv e s o f enzymes, a n tig e n s, and a n tib o d ie s. Ann. Rev. Biochem., 35:873. lltl

78. Kimmel, J. R., and S m ith, E. L. 195**. C r y s ta llin e p ap ain. I. P r e p a ra tio n, s p e c i f i c i t y, and a c tiv a tio n. J. B io l. Chem., 207:515. 1U2 79. Kominz, D. R., M itc h e ll, E. R., N ih e i, T., and Kay, C. M. 1965. The p ap ain d ig e s tio n o f s k e le ta l myosin A. B io ch em istry, U:2373. 80. Kramer, D. N. and F o rd, R. 1967 S cien ce-t ech n o lo g y, No. 6U, 70. C ited from L in d sey, A,S. 1969. Polym eric enzymes and enzyme a n a lo g s. J. Macromol. S c i.-r e v s. Macromol. Chera., C (3 ):l-^ 7-8 1. Lerman, L. S. 1953. A b io ch e m ic ally s p e c i f i c method fo r enzyre i s o l a t i o n. P ro c. N at. Acad. S c i., 39:232. 82. L euschner, F. 1961*. B r itis h P a te n t 9 5 3,^ l 1*. 83. L evin, Y., P e c h t, M., G o ld s te in, L., and K a tc h a ls k i, E. 1961*. A v a t.e r-in s o lu b le p o ly a n io n ic d e r iv a tiv e o f tr y p s in. X. P rep a ra tio n and p r o p e r tie s. B io c h em istry, 3:1905. 81*. L i l l y, M. D., and S harp, A. K. 1968, Chem. E n g., CE 12, C ited from Goldman, R., G o ld s te in, L., and K a tc h a ls k i, E. 1971. W aterin s o lu b le d e r iv a tiv e s and a r t i f i c i a l enzyme membranes. From B iochem ical A spects o f R eactio n s on S o lid S u p p o rts. E d ited by George S ta rk, Academic P r e s s, Ilev York. 8 5. L i l l y, M. D., Hornby, W. E., and Crook, E. M. 1966. The k in e tic s o f c a rb o x y m e th y lc e llu lo s e -fic in in packed b ed s. Biochem. J., 100:718. 86. L i l l y, M. D., Kay, G., S harp, A. K., and W ilson, R. J. H. 1 9 6 8. The o p e ra tio n o f b io ch em ical r e a c to rs u sin g fix e d enzymes. Biochem. J., 107:5P. 8 7. L in d sey, A. S. 1 9 6 9. Polym eric enzymes and enzyme an alo g s. J. Macromol. S c i.-r e v s. Macromol. Chem., C C3 ): 3. - 88. L in e, W. F., Kvong, A., and W e e ta ll, H. 1971. P ep sin in s o lu b iliz e d by c o v a le n t attachm ent to g la s s : P re p a ra tio n and c h a ra c te r i s t i c s. Biochim. Biophys. A c ta, 2^2:19^-202. 8 9. McLaren, A. D., and P ack er, L. 1971. Some a s p e c ts o f enzyme r e a c tio n s in h eterogeneous system s. Biochim, B iophys, A cta, 255:58, 90. Mandy, W. J., R iv e rs, M. M., and N iso n o ff, A. 1 9 6 1..Recom bination o f u n iv a le n t su b u n its d eriv ed from r a b b it an tib o d y. J. B io l. Chem., 236:3221. 91. Manecke, G. 1962. R eactiv e polym ers and t h e i r u se fo r th e p re p a ra tio n o f an tib o d y and enzyme r e s in s. Pure and Appl. Chem., 1*:507.

92. Manecke, G. 1961*. Uber s e ro lo g isc h wirksame p ro te in h a rz e und enzym h a rz e. N a tu rw isse n sc h a fte n, 51:25. 93. Manecke, G., S in g e r, S., and G ilb e r t, K, E. 1950- S e ro lo g isc h s p e z ifis c h e ad so rb e n tie n. N atu rw isse n sc h a ften, U5 :l*uo. 9 I*. M elrose, G. J. H. 1971. I n s o lu b iliz e d enzymes; b io ch em ical a p p lic a tio n s of s y n th e tic polym ers. Rev. Pure and Appl. Chem. 21:83-119. 95. M essing, R. A. 1970. Enzym ologia, 38:39. C ited from S ilm an, I, H., and K a tc h a ls k i, E. 1966. W a te r-in so lu b le d e r iv a tiv e s of enzymes, a n tig e n s, and a n tib o d ie s. Ann. Rev. Biochem., 35:873. 9 6. M ic h a e lis, L., and S c h u b e rt, M. P. 1931*. The re a c tio n s o f io d o a c e tic acid on mercaptenis and am ines. J. B io l. Chem., 106:331. 97. M icheel, F., and E v e rs, J, 19^9. Synthese von verbindugen der c e llu lo s e m it e iw e ib s to ffe n. Makromol, Chem., 3:200. 9 8. M itz, M. A. 1956. New in s o lu b le a c tiv e d e r iv a tiv e o f an enzyme as a m odel fo r study o f c e l l u l a r m etabolism. S c ie n c e, 123:1076. 99. M itz, M. A., and S c h le u te r, F. J. 1959. I s o la tio n o f p r o te o ly tic enzymes from s o lu tio n as dry s ta b le d e r iv a tiv e s of c e ll u l o s i c ion exchangers. J. Amer, Chem. Soc,, 8 l:h 0 k. 100. M itz, M. A,, and Summaria, L. J. 1961. S y n th e sis o f b i o lo g ic a lly a c tiv e c e llu lo s e d e r iv a tiv e s o f enzymes. N atu re, 189:576, 101. M orihara, K., T su z u k i, H., and Oka, T. 1968. Comparison o f th e s p e c i f i c i t i e s of v a rio u s n e u tr a l p ro te in a s e s from m icroorganism s. Arch, o f Biochem. and B io p h y s., 123:572-588. 102. Morr, C. V. 1967. E ffe c t o f u re a upon p h y s ic a l p r o p e rtie s o f $ -la c to g lo b u lin A and B. J. D airy S c i., 50:1752. 103. Morr, C. V. 1971. Comparison o f p r o te in p re p a ra tio n p ro ced u res and s ta r c h v ersu s p o ly acry lam id e g e l e le c tro p h o re s is f o r examining c a s e in d eg rad atio n products in ch eese. J. D airy S c i., 5^(3) 339-31*2. 10l*. Mosbach, K. 1971- Enzymes bound to a r t i f i c i a l m a trix e s. S c i e n t i f i c Am erican, 22k:(3)26-33. 105. Mosbach, K. and L arsso n, P. 0, 1970. P re p a ra tio n and a p p lic a tio n o f polym er-entrapped enzymes and m icroorganism s in m ic ro b ia l tra n sfo rm a tio n p ro c e sse s w ith s p e c ia l re fe re n c e t o s te r o i d 11-3-h y d ro x y la tio n and A' -d eh y d ro g en atio n. B io tech n o l. Bioeng., 12:19. lu3

106. N ara h ash i, Y. and Fukunaga, J, 1 9 6 9. Complete s e p a ra tio n o f th r e e a lk a lin e p ro te in a s e s a, b, and c from pronase and some c h a r a c t e r is t i c s o f a lk a lin e p ro te in a s e b. J. B iochem., 66: ( 5 ) 7^3-7^5. 107. N arah ash i, Y., and Y a n a g ita, M. 1 9 6 7. S tu d ies on p r o te c l y ti c enzymes (p ro n a se ) o f Streptom yces g ris e u s K -l. I. N ature and p r o p e r tie s o f th e p r o te o ly tic enzyme system. J. B iochem., 62: (6)633-610.. lojb. N ara h a sh i, Y., S hibuya, K., and Y a n a g ita, M. 1968. S tu d ie s on p r o te o ly tic enzymes (p ro n ase) o f S treptom yces g ris e u s K -l. I I. S e p a ra tio n o f exo- and en d o p ep tid ases o f p ro n ase. J. Biochem., 61*: (U)U27-1+3T- 109. N elson, J. M., and G r i f f i n, E. G. 1916. A dsorption o f in v e r ta s e, J. Amer. Chem. Soc., 38:1109. 110. N e u ra th, H., and S c h v e rt, G. W. 1950. The mode o f a c tio n o f th e c r y s t a l l i n e p a n c re a tic p r o te o ly tic enzymes. Chem. R e v s., 1*6:69 111. Namoto, M., and N arah ash i, Y. 1959. A p r o te o ly tic enzyme of Streptom yces g r i s e u s. I. P u r if ic a tio n o f a p ro te a se o f S tre p to - rayces g r is e u s. J. B iochem., 1+6:653. 112. Nomoto, M., and N arah ash i, Y. 1959. A p r o te o ly tic enzyme of Streptom yces g r is e u s. I I I. Homogeneity o f th e p u r if ie d enzyme p r e p a ra tio n. J. Biochem., l+6:ll+8l. 113. Nomoto, M., and N arah a sh i, Y. 1959. A p r o te o ly tic enzyme of Streptom yces g r is e u s. IV. G eneral p r o p e r tie s o f Streptom yces g ris e u s p ro te a s e. J. Biochem., 1+6:161+5. l i l t. Nomoto, M., N arah ash i, Y., and Murakami, J. 1959. R ept. I n s t. Phys. Chem. R esearch, 35:151+ (Tokyo, Ja p a n ). C ited from Nomoto, M., N a ra h a sh i, Y., and Murakami, M. i 9 6 0. A p r o te o ly tic enzyme o f Streptom yces g r is e u s. V II. S u b s tra te s p e c i f i c i t y o f S tre p to - myces g ris e u s p ro te a s e. J. Biochem., 1+8: (6)906-918. 115. Nomoto, M., N arah ash i, Y., and M urakami, M. i 9 6 0. A p r o te o ly tic enzyme of S treptom yces g r is e u s. V. P r o te c tiv e e f f e c t o f calcium io n on th e s t a b i l i t y o f p ro te a s e. J. B iochem., 1+0:1+53. 116. Nomoto, M., N arah ash i, Y., and Murakami, M, i 9 6 0. A p r o te o ly tic enzyme o f Streptom yces g r is e u s. VI. H ydrolysis o f p r o te in by S treptom yces g ris e u s p ro te a s e. J. B iochem,, 1+8:593. 117. Nomoto, M., N arah ash i, Y,, and Murakami, M. i 9 6 0. A p r o te o ly tic enzyme o f Streptom yces g r is e u s. VTI. S u b stra te s p e c i f i c i t y o f S treptom yces g ris e u s p ro te a s e. J. Biochem., 1+8: (6)906-918. lhk